

Environmental Monitoring Report

Reporting Period 29/08/2011-02/10/2011

Former Bayer Crop Science Site Hauxton Cambridgeshire

11th October 2011

Author:

M.J. Allsobrook M.Sc. B.Sc. Project Manager

On behalf of:

Harrow Estates Plc

Vertase F.L.I. Limited 3000 Aviator Way Manchester Business Park Manchester M22 5TG

Tel +44 (0) 161 437 2708 Fax +44 (0) 161 437 6300

Email info@vertasefli.co.uk www.vertasefli.co.uk

CONTENTS

1.0 Int	roduction1	ĺ
1.1.	General1	
1.2.	The site1	
1.3.	Remediation Brief and Philosophy1	
2.0	Monthly Progress	3
И И И	Veek 77. Week Commencing 29 th August 2011	3 3 4 4
3.1.	Odour and VOC Emissions	5
3.2.	Dust Fibre and Particulate Emission7	7
3.3.	Control of Mud and Debris	3
3.4.	Noise	3
3.5.	۲. Litter	3
4.0	Surface and Ground Water Condition)
4.1.	Surface Water Monitoring)
4.2.	Surface Water Sampling and Analysis)
4.3.	Groundwater Level Monitoring10)
4.4.	Groundwater Sampling and Analysis11	
5.0	Waste Water Treatment Plant12	2
6.0	Contaminants Not Previously Identified14	Ļ

APPENDICIES

- A Drawings
- B Environmental Monitoring Data
- C Long Term Passive VOC Monitoring
- D Directional Dust Monitoring
- E Groundwater Level Data
- F Surface Water and Groundwater Analysis Reports
- G Groundwater Level Graph
- H Waste Water Treatment Plant Discharge Analysis
- I Soil Characterisation Results Summary

1.0 Introduction

1.1. General

This report has been prepared and submitted in accordance Environmental Permitting Regulations 2007 with reference to the approved Deployment of Vertase FLI's Environmental Permit Ref: ERP/QP3293FY for the remediation works at the former Bayer CropScience site Hauxton, and in accordance with Condition 4 of the planning permission dated 5th February 2010.

The time period that this report represents is from the 29th of August 2011, until the 2nd of October 2011.

1.2. The site

The site is the former Bayer Crop Science site, Cambridge Road, Hauxton, Cambridge. The site was used for the storage and production of agrichemicals from the 1940's through to ceasing production in 2004. The site was used primarily for the synthesis, formulation, packaging and storage of agrichemicals (both herbicides and pesticides). It is this former historical use that has led to the contamination legacy of soil and groundwater at the site.

There is also a Waste Water Treatment Plant (WWTP) and other agricultural land which is part of the former land holding of Bayer Crop Science and is part of that controlled by Harrow Estates. The WWTP will be utilised to assist in the treatment of recovered groundwater and will be improved to undertake this task and then maintained for the duration of the remediation. This area of the site will not be subject to remediation as part of this phase of works but will be remediated as a separate phase of work under a separate contract and separate Remediation Method Statement in the future.

1.3. Remediation Brief and Philosophy

The philosophy for this remediation project is set out in detail in the agreed Remediation Method Statement. The remediation of the site has been developed from knowledge of the site gained from historical site investigations, Atkins Preliminary Conceptual Model Report August 2006 (interpretative report defining the current and correct understanding of the geological and

environmental conditions) and subsequent sampling and analysis defining the extent of contamination following further investigation. This information has allowed the conceptual site model and pollutant linkages to be developed to form the remediation methodology. Whilst the remediation work itself is complex and varied, the philosophy is simple and defines the proposed remedial action required. This philosophy has been designed with the brief in mind. This brief can be defined as "a remediation to address all pollutant linkages and ensure that following remediation and re-development no unacceptable risks will remain associated with the treated area of the site by applying the best available techniques not entailing excessive costs (BATNEEC)".

The philosophy behind the remediation is to remove all uncertainty relating to soils and groundwater within the site area by the excavation, characterisation and treatment. All pathways between the identified sources and receptors will be removed and the contaminant mass within soils reduced as far as the practical limits of cost effective technology permit. The Remediation Method Statement sets out how this philosophy or strategy will be achieved practically on site and validated with confirmative post remediation risk assessment.

These remediation works are also required to satisfy the regulators that adequate remediation works have been completed to satisfy their requirements under Part IIa of the Environmental Protection Act 1990.

2.0 Monthly Progress

Week 77. Week Commencing 29th August 2011

Excavation of the bentonite wall structure continued in grid squares G8 to G10 with low impacted bentonite and marl being created into treatment beds in the centre of the site. The excavations along the route of the bentonite wall were restored with marl excavated from the southeast of the site.

Restoration of remediated soils continues along the bentonite wall and in the south east corner of the site. Turning of treatment beds was undertaken to promote biological degradation and dry the material in preparation for reinstatement. Off site disposal of one particularly recalcitrant treatment bed continues with this waste being transported under the hazardous waste regulations to an off site licensed disposal facility.

Week 78. Week Commencing 5th September 2011

Excavation continues in the eastern part of the site progressing from the now completed bentonite wall section through grid squares G9 to G15, low impacted materials form treatment beds to the south of the site.

Restoration of remediated soils continues in the centre, eastern and south eastern parts of the site. Turning of treatment beds was undertaken to promote biological degradation and dry the material in preparation for reinstatement. Off site disposal of one particularly recalcitrant treatment bed continues with this waste being transported under the hazardous waste regulations to an off site licensed disposal facility. Trial pitting was undertaken in the east and south of the site to validate certain parts of the site that were anticipated to not require remediation.

Week 79. Week Commencing 12th September 2011

Excavation continues through grid squares G13 to G15, low impacted materials form treatment beds to the south of the site. Excavation plant then moves to a known solvent hotspot in E and F19, removing impacted materials to treatment beds.

Restoration of remediated soils continues in the eastern and south eastern parts of the site. Turning of treatment beds was undertaken to promote biological degradation and dry the

material in preparation for reinstatement. The off site disposal of recalcitrant materials was completed on the 14th September. The treatment area liner from the centre of the site was excavated and disposed of offsite to an appropriate disposal facility. Breaking out of concrete slab and foundations commenced in the south of the site in the area of the high bay warehouse, with concrete being stockpiled to await crushing.

Week 80. Week Commencing 19th September 2011

Excavation focussed on the eastern boundary of the site in grid squares D, E, and F 13 to 16 removing a fuel associated hydrocarbon hotspot and creating a treatment bed in the centre of the site. A former UST was excavated and validating in grid squares F16 to 17.

Restoration of remediated was undertaken in F16 to 17 and in the south east of the site. Turning of treatment beds continues to promote biological degradation and dry the material in preparation for reinstatement. Breaking out of concrete slab and foundations continued in the south of the site in the area of the high bay warehouse, with concrete being stockpiled to await crushing.

Week 81. Week Commencing 26th September 2011

Excavation continued along the east of the site in grid squares E11- to F13, and then moved to the south west of the site to generate suitable non impacted marl for restoration to zone 1. The tarmac surfaces of the site entrance and former car park to the north of the site were excavated and stored in stockpiles to await chemical testing.

Restoration of remediated was undertaken in the south west of the site. Turning of treatment beds continues to promote biological degradation and dry the material in preparation for reinstatement. Breaking out of concrete slab and foundations continued in the south of the site in the area of the high bay warehouse, concrete crushing plant was mobilised to site to process the concrete to a reusable state.

3.0 Environmental Monitoring Summary

The environmental monitoring locations detailed in the Environmental Permit deployment form for the site are highlighted in drawing D907_33C in Appendix A.

The detailed environmental monitoring data can be found in Appendix B, the following chapters summarise the finding from the monitoring undertaken by Vertase FLI Site Engineers.

3.1. Odour and VOC Emissions

Odour and VOC monitoring around the site boundary commenced on the 22nd March 2010 and has been undertaken twice daily at eight compass points around the site boundary, in the public access areas. Odour and VOC related observations in between the eight compass points around the site are also noted by the Vertase FLI representative undertaking the monitoring.

In addition to physical control via covers and management of activities odour controlling suppressants and masking agent are being used around the site boundary to mitigate the impact of odour migration off site.

Site generated odours including those from the remediation processes and the odour suppression systems observed during the monitoring rounds beyond the site boundary are listed in the environmental monitoring data spreadsheet in Appendix B.

The Vertase FLI Environmental Engineers and Site Management team have been working closely to prevent odours and VOC's generated by the remediation processes migrating off site, along with trying to achieve a fine balance of using a specific odour control fragrance's at a variety of dilutions to reduce the impact of any odours detected off site.

The Environmental Engineers have logged the actions undertaken on site to reduce the impact of VOC/odours off site, these are noted in the environmental monitoring data in Appendix B. All mitigation measures have been in accordance with the actions stipulated in the deployment form, including some additional actions to reduce the potential of odour nuisance e.g. repositioning of mobile odour control systems. During the twice daily environmental monitoring a Photoionisation Detector (PID) has been used to record VOC's present beyond the site boundary. The PID will not function correctly in wet weather conditions, this has prevented real-time monitoring on a number of days and data is missing from the environmental monitoring spreadsheet for this reason. During the reported period VOC's were not detected by the PID (Limit of detection of 0.1ppm) beyond the site boundary.

Long term passive VOC monitoring is carried out at eight compass point locations around the site boundary, in the public accessible areas, further monitoring locations are located within the centre of the waste water treatment works, on Church Road, Hauxton and Queens Close, Harston.

The results for the long term passive VOC monitoring carried out between 11/08/2011 and 08/09/2011 are reported in appendix C. The analysis undertaken for this monitoring period indicates that the majority of the VOC's detected are around the baseline, except for Tetrachloroethene, Heptadecane, Octadecane and Hexadecane (of which the last three compounds are products of the internal combustion engine and probably derive from local vehicle emissions) which is on occasion slightly raised above the baseline values but are well below the levels considered to be within acceptable limits for published criteria.

The analysis for Church Road, Hauxton and Queens Close, Harston indicates there are some site related VOC's detected at these locations, but at levels that are considered to be within acceptable limits for published criteria.

The 28 day passive VOC monitoring results have been forwarded to the Health Protection Agency for review. The HPA have under taken independent risk assessment upon the data provided and have provided a positive non technical summary which is available on South Cambridgeshire District Councils website.

3.2. Dust Fibre and Particulate Emission

Both real time dust measurement and long term dust deposition monitoring has been undertaken around the site boundary at six compass point locations, north, east, south, west with two monitoring positions in the northeast (drawing D907_30C, Appendix A).

Real time airborne dust monitoring is undertaken as a minimum twice daily by an Environmental Engineer using a 'Dustmate' dust particle monitor around the site boundary as part of the environmental monitoring schedule, results are recorded in the environmental monitoring spreadsheet (Appendix B). The 'Dustmate' dust particle monitor will not function correctly in wet weather conditions, therefore on a number of days and data is missing from the environmental monitoring spreadsheet for this reason. Dust migration is however less likely in wet weather conditions.

Dust particle measurements at each monitoring location have varied, with the higher dust readings being generally at the locations adjacent to the heavily trafficked Cambridge Road (A10). The average Total Suspended Particulates (TSP) reading around the site is 148.61µg/m³, the average PM10 dust reading around the site is 73.87µg/m³. Where a potential for dust has been observed, on site dust suppression methods have been deployed immediately to reduce the generation of site dust and all haul routes are continually wetted to prevent dust release.

Directional dust deposition gauges at the six monitoring locations are analysed every fortnight for Effective Area Coverage (EAC) (percentage of dust deposition relating to the potential to cause nuisance), results generated by an external laboratory are presented in Appendix D.

Baseline dust monitoring undertaken between 19/02/2010 to 19/03/2010 (4 locations monitored) recorded a maximum dust deposition rate of 0.54%EAC at the western monitoring location.

Dust monitoring undertaken from the 30/08/2011 to 13/09/2011 was unfortunately lost in transit to the laboratory, meaning this data will be lost from the record.

Dust monitoring undertaken from the 13/09/2011 to 27/09/2011(5 locations monitored only due to 1# damaged on site) is still pending laboratory analysis, and will be reported in a supplemental report.

During the reported period dust, fibre and particle emissions have been low, and have not caused visual dusting off site.

3.3. Control of Mud and Debris

A pressure washer and a fully automatic wheel wash has been on site during the reporting period to allow all maintenance, plant delivery and off site disposal vehicles leaving contaminated parts of the site to be washed down thoroughly first, as not to take potentially contaminated mud and debris through the clean zone and off site. The movement of vehicles between the contaminated and clean parts of the site is strictly controlled by the site management team.

3.4. Noise

Noise monitoring around the site boundary commenced on the 22nd March 2010 and has been undertaken twice daily as a minimum, recording findings at eight compass points around the site boundary in the public access areas (drawing D907_30C, Appendix A).

Site operations are restricted to 8am to 6pm and site noise levels are consistently at an average acceptable low background level of 68dB. Exceedance's of the 80dB threshold (stipulated in the Environmental Permit deployment document) have been recorded during the monitoring period, however traffic along the A10 has been identified as the source of the slightly elevated noise levels. Data is recorded in the environmental monitoring data spreadsheet, Appendix B.

3.5. Litter

All litter occurrences are removed from within the site, and off site around the boundary fence, and disposed of appropriately. Litter is generally low off site, and is well managed on site, by all site personnel. All recordings of the presence of litter are noted in the Environmental Monitoring Data spreadsheet in Appendix B.

4.0 Surface and Ground Water Condition

4.1. Surface Water Monitoring

As part of the environmental monitoring programme, the Riddy Brook located to the east of the site (Drawing D907_33C, Appendix A) is inspected daily as a minimum at two locations up and down stream for general observations, on any discolouration, sedimentation etc. The observations are recorded on the Environmental Monitoring Data (Appendix B). Throughout the monitoring period there have been no visual signs that the remediation works on site are having any impact on the Riddy Brook.

The water level within the Riddy Brook is monitored and recorded on a daily basis at a minimum of two locations, footbridge adjacent to Mill House (Riddy 1) and the most southerly footbridge over the Riddy Brook, adjacent to the eastern corner of the site (Riddy 4). Two further locations are also monitored, Riddy 2 at the footbridge over the Riddy Brook approximately 150m southeast of Mill House and the former fire exit bridge (Riddy 3), 210m southeast of Mill House. All the water level data is recorded in the main groundwater level data sheet in Appendix E.

During the monitoring period there have not been any significant changes in levels along the Riddy Brook.

4.2. Surface Water Sampling and Analysis

Upstream and downstream water samples from both the River Cam (Granta) and the Riddy Brook are taken on a monthly basis. The results for samples taken on the 5th September are presented in Appendix F, samples taken on the 30th September 2011 are pending laboratory analysis and will be reported in a supplemental report.

The surface water analysis of the 5th September 2011 shows trace levels Tetrachloroethylene (2 μ g/l) detected in all surface water samples analysed, River Cam (Granta) up and down stream and the Riddy Brook up stream and down stream. Trace levels of Mecoprop (1.3 μ g/l) were detected in both the up and down stream sample of the River Cam and the down stream sample only of the Riddy Brook.

These trace levels identified in the early September 2011 sampling round have been recorded in the baseline data collected prior to the commencement of the remediation project and are not related to a specific site incident.

4.3. Groundwater Level Monitoring

Groundwater levels are recorded within at least 10 borehole locations onsite on a twice weekly basis, to ensure the groundwater beneath the site remains in a static condition during the remediation works and does not pose a risk to surface and groundwater bodies beyond the site boundary.

During the initial excavation works on site very little groundwater has been encountered, the majority of excavations located in the northern parts of the site have exceeded a depth of 4m below current ground level and have penetrated the Gault Clay in parts.

The main source of water encountered during excavations has been discontinuous contaminated perched water present in the Made Ground. This water has been captured and treated in the Waste Water Treatment Works associated with the site.

The groundwater levels measured at locations around the site are shown in drawing D907_31G, in appendix A. The groundwater levels are presented in Appendix E.

A groundwater level graph has been constructed to illustrate the variation in groundwater level at the monitoring locations across the site for the reporting period (Appendix G).

The graph constructed (Appendix G) illustrates that there have been little changes to groundwater levels within the boreholes across the site during the monitoring period. However on the 8th of September the high bay warehouse pump was switched off and pumping of a deep groundwater (4m+ below ground level) was undertaken on the southern most boundary this change in pumping regime can be seen in the responses in boreholes BH6/06 on the southern boundary and in BHB1 in front of the high bay warehouse. On the 15th of September pumping groundwater from the in front of the high bay warehouse resumed, and the water in the aforementioned monitoring wells returned to their pre 08/09/2011 levels.

There has been limited perched groundwater flow to some parts of the marl at approximately 2m below ground level to the south of the site during the excavation in this area, these have been easily managed and have generally stopped flowing after a day or so.

4.4. Groundwater Sampling and Analysis

Groundwater samples from 11 monitoring locations on site, where possible are taken on a monthly basis. The results for samples taken on the 30th September 2011 are pending laboratory analysis and will be reported in a supplemental report.

5.0 Waste Water Treatment Plant

The Waste Water Treatment Plant (WWTP) is part of the former land holding of Bayer Cropscience and is part of that controlled by Harrow Estates. The WWTP was an integral part of the former Bayer Crop Science site, located to the west of the A10, specifically designed to treat and discharge liquid waste products derived from the production of agrochemicals (both herbicides and pesticides) and sewage from the facility.

The WWTP has been previously operated (until the 15th of March 2010) by Alpheus Environmental Ltd. to maintain the required discharge volume generated by the groundwater pumping systems on the main Bayer Cropscience site along the bentonite cut off wall and the high bay warehouse.

Vertase FLI have established a maintenance programme and control procedures to ensure the WWTP is operated within the constraints of the discharge consent. Essential system checks and improvements have been made to the plant to ensure it can treat the volume and concentrations of influent generated by the continued groundwater control and the contaminated water recovered during the remediation activities on the main site.

The composition of the water discharged to the River Cam (Granta) must not exceed the permitted levels in paragraphs 1.7.1, 1.8.1 and 1.8.2 of the discharge consent PR1NF/1744D01 Issued and regulated by the Environment Agency.

The treated effluent is sampled at the specified location as stipulated in the discharge consent. Vertase FLI also sample the influent to the WWTP, along with a sample taken after the primary carbon treatment, this is to assess the performance of main treatment process of the WWTP and highlight potential expiry of the primary carbon vessels.

The fortnightly samples are analytically tested for the water quality parameters and the chemical compounds specified in paragraph 1.7.1 of the discharge consent PR1NF/1744 D 01. The data is tabulated and presented in Appendix H along with the raw data from the laboratory reports.

Throughout the reporting period the WWTP has been successful in treating the compounds listed within paragraph 1.7.1 (consent PR1NF/1744D01) to acceptable levels for discharge to the River Cam (Granta) under the regulated discharge consent.

The Environment Agency carry out independent discharge monitoring at the WWTP on a monthly basis, during the reportable period Vertase FLI and Harrow Estates Plc have not been notified of any unacceptable effluent discharging to the River Cam (Granta) from the operating plant.

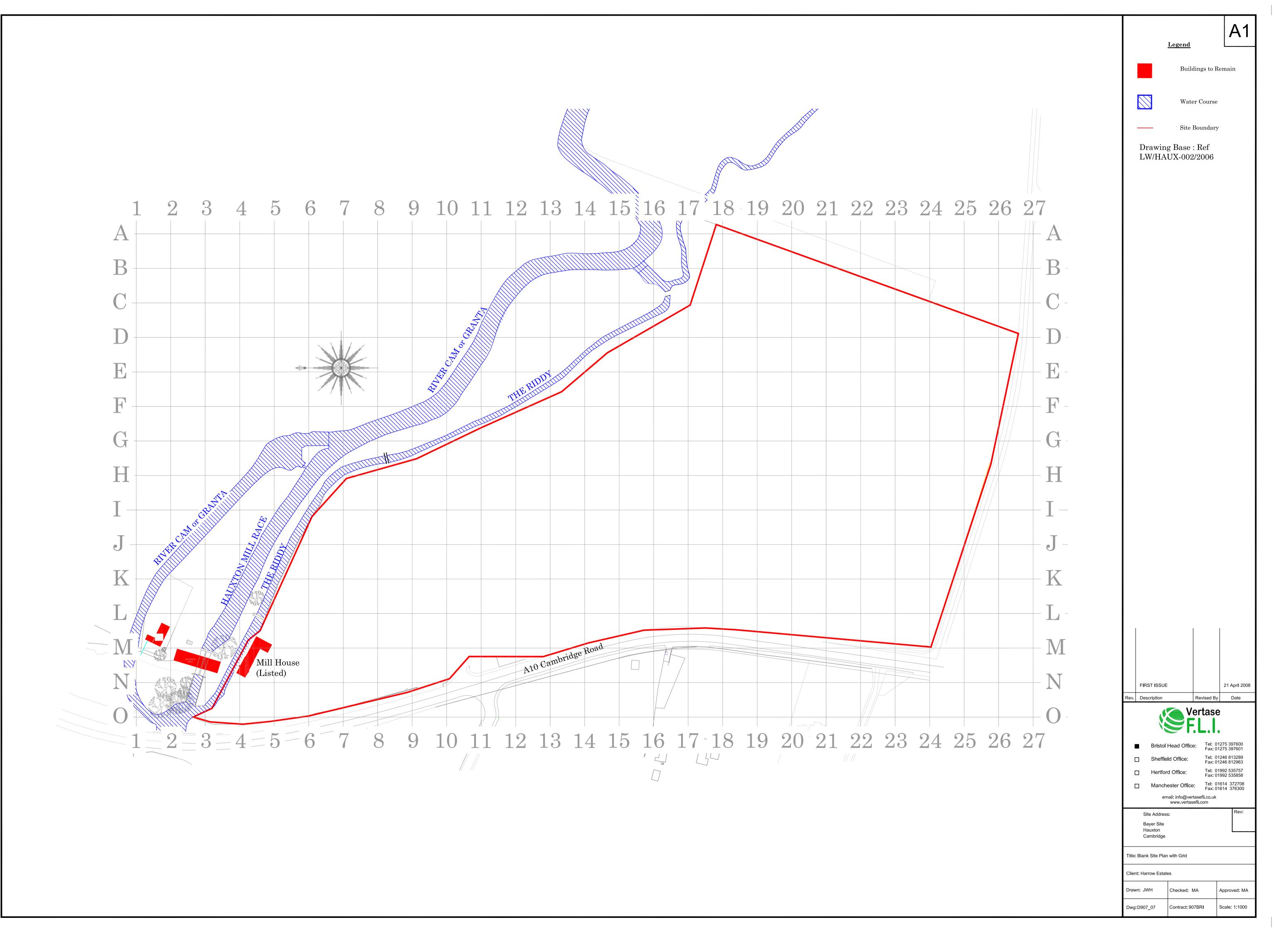
6.0 Contaminants Not Previously Identified

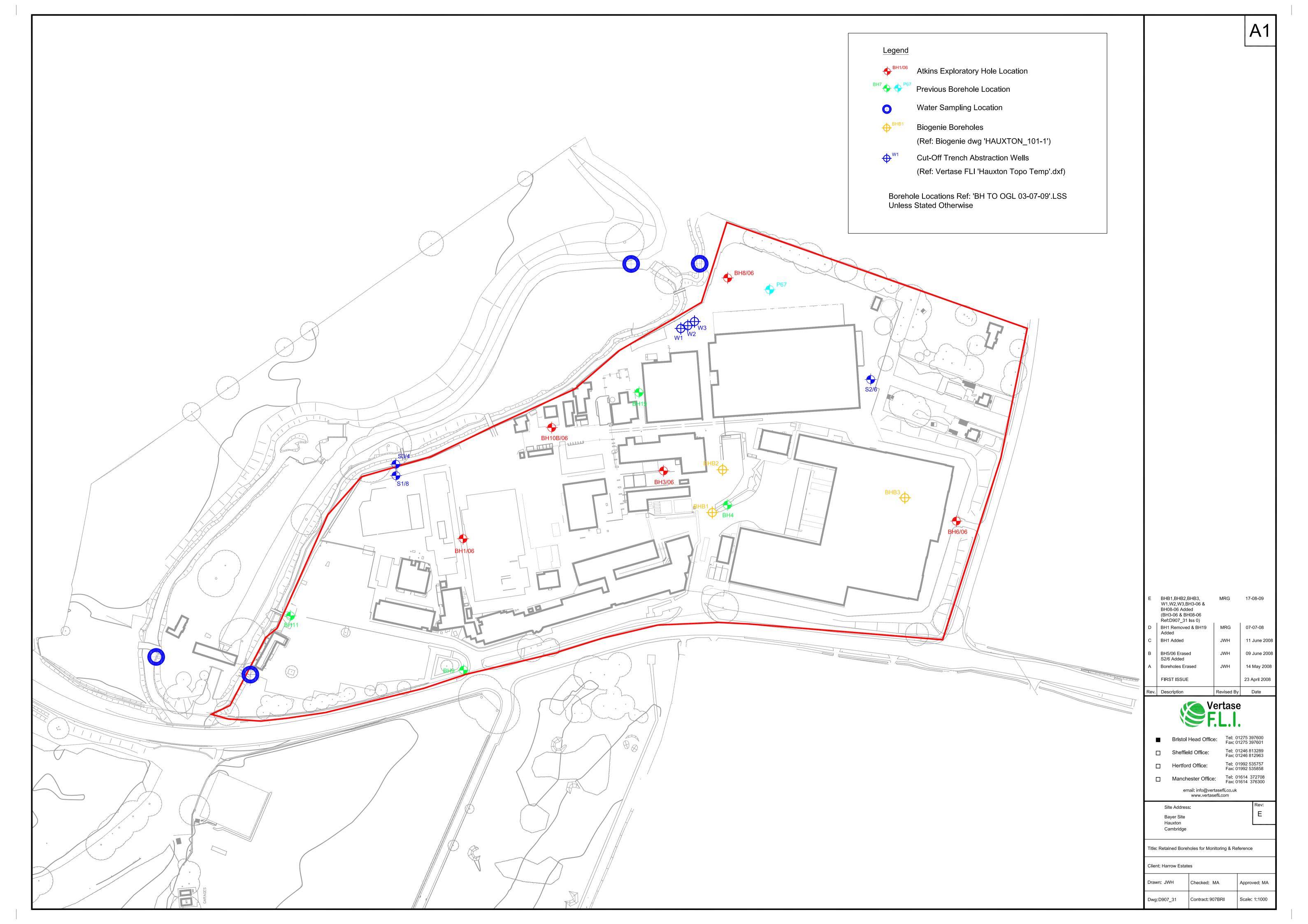
To fulfil the requirements of condition 4 and condition 9, Planning Condition Document ref:S/2307/06/f Issued 10/02/2010, Vertase FLI are continually undertaking soil characterisation sampling prior to remediation processes to identify the types and concentrations of contaminants present in the specific grid squares across the entire site.

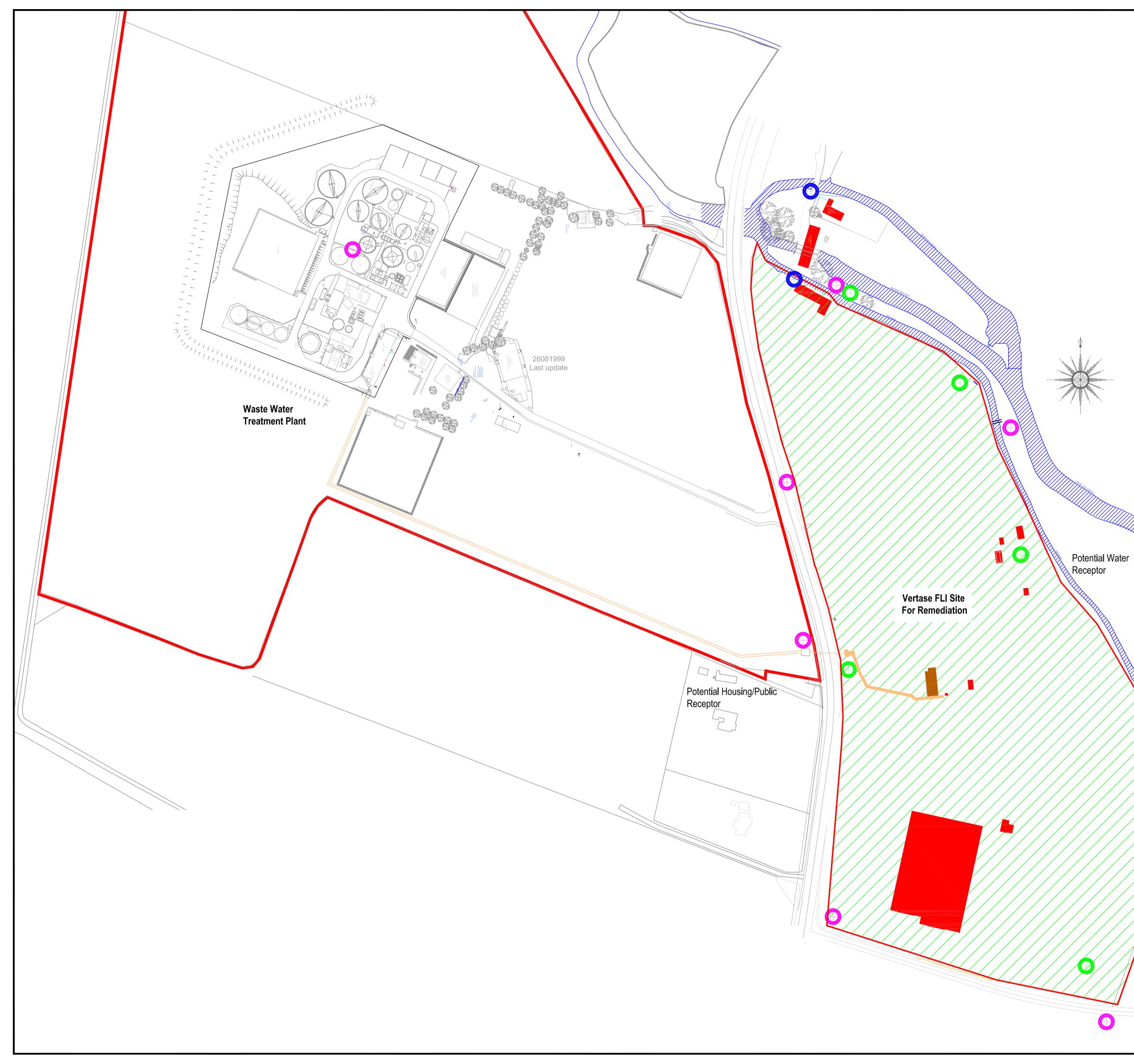
The soil characterisation samples undergo a series of laboratory analyses consisting of targeted analysis, screening against known contaminants and a full GCMS scan to identify any contaminants not previously identified.

All characterisation samples analysed and found to contain previously unidentified contaminants are reported in accordance with condition 9 of the Planning Condition Document ref:S/2307/06/f Issued 10/02/2010.

From the commencement of site works (15/03/2010) to 02/10/2011, one hundred and twelve characterisation samples have been taken by Vertase FLI in partnership with Atkins to assess the contamination type and concentrations prior to remediation of the materials. Forty characterisation samples analysed contained a total of twenty five compounds / potential contaminants that had not been previously identified.


A summary table of the soil characterisation testing is presented in Appendix I, the previously unidentified compounds are listed here, with comments regarding the origin and likely usage on site.


The remediation project consultants Atkins continuously review the soil characterisation analysis and report previously unidentified contaminates in accordance with condition 9, Planning Condition Document ref:S/2307/06/f Issued 10/02/2010.



Appendix A

Drawings

		Legend	A1
		Sub-Stat to Rema	ion/Buildings in
		Water C	ourse
		Vertase for Reme	
	—		'reatment Boundary
		Site Effl [.] and Duc	uent Sump ting
	0	Diffusion /Monitor	n Tubes ing Location
	0	Dust Mo	nitoring Location
	0	Water S	ampling Location
		ing Base : R AUX-002/20	
	C Dust Moni Locations B Dust Monitor Location Am A Water Samp	Amended Jv ring Jv lended Jing Points Added Jv	RG 14 July 08 VH 09 June 08 VH 15 May 2008
\bigcirc	Rev. Descriptio		21 April 2008 ised By Date
	×	n Rev	tase
	□ She □ Her	tol Head Office: ffield Office: tford Office: nchester Office: email: info@vertasef www.vertasefli.co	Tel: 01275 397600 Fax: 01275 397601 Tel: 01246 813289 Fax: 01246 812963 Tel: 01992 535757 Fax: 01992 535858 Tel: 01614 372708 Fax: 01614 376300 J.co.uk
	Site Add Bayer Si Hauxton Cambrid	ite	Rev: C
	Title: Environmer	ntal Monitoring Plan states	
	Drawn: JWH	Checked: MA	Approved: MA
	Dwg: D907_33	Contract: 907BR	Scale: 1:1250

Appendix B

Environmental Monitoring Data

				_			ODOUR	Hotesta	Location Orders		DU	ST I	NOISE	LITTE	R	RIDDY	BROOK			METE	DROLOGICAL	AND ENVIRONMENTAL		1
	ate	Daily Activity	Boundary Start Time	t Finish Time	Detectability (Yes or No)	Intensity (1 to 9)	Quality (Description)	Tone (-3 to+3)	Location Odou Sensitivity Souro (1 to 5) (1 to 5	PID (ppm)	TSP	PM10	Average (dBa) (I	Present Description)	attracting cavengets	Inspection	Water Level (mAOD)	Complaints	Action Required	Speed (1 to 6)	Wind Temp rection (C)	Description (Rain, C Sun) (0	over Conditio to 8) (Wet, di	ns /) General Notes
I Stephenson 301 I Stephenson 301	8/2011 4 8/2011 4 8/2011 4	convilling in gridsbed turning convilling in gridsbed turning convilling in gridsbed turning convolution of gridsbed turning	N 9.4 NE 9.5 NE1 9.5 E 9.2 SE 9.2 SE 9.2 S 9.1	40 9.45 35 9.40	0				2	0			0	o ni o ni	•	tlear 1 tlear	9	n n	0 0	1.7 W	NW 15.4	doudy 8		no odsur at church
Stephenson 301 Stephenson 301	8/2011 e	icavating in gridsbed turning cavating in gridsbed turning	E 9.2 SE 9.2	25 9.30	r r	3	ehicle fumes ar fumes/wet concrete	1 2	2 2	0			0	o hi	0 (0	dear 2	7	n	0					
Stephenson 301 Stephenson 301	8/2011 e 8/2011 e	xoavating in grids/bed turning xoavating in grids/bed turning	S 9.1 SW 9.1	15 9.20 10 9.15	n Y	4 4	air fumes	0 4	3 1	00			Ó	o ni o ni	0			n	n n					
I Stephenson 30/ D Scott 30/	8/2011 e	covating in grids/bed turning manatine in mids/bed turning	SW 9.1 W 9.0 NW 9.0 N 17.2	05 9.10 00 9.05 25 17.30	n n				2	0	21	93	0 0 88 0	o ni o ni	0	lear (18	n n	0	2 w	w 17	riouty 8	qmeb	no odour at church
D Scott 30/1 D Scott 30/1 D Scott 30/1	8/2011 e	ecavating in grids/bad turning ecavating in grids/bad turning ecavating in grids/bad turning	NE 17.3 NE1 17.3 E 17.4	32 17.37 38 17.43	ĥ				2	ò	85.3 50.9	8 60.7	68.5 n	o hi	0 0	clear clear		n n	n n				an te	
D Scott 30/1 D Scott 30/1 D Scott 30/1 D Scott 30/1	8/2011 e 8/2011 e	scavating in grids/bed turning	E 17.4 SE 17.5 S 17.5 SW 18.0	44 17.49 51 17.56 57 19.00	Y Y	1 (3 (idour control	0 2	2 2	0	47.6	16.0	63 n 70 n	o ni o ni	0 (0	dear C	.26	n	0					
		ecavating in grids/bad turning ecavating in grids/bad turning ecavating in grids/bad turning	SW 18.0 W 18.1	10 18.15	¥ ń	3 (odour control	0 4	i 3 i	Ô	47.6	48.1	81 n 76 n	o hi o hi	0			n n	0 0					
D Scott 30/1 D Scott 30/1 D Scott 31/1	8/2011 e 8/2011 e	xcavating in grids/bed turning	NW 18.1	10 18.15	ń.				2	0			78 0	0 04	0			0	0			dry, cloudy 8	4.1	to odours on approach to church, signs of possible digging/isampling been undertaken at locations frequent along roadside and at locations around site perimeter, possibly animals.
D Scott 31/1 D Scott 31/1 D Scott 31/1	8/2011 4 8/2011 4	conversion of protocol conting exervating in grids/bad turning econversion in grids/bad turning econversion in grids/bad turning	NE 8.3 NE1 8.4	17 18.22 30 8.35 38 8.41 42 8.47 48 8.53 55 9.00 22 9.07 30 9.14 48 9.53 55 9.00 30 9.14 49 17.35 38 17.41 40 17.54 40 17.54 40 17.54 40 17.54 40 17.54 40 17.54 40 18.00 15 18.00 18 4 18.00 18 4 18 4 18 18 4 18 4 18 18 4 18 4 18 18 4 18 4 18 18 5 18 1	ň				2	ŏ	140.9 68.8 140	48.2 6 77.3	67 D	o ni o ni	0 0	slear Slear	.18	n n	0	u m	WW 15.7	ay, accay a	ay	nerg reaction and an occarcity and partment, possibly antimat.
D Scott 31/1 D Scott 31/1	8/2011 e	xcavating in grids/bed turning xcavating in grids/bed turning	E 8.4 SE 8.5	48 8.53 55 9.00	6 6				2	0	84.9	46.2	63 n 62 n	o ni o ni	0 (0	slear C	1.26	n	0 0					
D Scott 31/1 D Scott 31/1 D Scott 31/1	8/2011 e 8/2011 e 8/2011 e	scavaling in grids/bed turning scavaling in grids/bed turning scavaling in grids/bed turning scavaling in grids/bed turning	S 9.0 SW 9.0 W 9.1	02 9.07 09 9.14 16 9.21	Y Y	2 1	raffic raffic	-1 2 -1 4 -1 4	3 3	0	78.5	42.9	63 n 75 n 74 n	o ni o ni	0			n n	0					
D Scott 31/1 D Scott 31/1	8/2011 e	convaring in griditabud surring convaring in griditabud surring	NW 9.5 N 17.5	22 9.27 30 17.35	ń ń				2	0	17.3	21	76 ń 63 ń	o hi o hi	0	slear C	L16	n	6 6	0 B	IE 20.8	dry, cloudy 8	dry	no odour at church
D Scott 31/1 D Scott 31/1 D Scott 31/1		corvating in grids/bed turning corvating in grids/bed turning constitue in addrefaed turning	NE 17.3 NE1 17.4	36 17.41 43 17.48 40 17.54	0			-	2	0		16.1 5.3	72 n	o ni	•	slear slear	24	n n	0					
D Scott 31/ D Scott 31/ D Scott 31/	8/2011 4 8/2011 4	icavating in gridsbed turning icavating in gridsbed turning	SE 17.6 S 18.0	55 18.00 02 18.07	n Y	2 (lusty odour	0	2 3 2 3	000	7.6	52 0	53 n 70 n 65 n	o ni o hi	0 (0	ondar i	.24	n n	0					
D Scott 31/1 D Scott 31/1 D Scott 31/1	8/2011 4 8/2011 4	cavating in grids/bad turning cavating in grids/bad turning	SW 18.0 W 18.1	08 18.13 15 18.20	Y Y	2 (adour control raffic		3		30.5	76.7	68 n 73 n	o ni o ni	0			n n	0					
D Scott 1/1 D Scott 1/1	9/2011 e 9/2011 e	cowating in grids/bed turning cowating in grids/bed turning	NV 16.2 N 7.4 NE 7.5	45 7.50 51 7.56 58 8.03	Y Y	: ;	nine egetation	0	2 1	0	58.3 34.3	7.1	73 n 60 n 63 n	o ni o ni	0	dear C	L16	n n	n ń	0 85	iE 19	sunny 0	dry	no odour at church
D Scott 1/5 D Scott 1/5	9/2011 e	Landrag a publication Comparison of the second se	NE1 7.5 E 8.0	58 8.03 04 8.09	6				2	0	11.8 38.9	5.4 42.3	60 n	0 14	۵ ۵	dear dear	25	n n	0					
D Scott 1/1 D Scott 1/1 D Scott 1/1	9/2011 4 9/2011 4 9/2011 4	tsavaang in grassowa bulhing ksavating in gridsibad turning ksavating in gridsibad turning	S 8.1 S 8.1 SW 8.2	04 8.03 04 8.03 11 8.16 18 8.23 25 8.30 31 8.36 37 8.42 30 14.35	n ń Y	1 8	light traffic fume odour	-1 4	3	0	18.8	31.8	63 0 65 0	o hi o hi	0			n n	8 6					
D Scott 1/1 D Scott 1/1 D Scott 2/1	9/2011 e	covating in grids/bad turning covating in grids/bad turning covating in grids/bad turning	W 8.3	31 8.36 37 8.42	ń ń			4	2	0	37.8	15.2	70 Sa 79 Sa	ome no	0		40	n n	n n					
D Scott 2/5	9/2011 4	ceveting in grids/bed turning			ń.			2	2				0	o 14		owar d Sear Sear	.10	n n	n n	v ws	w 27.4	sunny, dfy 0	ary	
D Scott 2/1 D Scott 2/1 D Scott 2/1	9/2011 4	coavating in grids/bad turning coavating in grids/bad turning coavating in grids/bad turning	NE1 14.4 E 14.4 SE 14.5	49 14.54 56 15.01	n n			~	2				n n	o ni	0 (0	dear C	.74	n n	0					
D Scott 2/5 D Scott 2/5 D Scott 2/5	9/2011 e 9/2011 e	scavating in grids/bad turning scavating in grids/bad turning scavating in grids/bad turning	S 15.0 SW 15.1 W 15.1	10 15.08 10 15.15	0 0		alle		3 1				n n	o ni o ni	•			n n	6 6				_	
D Scott 2/1 D Scott 5/1	9/2011 e	coavating in grids/bed turning coavating in grids/bed turning	NW 15.2 N 8.5	24 15.29 50 8.55	Y n	i (rafic	0	2 1	0	190	92.7	54 70 n	ome ni o ni	0 0	dear C	.18	0 0	0 0	0 sw	18.2	dry, sunny 0	qmeb	to odour at church
D Scott 5/1 D Scott 5/1 D Scott 5/1	9/2011 4	coavating in grids/bed turning coavating in grids/bed turning coavating in grids/bed turning	NE 8.5 NE1 9.0	56 9.04 05 9.10	6 -		liaba duatu adaur.	0	2	, o	450 241 70.5	88.4 6 142	65 n	0 14	•	Sear Sear	28	n n	0				_	
		covating in grids/bed turning insystem in drifts/bed turning	SE 9.1 S 9.2	19 9.24	ň		and any output		3	0	157	130	62 n 75 n	o ni o ni	0 0		20	n	0					
D Scott 5/t	9/2011 e 9/2011 e	consisting in griditabud furring consisting in griditabud furring consisting in griditabud furring consisting in griditabud furring consisting in griditabud furring backfilling consisting in griditabud furring backfilling consisting in griditabud furring backfilling	SW 9.3 W 9.3	966 9.044 055 9.100 055 9.110 12 9.17 19 9.244 28 9.31 32 9.37 30 9.44 45 9.50 38 17.45 43 17.48 43 17.54 55 18.00 02 18.07 38 18.13 15 18.20 38 8.41 42 8.47	Y Y	1 1	naffic idour control	0 4	1	00	167	172	74 n 70 n	0 0	0			n ń	n n					
D Scott 5/t D Scott 5/t D Scott 5/t	9/2011 e 9/2011 e	covating in gridsbed turningbackfilling covating in gridsbed turningbackfilling	N 17.5 NE 17.5	40 9.50 30 17.35 36 17.41	n n	-	anc		2	00	33.8 59.3	19.1 70.8	70 n 70 n 58 n	o ni o hi o hi	0 (0 (dear C dear	L18	n ń	0 0	7.1 sw	23.1	dry, doudy 7	dry to dar	p no odour at church
D Scott 5/1 D Scott 5/1 D Scott 5/1	9/2011 e	covating in grids/bed turning/back/filing covating in grids/bed turning/back/filing	NE1 17.4 E 17.4	43 17.48 49 17.54	Y	2 0	dour control and possibly dusty odour	-2 2	2 4	0		58.7 79.8	58 n	o ni	۵ ۵	slear Slear	.27	n	0 1					
D Scott 5/ D Scott 5/ D Scott 5/ D Scott 5/	9/2011 e 9/2011 e	covating in gridsbed turningbackfiling covating in gridsbed turningbackfiling covating in gridsbed turningbackfiling covating in gridsbed turningbackfiling	SE 17.5 S 18.0 SW 18.0	02 18.07	n n Y		naffic	0 4	3		21.2	50.2	56 n 50 n	o ni o ni	0			0	n n					
D Scott 5/1 D Scott 5/1 D Scott 6/1	9/2011 e 9/2011 e	covating in gridsbad turningbackfiling covating in gridsbad turningbackfiling covating in gridsbad turningbackfiling resulting in gridsbad turningbackfiling	W 18.1 NW 18.2	15 18.20 21 18.26	y n	1 1	fic	0 4	4 1 2	0		52.9	72 /	95 hi 95 hi	0			n	6 6		V 20.3			
		constitution in addation continuacion due to strip	N 8.3 NE 8.3 NE1 8.4	30 8.35 36 8.41 42 8.47	ń.			-	2	0	79.3 95.4 133.7	60.2 148.2 61.6	75 n 68 n	o ni o ni	• •	tlear Clear	.18	n n	0	5.5 SV	V 20.3	tan wét 8	wit	ne odour al church
D Scott 6/ D Scott 6/ D Scott 6/	9/2011 e	converging in groups of the second se	E 8.4 SE 8.4	48 8.53	n n			~	2	0	37.3	108	60 n 62 n	o ni o ni	0 (0	dear C	1.28	n n	n n					
D Scott 6/1 D Scott 6/1 D Scott 6/1	9/2011 e 9/2011 e 9/2011 e	ccavating in grids/ho earthmoving due to nain ccavating in grids/ho earthmoving due to nain ccavating in grids/ho earthmoving due to nain	S 9.0 SW 9.0 W 9.1	02 9.07 09 9.14 16 9.21	6 6				3	0	33.3 57	70.9	75 n 70 n	o ni o ni	0			n n	0 0					
D Scott 6/1 I Stephenson 7/1	9/2011 e	scavating in grids/ho earthmoving due to rain convaring in grids/bad suming/hostoring exervating in grids/bad suming/hostoring scavating in grids/bad turninghestoring	NW 9.2 N 17.5	22 9.27 55 18.00	6 6			2	2	0	180	19	80 68.2 n	95 Di	0	slear 1	9	n n	n n	8 ws	s 17.9	bright dry 8	dry	no odour at church
Stephenson 7/ Stephenson 7/ Stephenson 7/	9/2011 e 9/2011 e	covating in grids/bed turning/restoring covating in grids/bed turning/restoring covating in grids/bed turning/restoring	NE 17.5 NE1 17.4	50 17.55 45 17.50 40 17.46	n			1	2	0	103 99	98 152 7	57.7 n	o ni	• •	slear slear	<i>a</i>	n n	0					
I Stephenson 7/1 I Stephenson 7/1	9/2011 e	ccavating in grids/bad turning/reasoning ccavating in grids/bad turning/reasoning ccavating in grids/bad turning/reasoning	W 9.1 NW 9.2 N 17.5 NE 17.5 NE1 17.4 E 17.4 SE 17.3 SW 17.2 W 17.2	35 17.40 30 17.35	ń			0.01	3	0	24	29	53.2 n 71.8 n	o hi o hi	ů ů			n n	0 0					
I Stephenson 7/ I Stephenson 7/ I Stephenson 7/	9/2011 4	econating in gridsabad turninghestoring econating in gridsabad turninghestoring econating in gridsabad turninghestoring	SW 17.2 W 17.2 NW 18.0 N 17.0	25 17.30 20 17.25 00 18.05	6 6			-	1	0	127	51	62.3 n 79.6 n 71.4 n	o ni o ni	0			n n	6 6					
1 Stephenson 8/5	9/2011 b	ed turning/restoration ed turning/restoration	N 17.0 NE 16.5	00 17.05 55 17.00	n Y	4	cowslip	-2 2	2 1	0			ń	o ni o ni	0 (dear 1 dear	8	n n	0. 0	6.4 sw	22.7	dry 6	qmeb	no odour at church, dustmate being servicer
I Stephenson 8/ I Stephenson 8/ I Stephenson 8/ I Stephenson 8/	9/2011 b	ed turning/restonation ed turning/restonation	NE 16.5 NE1 16.5 E 16.4 SE 16.4	50 16.55 45 16.50 40 16.44	Y	3 6	civenta/hydrocarbona		2	0			0	0 04		dear 1	6	n n	n n	F				
I Stephenson 8/ I Stephenson 8/ I Stephenson 8/	9/2011 b	ed turning/testonation ed turning/testonation di turning/testonation	SE 16.4 S 16.3 SW 16.3	35 16.40 30 16.35	¥ 0	3 5	light vegetation	0 3	3 1 1	0			0	0 ni 0 ni	0			n n	n n					
I Stephenson 8/1 I Stephenson 8/1	9/2011 b 9/2011 b 9/2011 b	ed suming/restoration ed suming/restoration recording to orderbeet numing/hackfillers	W 16.3 NW 16.3 N	30 16.35 25 16.30 25 16.25 30 8.05 30 8.05 30 8.05 31 8.18 19 8.24 33 8.38 33 8.38 33 8.38 30 8.44 45 8.50 51 8.56 51 8.56 52 8.40 42 8.45 50 8.55 50 8.56	ń ń				2	0 0			0 65	o ni o ni		lear	8	n n	0		- 176	dhu cheada	dama	to odeur at church
D Scott 9/5 D Scott 9/5 D Scott 9/5	9/2011 4 9/2011 4	converting in generoos Untergroundering exervating in gridsbed turningbackfiling converting in gridsbed turningbackfiling	NE 8.0 NE1 8.1	06 8.11 13 8.18	h.				2	0			77 n	o n	- -	Slear Slear	v	n n	ń.	× ws	- 17.6	ay 5000y 8	qmeb	
D Scott 9/5 D Scott 9/5 D Scott 9/5	9/2011 4 9/2011 4	consisting in gritishbad turringbaddition consisting in gritishbad turringbaddition ceanating in gritishbad turringbaddition consisting in gritishbad turringbaddition consisting in gritishbad turringbaddition consisting in gritishbad turringbaddition consisting in gritishbad turringbaddition	E 8.1 SE 8.2	19 8.24 26 8.31 33 0.01	Y Y	2 0	lusty odour lusty odour	4 4	3 3	0			58 n 71 n 71 -	o ni o ni	0	dear 2	6	n n	0 0					
D Scott 9/1	9/2011 e	convating in gridsabad turning/back/ling convating in gridsabad turning/back/ling	- 8.3 SW 8.3 W 8.4		ń ń					ŏ				- ni o ni	0			n n	0 0					
D Scott 95 D Scott 95 D Scott 125 D Scott 125	9/2011 e 9/2011 e	consting in grids/bed turning/backfiling consting in grids/bed turning/backfiling consting in grids/bed turning/concrete crushing consting in article.had turning/concrete crushing	NW 8.5 N 8.3	51 8.56 30 8.35	n n					0			79 0 67 0	o ni o ni		tiear 1	8	0	0	8.7 S	20.6	doudyidry 5	dry to dar	p dust monitor is being serviced and is not available. No odour at churc
D Scott 125 D Scott 125 D Scott 125	9/2011 4 9/2011 4 9/2011 4	covariang in grids/bed turning/concrete crushing covariang in grids/bed turning/concrete crushing covariang in grids/bed turning/concrete crushing	NE 8.3 NE1 8.4 E 8.4	30 8.40 40 8.45 45 8.50	n h				2	0			61 n	o 14		Sear Sear 2	6	n n	8 6					
D Scott 12/ D Scott 12/ D Scott 12/5	9/2011 e	converting in grids/bad turning/concrete crushing converting in grids/bad turning/concrete crushing converting in grids/bad turning/concrete crushing	SE 8.5 S 8.5	50 8.56 55 9.00 00 9.05	n n				3	0			54 n 59 n	o ni o ni	0			n n	6 6					
D Scott 125 D Scott 125	9/2011 e	covating in grids/bed turning/concrete crushing covating in grids/bed turning/concrete crushing	017 9.0 W 9.0 NW 9.1	00 9.05 05 9.10 10 9.15 30 17.35	n h			4		0			60 SA 50 SA 50 A	ome ni ome ni	0			n n	n n				_	
D Scott 125 D Scott 125 D Scott 125 D Scott 125	9/2011 4		N 17.5 NE 17.5	30 17.35 35 17.40	ń				2	0 0			70 n 64 n	o ni o ni	a a	Sear 1 Sear	8	n n	6 6	11.8 ws	w 24	sunny dry 1	dry	dustmate being serviced, no odcur at church
D Scott 125 D Scott 125 D Scott 125	9/2011 4	ecovating in grids/bid turning/concrete cruthing ecovating in grids/bid turning/concrete cruthing ecovating in grids/bid turning/concrete cruthing ecovating in grids/bid turning/concrete cruthing	NE1 17.4 E 17.4 SE 17.4	40 17.45 46 17.50 50 17.64	Y	1	lust odour	-1	2 3	0			80 n	0 04	•	dear 2	6	n n	6 6				_	
D Scott 12/5 D Scott 12/5	9/2011 e	covaring in prosedue contring/concrete crushing ecovaring in pridsebad turning/concrete crushing ecovaring in pridsebad turning/concrete crushing ecovaring in gridsebad turning/concrete crushing	N 17.3 NE 17.5 NE1 17.4 E 17.4 E 17.4 SE 17.5 SW 18.0 W 18.0 W 18.0	55 18.00 00 18.05	ń.					ŏ			50 n 76 n	0 14 0 14	0			n n	0	E				
D Scott 12/1 D Scott 12/1 D Scott 13/1	9/2011 4 9/2011 4	covating in grids/bed turning/concrete crushing covating in grids/bed turning/concrete crushing exervating in grids/bed turning/concrete crushing xcavating in grids/bed turning/concrete crushing	W 18.0 NW 18.1 N 8.0	05 18.10	6 6			4		0			72 Sa 78 Sa 58 Sa	ome ni ome ni		lear	8	n n	0 0	11.1	SW 164	Sunty day	dev	dustmate being serviced
D Scott 13/1 D Scott 13/1	9/2011 4	cavating in grids/bed turning/concrete crushing			0				2	ő			65 n	0 01	- -	slear slear	-	n n	ñ			an any say	<i>,</i>	
D Scott 13/ D Scott 13/		covating in grids/bed turning/concrete crushing covating in grids/bed turning/concrete crushing	NE1 & 1 E & 8.1 SE & 8.2	15 8.20	Y Y	2 0	lusty odour and odour control lusty odour	4 4	3	0			63 0 58 0	o ni o ni	•	dear 2	6	0	0					
D Scott 13/ D Scott 13/ D Scott 13/	a-2011 4 9/2011 4 9/2011 4	convating in grids/bad turning/concrete crushing convating in grids/bad turning/concrete crushing convating in grids/bad turning/concrete crushing	SW 8.3 W 8.3	25 8.30 30 8.35 35 8.40	n Y	1	raffic	4	0	0			ە نە 78 0 78 54	o ni ome ni	0			n n	6 6					
D Scott 13/ D Scott 14/	9/2011 e	coavating in grids/bad turning/concrete crushing coavating in grids/bad turning/concrete crushing coavating in grids/bad turning/concrete crushing	NW 8.4 N 9.0 NE 9.0	40 8.45	¥ n	1	raffe	4	2 0	0			76 Sa 52 O	ome ni o ni	0 0	slear C	.18	n n	0 0	6.4 W	SW 17.7	sunny 0	dry	to odour at church
D Scott 14/3 D Scott 14/3 D Scott 14/3	9/2011 e 9/2011 e 9/2011 e		NE 9.0 NE1 9.1 E 0.1	10 9.15 15 9.20	n Y	2	lustv edour	1	2 3	0			67 N	o 14		Sear Sear		n n	0 0				_	
D Scott 14/5 D Scott 14/5	9/2011 e 9/2011 e	consisting in griditabud Jammigoonensis orushing canasing in griditabud Jammigoonensis cushing canasing in griditabud Jammigoonensis cushing canasing in griditabud Jammigoonensis cushing canasing in griditabud Jammigoonensis cushing canasing in griditabud Jammigoonensis cushing cushing and subscriptionensis cushing	NE1 9.1 E 9.1 SE 9.2 SW 9.3 W 9.3 NW 9.4	20 9.25 25 9.30	ń ń			1 01 01	3	ô 0			60 n 68 n	0 fil	0			n n	6 0		_			
D Scott 14/3 D Scott 14/3 D Scott 14/3	9/2011 e 9/2011 e	xcavating in grids/bed turning/concrete crushing xcavating in grids/bed turning/concrete crushing resetting to originate turning/concrete crushing	SW 9.5 W 9.3 NW 2.3	30 93 93 94 94 94 94 94 94 94 94 94 94 94 94 94	n n	, T	alfe	. 8		0			ย ก 80 ก	o ni o ni				n n	0	s	SW 21.3	Sunty clout-	A~-	no dustimate due to being serviced, no odour at church
pr June 1940		protection of the second		-1 2.40		17 J				P ²	-			- 04	-					- 1900	are 141-5	reary using 2	1997	

D Scott 14/9/2011 excervating in grids/bed turning/concrete crushing/breaking outbackfilling	17.30 17.35 n		1 12 1	0	60 no	ho de	aar li8 h	0	
D Scott 14/9/2011 lacovating in gridsbed turring/concrete crushing/breaking outbackfilling b D Scott 14/9/2011 lacovating in gridsbed turring/concrete crushing/breaking outbackfilling b D Scott 14/9/2011 lacovating in gridsbed turring/concrete crushing/breaking outbackfilling b	17.30 17.38 n 17.85 17.48 n 17.45 17.48 n 17.46 17.46 17.49 n 17.46 17.59 r 17.50 17.59 r 17.50 17.59 r 17.55 18.00 n 18.05 18.00 n 17.30 17.5 r 17.40 17.46 17.46 17.46		2	0	60 no	no cle	aar n aar n	0 0	
D Scott 14/9/2011 excevating in grids/bed turning/concrete crushing/breaking outbackfilling D Scott 14/9/2011 excevating in grids/bed turning/concrete crushing/breaking outbackfilling S	17.45 17.50 y E 17.50 17.55 y	2 dusty odour 2 dusty odour	1 2 3	0	55.6 no 55 no	ho cle	28 h	0 0	
D Scott 14/4/2011 excavating in gridsbald turningiconcrete crushing/beaking outbackfiling E Scott 14/4/2011 excavating in gridsbald turningiconcrete crushing/beaking outbackfiling E Scott 14/4/2011 excavating in gridsbald turningiconcrete crushing/beaking outbackfiling E D Scott 14/4/2011 excavating in gridsbald turningiconcrete crushing/beaking outbackfiling E D Scott 14/4/2011 excavating in gridsbald turningiconcrete crushing/beaking outbackfiling E D Scott 14/4/2011 excavating in gridsbald turningiconcrete crushing/beaking outbackfiling E	W 18.00 18.05 y	1 valic	-1 4 1	0	66 no 80 no 20 kome	00 00	n 0	0	
D Scott 14/9/2011 excervating in gridsched turning/concrete crushing/breaking outbackfilling 1 D Scott 15/9/2011 excervating in gridsched turning/concrete crushing/breaking outbackfilling 19	W 18.10 18.15 n	1 dust	-1 2 2	0	74 some 60 no	no no de	aar 18 n	0	2.2 ISE IZ2.4 kunny dry 7 dry no dustmiste, no odour at church
D Scott 159/2011 karcavating in gridsbad turningkoncete crushing/baddiling D Scott 15/0/2011 karcavating in gridsbad turningkoncete crushing/baddiling D Scott 15/0/2011 karcavating in gridsbad turningkoncete crushing/baddiling D	iE 17.35 17.40 n iE1 17.40 17.45		2	0	65 no	no cle	n Sar N	0 N	
D Soot 15/02011 excervating in gridsbed turning/concrete crushing-backfiling E D Soot 15/02011 excervating in gridsbed turning/concrete crushing-backfiling 5 D Soot 15/02011 excervating in gridsbed turning/concrete crushing-backfiling 5	17.45 17.50 n E 17.50 17.55 n 17.55 18.00 n		2 3 6	0	65 no 65 no	no cle no	aar 28 n	0	
D Scott 15/2011 ecovating in grids/bed turning/concrete crushing/backling 5 D Scott 15/2011 ecovating in grids/bed turning/concrete crushing/backling 1	W 18.00 18.05 n	odour control	4 2	0	75 no 80 no	no no		0	
D Scott 15/9/2011 excervating in grids/bed turning/concrete crushing/backfilling P D Scott 16/9/2011 excervating in grids/bed turning/breaking outbackfilling	W 18.10 18.15 n 4 9.00 9.05 n # 9.05 9.10 n		2	0	70 no 56 no	no no cle	n nar 19 n	0 0	6.9 SE 17.3 dry 7 dry no dustmate, no odour at church
D Scott 159/2011 excavating in grids/bed turring/breaking outback/filing P D Scott 159/2011 excavating in grids/bed turring/breaking outback/filing P D Scott 159/2011 excavating in grids/bed turring/breaking outback/filing P	4E 9.05 9.10 n 4E1 9.10 9.15 9.15 9.20 n 4E 9.20 9.25 n		2	0	61 no	no cle cle	n Narina n	0	
D Scott 16/9/2011 excavating in grids/bed turning/breaking outback/illing 5	E 9.20 9.25 n 9.25 9.30 n		3	0	67 no 67 no	no no		0	
D Scott 169/2011 excavating in grids/bed turning/breaking outback/filing 5 D Scott 169/2011 excavating in grids/bed turning/breaking outback/filing 5 D Scott 169/2011 excavating in grids/bed turning/breaking outback/filing 1	9.25 9.30 n W 9.30 9.35 n V 9.35 9.40 y	2 odour control	4 0 4 5	0	73 no 65 some	ho ho	p	ñ ñ	
D Scott 16/3/2011 excervating in grids/bad turning/breaking outback/illing 0 D Scott 19/3/2011 excervating in grids/bad turning/concrete crushing/baddiling 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2	0	69 some 54 no	no cle	aar 20 n	0	4.2 W 17.6 sunnty dry 0 dry
D. Societ 199/2011 lecovating in gridsbalt surring/concests orushing/backfiling D. Societ 199/2011 le	ac 0.30 0.40 n AE1 8.40 8.46 8.45 8.50 y	3 odour control	0 2 5	0	60 mb	no cle	ar n ar 29 n	0	
D Scott 19/9/2011 excervating in grids/bed turning/concrete crushing/backfilling D Scott 19/9/2011 lexcervating in grids/bed turning/concrete crushing/backfilling D Scott 19/9/2011 lexcervation in original data for the scott and the scott	E 8.50 8.55 n 8.55 9.00 n		3	0	56 no 68 no	ho ho	n	0. 0.	
Course (CORDOL) and a second sec	W 9.00 9.05 y V 9.05 9.10 n	1 traffic	-1 4 1	0	73 no 73 some	no no	n	0 0	
D Scott 199/2011 excervating in grids blat turning/concrete crushing/backfiling I Stephenson 199/2011 excervating in grids D16, D15, D14, E16, E15, E14/bad turning/concrete crushing Stephenson 199/2011 excervation in grids D16, D15, D14, E16, E16, E14/bad turning/concrete crushing	W 9.10 9.15m I 17.10 17.15y	3 slight hydrocarbon	0 2 3	0	75 some no	no cle	aar 17 n	0 N	6.7 WSW 19.9 sunny 3 dry dustmate in service, no odour at church, noisy - breaking
Stephenson 19/9/2011 excervating in grids D16, D15, D14, E16, E15, E14/bed turning/concrete crushing Stephenson 19/9/2011 excervating in grids D16, D15, D14, E16, E15, E14/bed turning/concrete crushing E12/04/2011 excervating in grids D16, D15, D14, E16, E15, E14/bed turning/concrete crushing E12/04/2011 excervating in grids D16, D15, D14, E16, E15, E14/bed turning/concrete crushing E12/04/2011 excervating in grids D16, D15, D14, E16, E15, E14/bed turning/concrete crushing E12/04/2011 excervating in grids D16, D15, D14, E16, E15, E14/bed turning/concrete crushing E12/04/2011 excervating in grids D16, D15, D14, E16, E15, E14/bed turning/concrete crushing E12/04/2011 excervating in grids D16, D15, D14, E16, E15, E14/bed turning/concrete crushing E12/04/2011 excervating in grids D16, D15, D14, E16, E15, E14/bed turning/concrete crushing E12/04/2011 excervating in grids D16, D15, D14, E16, E15, E14/bed turning/concrete crushing E12/04/2011 excervating in grids D16, D15, D14, E16, E15, E14/bed turning/concrete crushing E12/04/2011 excervating in grids D16, D15, D14, E16, E15, E14/bed turning/concrete crushing E12/04/2011 excervating in grids D16, D15, D14, E16, E15, E14/bed turning/concrete crushing E12/04/2011 excervating in grids D16, D15, D14, E16, E15, E14/bed turning/concrete crushing E12/04/2011 excervating in grids D16, D15, D14, E16, E15, E14/bed turning/concrete crushing E12/04/2011 excervating in grids D16, D15, D14, E16, E15, E14/bed turning/concrete crushing E12/04/2011 excervating E12/04/2011 exc	4E1 17.00 17.05 16.55 17.00 n		2	0	no	no cle	aar n aar 28.5 n	0. 0.	
Stephenson 19/9/2011 excevating in grids D16, D15, D14, E16, E15, E14/bed turning/concrete crushing 5 Stephenson 19/9/2011 excevating in grids D16, D15, D14, E16, E15, E14/bed turning/concrete crushing 5	E 16.50 16.55 n 16.45 16.50 n		3	0	00 00	ho ho	n n	0 0	
D Satu 1922(1) Isocardin a problem immigration (subplex)-addition Supplement 1922(2)) Isocarding in problem (Sin D), 54 (E1, E1, E1, E4 (set Immigrationalis curbing) Supplement 1922(2)) Isocarding in prob 10, 50 (E3, E1, E1, E1, E4 (set Immigrationalis curbing Supplement 1922(2)) Isocarding in prob 10, 50 (E3, E1, E1, E1, E4 (set Immigrationalis curbing Supplement 1922(2)) Isocarding in prob 10, 50 (E3, E1, E1, E1, E4 (set Immigrationalis curbing Supplement 1922(2)) Isocarding in prob 10, 50 (E1, E1, E1, E4 (set Immigrational curbin Supplement 1922(2)) Isocarding in prob 10, 50 (E1, E1, E1, E4 (set Immigrations curbing Supplement 1922(2)) Isocarding in prob 10, 50 (E1, E1, E1, E4 (set Immigrations curbing Supplement 1922(2)) Isocarding in prob 10, 50 (E1, E1, E1, E4 (set Immigrations curbing Supplement 1922(2)) Isocarding in prob 10, 50 (E1, E1, E1, E4 (set Immigrations curbing Supplement 1922(2)) Isocarding in prob 10, 50 (E1, E1, E1, E4 (set Immigrations curbing Supplement 1922(2)) Isocarding in prob 10, 50 (E1, E1, E1, E4 (set Immigrations curbing Supplement 1922(2)) Isocarding in prob 10, 50 (E1, E1, E1, E4 (set Immigrations curbing Supplement 1922(2)) Isocarding in prob 10, 50 (E1, E1, E1, E4 (set Immigrations curbing Supplement 1922(2)) Isocarding in prob 10, 50 (E1, E1, E1, E4 (set Immigrations curbing Supplement 1922(2)) Isocarding in prob 10, 50 (E1, E1, E1, E4 (set Immigrations curbing Supplement 1922(2)) Isocarding in prob 10, 50 (E1, E1, E1, E4 (set Immigrations curbing Supplement 1922(2)) Isocarding in prob 10, 50 (E1, E1, E1, E4 (set Immigrations curbing Supplement 1922(2)) Isocarding in prob 10, 50 (E1, E1, E1, E4 (set Immigrations curbing Supplement 1922(2)) Isocarding in prob 10, 50 (E1, E1, E1, E4 (set Immigrations curbing Supplement 1922(2)) Isocarding in prob 10, 50 (E1, E1, E1, E4 (set Immigrations curbing Supplement 1922(2)) Isocarding in prob 10, 50 (E1, E1, E1, E4 (set Immigrations curbing Supplement 1922(2)) Isocarding in prob 10, 50 (E1, E1, E1, E4 (set Immigrations curbing Suppleme	W 16.40 16.45 n V 16.35 16.40 y W 16.30 16.35 n	3 mes/veg	4 1	0	10 10	00	E .	n 0	
D Scott 20/9/2011 excervating in grids/bit turning/back/filing/excervating D Scott 20/9/2011 excervating in grids/bit turning/back/filing/excervating	W 16.30 16.35 n 4 8.45 8.50 n #E 8.50 8.55 n		22	0	65 no 63 no	no cle no cle	aar 20 n aar n	ń.	5.3 BSW 17.9 doubly dry 7 dry dustmate being serviced, no odour at church
D Scott 20/9/2011 excavating in gridsbed turningbackfiling/excavating D Scott 20/9/2011 excavating in gridsbed turningbackfiling/excavating E Scott 20/9/2011 excavating in gridsbed turningbackfiling/excavating E Scott 20/9/2011 excavating in gridsbed turningbackfiling/excavating E	E 9.05 9.00 E 9.05 9.10 n	2 dust odour	-2 2 4	0	67 no	no de	aar 29 n	6 6	
D Scott 20/9/2011 excavating in grids/bed turning/back/filing/excavating D Scott 20/9/2011 excavating in grids/bed turning/back/filing/excavating D Scott 20/9/2011 excavating in grids/bed turning/back/filing/excavating G Scott 20/9/2011 excavating in grids/bed turning/back/filing/excavating Scott 20/9/2011 excavating in grids/bed turning/back/filing/excavating Scott 20/9/2011 excavating in grids/bed turning/back/filing/excavating Scott 20/9/2011 excavating Scott 20/9/2011 exc			3	6	58 h0 75 h0	no no	0	n n	
D Scott 20/9/2011 excervating in grids/bed turning/back/filing/excervating 1 20/9/2011 excervating is grids/bed turning/back/filing/excervating	W 9.15 9.20 n V 9.20 9.25 y W 9.25 9.30 n	2 odour control	0 4 4	0	73 some 68 some	no no		n	
M Allsobrook 205/2011 excevating in grids F13/bed turning/concrete breaking out M M Allsobrook 205/2011 excevating in grids F13/bed turning/concrete breaking out M	I 17.37 17.42 y IE 17.31 17.36 n IE1 17.24 17.29	1 vegetation and concrete	0 2 2	0	60.3 no 60.6 no	ho cle	aar 1.95 n aar n		5.8 SE 20 doudy dry 6 dry
M Alsobrook 20/9/2011 excervating in grids F13/bed turning/concrete breaking out M Alsobrook 20/9/2011 excervating in grids F13/bed turning/concrete breaking out E	IE1 17.24 17.29 17.18 17.23 n		2	0	72.3 00	no cle	aar n aar 2.95 n		
M. Albokovick 2050/2011 excerning on grids F138ed turning/concrete breaking out M. Albokovick 2050/2011 excerning in grids F138ed turning/concrete breaking out M. Albokovick 2050/2011 excerning in grids F138ed turning/concrete breaking out M. Albokovick 2050/2011 excerning in grids F138ed turning/concrete breaking out	17.18 17.23 n E 17.11 17.16 n 17.04 17.09 y W 16.57 17.09 y	1 hedgerows vegetation 3 traffic firmes	3 1 3 1	0	71.5 no	00	n n		
M Alsobrook 209/2011 excevating in grids F13/bed turning/concrete breaking out M Alsobrook 209/2011 excevating in grids F13/bed turning/concrete breaking out M	W 16.57 17.02 y V 16.51 16.56 y W 16.45 16.50 y	3 valie lunes 2 valie lunes 3 valie lunes	-1 4 1	0	78 no 78.6 no	no	n		
D Scott 21/0/2011 intervaling in griss/bad turning/backfilling	4 9.15 9.20 n #E 9.20 9.25 n #E1 9.25 9.30		2	0	55 no 60 no	ho cle ho cle	aar 18 n aar n	0 N	0 S 14.1 doudy 8 damp
D Scott 21/9/2011 atcavaling in grossbad turningbaboling	IE1 9.25 9.30 9.30 9.35 y IE 9.35 9.40 0	2 dusty odour	-1 2 4	0	65 no 58 no	no de	aar 29 n	0	
D Scott 21/0/2011 lexcavating in grids/bet unring/back/filing 5 D Scott 21/0/2011 lexcavating in grids/bet unring/back/filing 5 D Scott 21/0/2011 lexcavating in grids/bet unring/back/filing 5 D Scott 21/0/2011 lexcavating in grids/bet unring/back/filing 5	9.30 9.35 y E 9.35 9.40 n E 9.40 9.45 n W 9.45 9.50 n		3 4	0	60 no 71 no	00		0	
D Scott 21/9/2011 excession in prids/bed turning/backfilling	V 9.50 9.55 n W 9.55 10.00 n		4	0	73 no 73 no	no no	n n	n n	
D Scott 21/0/2011 excavating in gridsbed turningback/filingbreaking out D Scott 21/0/2011 excavating in gridsbed turningback/filingbreaking out D Scott 21/0/2011 excavating in gridsbed turningback/filingbreaking out D Scott S1/0/2011 excavating i	W 9.45 9.50 n V 9.50 n 9.55 n W 9.55 n 10.00 n I 17.20 n 17.25 n IE 17.25 n 17.30 n IE1 17.30 n 17.35 n		2	0	61 no 60 no	no cle no cle	aar 18 n aar n	0	12.3 W 16.2 sunny dry 3 dry the addau at church
D Scott 21/9/2011 excavating in grida/bed turning/back/iiling/breaking out E D Scott 21/9/2011 excavating in grida/bed turning/back/iiling/breaking out S	17.35 17.40 n E 17.40 17.45 y 17.45 17.50 n	2 dust	-1 3 3	0	63 no 64 no	no cle	ar 20 n	0	
D Scott 21/0/2011 accavating in gridsbad turningback/filingbreaking out D Scott 21/0/2011 accavating in gridsbad turningback/filingbreaking out D Scott 21/0/2011 accavating in gridsbad turningback/filingbreaking out D Scott 21/0/2011 accavating in gridsbad turningback/filingbreaking out	17.46 17.50 h W 17.50 17.55 y V 17.55 18.00 y	3 traffic	3	0	70 no 60 no	no no	n n	ń ń	
D Scott 21/9/2011 excavating in grids/bed turning/back/filing/breaking out 9 D Scott 21/9/2011 excavating in grids/bed turning/back/filing/breaking out 9 D Scott 22/9/2011 excavating in grids/bed turning/back/filing/breaking out and sand removal and sand removal from so	V 17.55 18.00 y W 18.00 18.05 y	3 traffic 3 traffic	-1 4 1	0	72 some 80 some	00	n n	0 0	
2 doos 22/2020 interviewing rights/bit/bit/pringbab/bit/gconcelse removal and service removal from so D Scott 22/202011 secvering in grids/bit/bit/pringbab/bit/gconcelse removal and said removal from so D Scott 22/202011 secvering in grids/bit/bit/pringbab/bit/gconcelse removal and said removal from so D Scott 22/202011 secvering in grids/bit/bit/bit/gbab/bit/gconcelse removal and said removal from so D Scott 22/202011 secvering in grids/bit/bit/bit/bit/bit/gconcelse removal and said removal from so D Scott 22/202011 secvering in grids/bit/bit/bit/bit/bit/gconcelse removal and said removal from so D Scott 22/202011 secvering in grids/bit/bit/bit/bit/bit/bit/bit/bit/bit/bit	W 18.00 18.05 y 4 7.30 7.35 4 7.35 7.40 4 7.40 7.45		2						
D Scott 229/2011 excavating in grids/bed turning/backfilling/concrete removal and sand removal from sc	7.46 7.50 E 7.50 7.55 7.55 8.00		2						
D Scott 22/9/2011 excavating in grids/bed turning/back/filing/concrete removal and sand removal from so D Scott 22/9/2011 excavating in grids/bed turning/back/filing/concrete removal and sand removal from so D Scott 22/9/2011 excavating in grids/bed turning/back/filing/concrete removal and sand removal from so	8 7.55 8.00 W 8.00 8.05		3						
Distance: 202021 Biological and Advances and Advance	W 8.00 8.05 V 8.05 8.10 W 8.10 8.15 I 17.55 18.00 n		4	0 145.3 43.	6 642 00	an cia	ar 19.5 0	0	0.1 W 17.1 doudy 7 dry no odour at church
Stephenson 22/9/2011 excervating in grids C.E.D 16,15,19/bed turning/concrete crushing 5 Stephenson 22/9/2011 excervating in grids C.E.D 16,15,19/bed turning/concrete crushing 5	17.35 18.00 17.35 17.55 17.45 17.45 17.45 17.45 17.45 17.45 18 17.35 17.35 17.35 17.35 17.35 17.35 17.35 17.35 17.35 17.45 17.33 17.15 17.23 17.15 17.23		2	0 58.7 62 27.9 41	4 63.8 no	no cle	aar n aar n	0 0	
Stephenson 22/9/2011 excervising in grids C,E,D 16,15,19/bed turning/concrete crushing E Stephenson 22/9/2011 excervising in grids C,E,D 16,15,19/bed turning/concrete crushing Stephenson 22/9/2011 excervising in grids C,E,D 16,15,19/bed turning/concrete crushing Stephenson 22/9/2011 excervision of the stephenson 22/9/2011 excervision excervisio	17.40 17.45 n E 17.35 17.40 n		2	0 79.3 57.	9 73.2 no 64.1 no	no cle	aar 29 n	ů ů	
Estiphenson 22/2011 accentaring in glob C.E.D.16, 15, taleed number cruating Estiphenson 22/2011 accentaring in grids C.E.D.16, 15, taleed number containing Estiphenson 22/2011 accentaring in grids C.E.D.16, 15, taleed number containing I Stephenson 22/2011 accentaring in grids C.E.D.16, 15, taleed number containing I Stephenson 22/2011 accentaring in grids C.E.D.16, 15, taleed number containing I Stephenson 22/2011 accentaring in grids C.E.D.16, 15, taleed number containing I Stephenson 22/2011 accentaring in grids C.E.D.16, 19, taleed number containing I Stephenson 22/2011 accentaring in grids C.E.D.16, 19, taleed number containing I Stephenson 22/2011 accentaring in grids C.E.D.16, 19, taleed number containing I Stephenson 22/2011 accentaring in grids C.E.D.16, 19, taleed number containing I Stephenson 22/2011 accentaring in grids C.E.D.16, 19, taleed number containing I Stephenson 22/2011 accentaring in grids C.E.D.16, 19, taleed number containing I Stephenson 22/2011 accentaring in grids C.E.D.16, 19, taleed number containing I Stephenson 22/2011 accentaring in grids C.E.D.16, 19, taleed number containing I Stephenson 22/2011 accentaring in grids C.E.D.16, 19, taleed number containing I Stephenson 22/2011 accentaring in grids C.E.D.16, taleed number containing I Stephenson 22/2011 accentaring in grids C.E.D.16, taleed number containing I Stephenson 22/2011 accentaring in grids C.E.D.16, taleed number containing I Stephenson 22/2011 accentaring in grids C.E.D.16, taleed number containing I Stephenson 22/2011 accentaring in grids C.E.D.16, taleed number containing I Stephenson 22/2011 accentaring in grids C.E.D.16, taleed number containing I Stephenson 22/2011 accentaring in grids C.E.D.16, taleed number containing I Stephenson 22/2011 accentaring in grids C.E.D.16, taleed number containing I Stephenson 22/2011 accentaring in grids C.E.D.16, taleed number containing I Stephenson 22/2011 accentaring in grids C.E.D.16, taleed number contaring in grids C.E.D.16, taleed number containing	W 17.25 17.30 y W 17.25 17.30 y	3 car fumes 3 car fumes	-1 4 1	0 46.9 56.	5 28 00	no no		6 0	
Stephenson 22/9/2011 excervating in grids C.E.D 16,15,19/bed turning/concrete crushing 5 D Scott 23/9/2011 excervating in grids/bed turning/breaking outlexcervating 5	W 17.15 17.20 n 9.35 9.40 n		2	0 0 0.2	74.3 no 80 no	ho ho cle	n Nar 19 n	0 0	0 S 11.8 sunnry dry 0 dry no odour at church
D Scott 23/9/2011 excervating in grids/bed turning/breaking outlexcervating P D Scott 23/9/2011 excervating in grids/bed turning/breaking outlexcervating	JE 9.40 9.45 n JE1 9.45 9.50		2	0 0.2 0.1	63 no	no cle	aar n aar n	0 0	
D Scott 23/92011 wacavating in grintlabeld turninghewaking outlivicavating E Scott 23/92011 wacavating in grintlabeld turninghewaking outlivicavating E Scott 23/92011 wacavating in grintlabel turninghewaking outlivicavating E D Scott 23/92011 wacavating in grintlabeld turninghewaking outlivicavating E D Scott 23/92011 wacavating in grintlabeld turninghewaking outlivicavating E D Scott 23/92011 wacavating in grintlabel turninghewaking outlivicavating E	W 17:15 17:29 I 9.35 9.40 E 9.40 9.45 IEI 9.45 9.55 IEI 9.45 9.55 IEI 9.45 9.55 IEI 9.55 10.005 IEI 9.65 10.005 IEI 0.001 10.055 IEI 10.001 10.055		3	0 0.1 0	63 h0	no cie no	n 127 0 0	n n	
D Scott 23/9/2011 excervating in grids/bed turning/breaking outlicxcavating D Scott 23/9/2011 excervating in grids/bed turning/breaking outlicxcavating in	W 10.05 10.10 n V 10.10 10.15 n		4	0 0 0	60 ho 75 some	no ho	n h	n 6	
D Scott 23/9/2011 excervating in grids/bed turning/breaking outlexcervating D Scott 28/9/2011 excervating in grids/bed turning/concrete crushing/excervation at south site and zone 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	V 10.10 10.15 n W 10.15 10.20 n 4 10.00 10.05 n		2	0 15.8 23	2 59 no	no cle	0 9ar 19 0	6 6	3.5 WSW 18.1 doudy 8 damp no odours at church
Total 20201 Interesting a public structure contraction of the second structure of the second stru	IE 10.05 10.10 n IE1 10.10 10.15 10.15 10.20 y	2 dusty odcur	0 2 2	0 60.1 18. 21.7 50. 0 350 58.	9 63 no	no cle no rie	aar b aar 20 h	n n	
D Scott 26/9/2011 excavating in grids/bed turning/concrete crushing/excavation at south site and zone 1 5 D Scott 26/9/2011 excavating in grids/bed turning/concrete crushing/excavation at south site and zone 1 5	E 10.20 10.25 y 10.25 10.30 n	1 dusty odour	0 3 2	0 21.2 18	65 no 9 60 no	no ho	n n	0. A	
D Scott 26/9/2011 excavating in grids/bed turning/concrete crushing/excavation at south site and zone 1	W 10.30 10.35 n V 10.35 10.40 n W 10.40 10.45 n		4	0 21.4 9.2	76 ho 1 68 some	ho ho	2	n n	
D Scott 26/02011 excervating in grids/bed turring/concrete crushing/excervation at south sele and a the D Scott 26/02011 excervating in grids/bed turring/concrete crushing/excervating car park/excervating in set D Scott 26/02011 excervating in grids/bed turring/concrete crushing/excervating car park/excervating in set D Scott 26/02011 excervating in grids/bed turring/concrete crushing/excervating car park/excervating in set D Scott 26/02011 excervating in grids/bed turring/concrete crushing/excervating car park/excervating in set D Scott 26/02011 excervating in grids/bed turring/concrete crushing/excervating in set D Scott 26/02011 excervating in grids/bed turring/concrete crushing/excervating in set D Scott 26/02011 excervating in grids/bed turring/concrete crushing/excervating in set D Scott 26/02011 excervating in grids/bed turring/concrete crushing/excervating in set D Scott 26/02011 excervating in grids/bed turring/concrete crushing/excervating in set D Scott 26/02011 excervating in grids/bed turring/concrete crushing/excervating in set D Scott 26/02011 excervating in grids/bed turring/concrete crushing/excervating in set D Scott 26/02011 excervating in grids/bed turring/concrete crushing/excervating in set D Scott 26/02011 excervating in grids/bed turring/concrete crushing/excervating in set D Scott 26/02011 excervating in grids/bed turring/concrete crushing/excervating in set D Scott 26/02011 excervating in grids/bed turring/concrete crushing/excervating in set D Scott 26/02011 excervating in grids/bed turring/concrete crushing/excervating in set D Scott 26/02011 excervating in grids/bed turring/concrete crushing/excervating in set D Scott 26/02011 excervating in grids/bed turring/concrete crushing/excervating in set D Scott 26/02011 excervating in grids/bed turring/concrete crushing/excervating in set D Scott 26/02011 excervating in grids/bed turring/concrete crushing/excervating in set D Scott 26/02011 excervating in grids/bed turring/concrete crushing/excervating in set D Scott 2	17.00 17.05 h		2	0 12.9 5.7 0 18.7 85.	7.3 some 64 ho .4 65 ho	no cla no cla	aar 19 n aar n	ń.	1.7 NNW 20.4 dry doudy 8 dry no odours at church
D Scott 28/92/011 excavating in gridsbed turningkoncrete crushing/excavating car park/excavating in s D Scott 28/92/011 excavating in gridsbed turning/concrete crushing/excavating or park/excavating in D Scott 28/92/011 excavating in gridsbed turning/concrete crushing/excavating or park/excavating in a Scott 28/92/011 excavating in gridsbed turning/concrete crushing/excavating or park/excavating in a Scott 28/92/011 excavating in gridsbed turning/concrete crushing/excavating or park/excavating in a Scott 28/92/011 excavating in gridsbed turning/concrete crushing/excavating or park/excavating in a Scott 28/92/011 excavating in gridsbed turning/concrete crushing/excavating or park/excavating in a Scott 28/92/011 excavating in gridsbed turning/concrete crushing/excavating or park/excavating in a Scott 28/92/011 excavating in gridsbed turning/concrete crushing/excavating or park/excavating in a Scott 28/92/011 excavating in gridsbed turning/concrete crushing/excavating or park/excavating or park/exca	ac 17.05 17.70 h SE1 77.10 17.15 E 17.20 17.15 E 17.20 17.25 W 17.20 17.25 h W 17.20 17.25 h W 17.20 17.25 h W 17.20 17.25 h W 17.40 h W 17.40 h W 17.40 h W 17.40 h W 17.45 h E 10.25 h	1 vegetation	1 2 1	9.9 15. 0 39.5 21.	3 3 65 no	no cle	n aar 29 n	n n	
D Scott 26/9/2011 excervating in grids/bed turning/concrete crushing/excervating car park/excervating in artist	E 17.20 17.25 y 17.25 17.30 y 17.25 17.30 y	1 dust 8 dust	-1 3 3	0 76.6 39.	4 60.2 ho	no no	n n	n n	
D Scott 29/92011 lesconaring in gridsbed turring/concrete crushing/seconaring car park/seconaring and Scott 29/92011 lesconaring in gridsbed turring/concrete crushing/seconaring car park/seconaring in a D Scott 28/92011 lesconaring in gridsbed turring/concrete crushing/seconaring car park/seconaring in a D Scott 28/92011	V 17.35 17.40 n W 17.40 17.45 n		* 4 2	0 22.4 29.	5 77 some 77 some	no no		ñ ñ	
Supplierson 27/9/2011 excervating in grids/bad connegConcrete crushing 8	iE 10.30 10.35 iE 10.25 10.30 y	5 river weed	-3 2 1	0 856.2 340 0 798.2 20	0 62.1 no 3.1 65.8 no	ho cle	aar 19 n aar n	n n	0 SSW 13.4 doudy 8 dry no odours at church
Suphenson 27/0/2011 excavating in grids/bed turring/concrete crushing Suphenson 27/0/2011 excavating in grids/bed turring/concrete crushing Suphenson 27/0/2011 excavating in grids/bed turring/concrete crushing	#E1 10.20 10.25 10.15 10.20 n		2	325.1 200 0 675.8 150	9.1 9 72.1 no 71.3 no	no cle	n aar 28.5 n	n n	
	10.15 10.20 n E 10.10 10.15 n I 10.05 10.10 n W 10.00 10.05 n	+ +	3	0 456 19	9 64.5 no 68.7 no	10 10		n n	
Staphenson 279/2011 lescervating in grids/bed turning/concrete crushing	V 9.55 10.00 n W 9.50 9.55 y	3 wet veg & asphalt	4	0 420 211	6 78.9 no 74.2 no	00	n n	n n	
Skythemol 272001 excerting petidebal turningborowski oxdehigi Skythemol 272001 excerting petidebal turningborowski oxdehigiescenden Social 272001 excerting petidebal turningborowski oxdehigiescenden Skythemol 272001 excerting petidebal turningborowski oxdehigiescenden	W 10.00 10.05 n V 9.55 10.00 n W 9.50 9.55 y I 17.30 17.35 y E 17.35 17.40 n	1 dust	-1 2 5	0 325 42 0 94.2 45 15 38	8 62 no 4 64 no	no de no de	aar 19 n aar n	0	7.1 SSE 21.3 sunny dry 1 dry no odours at church
D Scott 27/9/2011 excavating in grids/bed turning/concrete crushing/excavation E	E 17.40 17.40 17.45 17.50 h		2	0 10.8 17	1 68 ho 65 m	no cle	ar 20 n	n n	
D Boot 27/02011 excerning in gradebad birmingconcene countrigencement D Boot 27/02011 excerning in gradebad birmingconcente countrigencement D Boot 27/02011 excerning in gradebad birmingconcenter countrigencement D Boot 27/02011 excerni	17.55 18.00 n W 18.00 18.05 n		3	0 138.1 61.	1 62 no 70 no	no no		6 6	
D Scott 27/3/2011 excavating in grids/bed turningiconcrete crushing/excavation 0 D Scott 27/3/2011 excavating in grids/bed turning/concrete crushing/excavation 9	17.55 18.00 n W 18.00 18.05 n V 18.05 18.10 y W 18.10 18.15 n	2 odour control	0 4 4	0 53 32 0	3 75 some 70 some	no no	0	6	
D Scott 228/2011 lexcervating in gridsibled turning/concrete crushing D Scott 28/2011 lexcervating in gridsibled turning/concrete crushing in gridsibled turni	4 8.30 8.35 n JE 8.35 8.40 y JE1 8.40 8.45	1 vegetation	0 2 1	0	55.1 no 60.6 no	no de	aar 18 n aar n	n 6	5.8 SE 14.3 kuntry dry 1 dry Ro odours at church
D Scott 289/2011 excervating in grids/bet turning/concrete crushing P D Scott 289/2011 excervating in grids/bet turning/concrete crushing B D Scott 289/2011 excervating in grids/bed turning/concrete crushing S	8.40 8.45 8.46 8.50 y E 8.50 8.55 n	1 vegetation	0 2 1	0	65 no 50 no	no de	aar 28 h	n n	
	an and an							•	• • • • • •

D Scott 28/9/2011 excervating in grids/bed turning/concrete crushing 5	S	8.55 9.00	3 n				3	0			65	no	00			ń	n				
D Scott 28/9/2011 excervating in grids/bed turning/concrete crushing 5	SW	9.00 9.05	5 y 1	2	regetation	0	1	0			73	no	hù			ń	n				
D Scott 28/9/2011 excevating in grids/bed turning/concrete crushing	W	9.05 9.10	3γ 3	đi	fust	-2	4	0			74	no	00			n	n.				
D Scott 28/9/2011 excervating in grids/bed turning/concrete crushing	NW	9.10 9.15	5 y 2	đi	lust	-2	4	0			74	no	hù			ń	n				
D Scott 28/9/2011 excavating in grids/bed turning/concrete crushing/tarmac removal/excavation	N	17.30 17.35					2	0	28.6	36.8	60	no	hù	clear	18	ń	n				no odour at church
D Scott 28/9/2011 excevating in grids/bed turning/concrete crushing/termac removal/excevation	NE	17.35 17.40	3 n				2	0	79.1	64.3	67	no	00	clear		n	n.				
D Scott 28/9/2011 excavating in grids/bed turning/concrete crushing/tarmac removal/excavation	NE1	17.40 17.45	5											clear		ń	n				
D Scott 28/9/2011 excavating in grids/bed turning/concrete crushing/tarmac removal/excavation	E	17.46 17.50	3 n				2	0	66.8	68.1	64	no	hù	clear	28	ń	n				
D Scott 28/9/2011 excevating in grids/bed turning/concrete crushing/termac removal/excevation 5	SE	17.50 17.55	5 n				3	0			60	no	00			n	n.				
D Scott 28/9/2011 excavating in grids/bed turning/concrete crushing/tarmac removal/excavation \$	S	17.55 18.00	3 n				3	0	74.8	55	65	no	hù			ń	n				
D Scott 28/9/2011 excevating in grids/bed turning/concrete crushing/termac removal/excevation	SW	18.00 18.05	5 y 1	m	nanure	÷.	1	Ó			68	no	00			ń	ň				
D Scott 28/9/2011 excevating in grids/bed turning/concrete crushing/termac removal/excevation	W	18.05 18.10) y 2	di	fust	-1	4 3	0	96.5	82.8	78	some	no			n	n				
D Scott 28/9/2011 excavating in grids/bed turning/concrete crushing/tarmac removal/excavation	NW	18.10 18.15	5 ń				2	0			77	some	hù			ń	n				
D Scott 29/9/2011 excevating in grids/bed turning/concrete crushing/backfilling	N	17.00 17.05	5 y 1		tog foul bin	3	2 1	Ó	389	85.5	62	no	00	dear	19	ů.	ň	27	sunny dry 0	dry	no odour at church
D Scott 29/9/2011 excevating in grids/bed turning/concrete crushing/backfilling	NE	17.05 17.10	3 y 1		regetation	0	2 1	0	81.3	6.4	58	no	no	dear		n	n				
D Scott 29/9/2011 excervating in grids/bed turning/concrete crushing/backfilling	NE1	17.10 17.15	5						227	30.2				clear		ń	n				
D Scott 29/9/2011 excevating in grids/bed turning/concrete crushing/backfilling	E	17.15 17.20) n				2	Ó	325.4	8.7	65	no	00	clear	26	ń	ň				
D Scott 29/9/2011 excevating in grids/bed turning/concrete crushing/backfilling 5	SE	17.20 17.25	5 n				3	0			68	no	no			n	n				
D Scott 29/9/2011 excervating in grids/bed turning/concrete crushing/backfilling E	8	17.25 17.30	3 n				3	0	64.3	42.7	71	no	no			ń	ń				
D Scott 29/9/2011 excervating in grids/bed turning/concrete crushing/backfilling 5	SW	17.30 17.35	5 ń					0			70	no	hù			ń	n				
D Scott 29/9/2011 excevating in grids/bed turning/concrete crushing/backfilling	W	17.35 17.40	λy 1	đi	fust	-2	4	0	714	291	80	some	00			n	n.				
D Scott 29/9/2011 excevating in grids/bed turning/concrete crushing/backfilling	NW	17.40 17.45	5 y 1	đi	iust	-2	4	0			78	some	no			ń	ń				
D Scott 30/9/2011 excervating in grids/bed turning/concrete crushing/backfilling	N	8.30 8.35	5 ń				2	0	249	190	68	no	hù	clear	19	ń	n		sunny 0	dry	no odour at church
D Scott 30/9/2011 excevating in grids/bed turning/concrete crushing/backfilling	NE	8.35 8.40					2	0	234	284	62.8	no	10	clear		n	n.				
D Scott 30/9/2011 excevating in grids/bed turning/concrete crushing/backfilling	NE1	8.40 8.45	5						204	194.8				clear		ń	ń				
D Scott 30/9/2011 excevating in grids/bed turning/concrete crushing/backfilling	E	8.45 8.50) n				2	Ó	374	272	65	no	00	clear	28	ń	ň				
D Scott 30/9/2011 excervating in grids/bed turning/concrete crushing/backfilling 5	SE	8.50 8.55	5 y 2	đi	fust	7	5	Ó			65	no	00			ń	ň				
D Scott 30/9/2011 excevating in grids/bed turning/concrete crushing/backfilling 5	s	8.55 9.00	3 n	T			3	0	182.5	137.5	59	no	no			n	n				
D Scott 30/9/2011 excevating in grids/bed turning/concrete crushing/backfilling	SW	9.00 9.05	5 n				4	Ó			70	no	00			ń	ň				
D Scott 30/9/2011 excevating in grids/bed turning/concrete crushing/backfilling	w	9.05 9.10	λγ 4	đi	fust.	-3	4 5	0	2233	417	70	eme	no			0	6				
D Scott 30/9/2011 excevating in grids/bed turning/concrete crushing/backfilling	NW	9.10 9.15	5 n				2	0			78	some	no			n	6				

Appendix C

Long term Passive VOC Monitoring

LABORATORY ANALYSIS REPORT

REPORT NUMBER CUSTOMER GRADKO LAB REFERENCE DATE SAMPLES RECEIVED DESPATCH REF.NUMBER JOB NUMBER BOOKING IN REF. GCMS 4917 Vertase FLI Ltd GMSF 1444-1454 14.09.11 SOR006001 907BRI/5302 E 4773

SEMI-QUANTITATIVE ANALYSIS FOR TOP 10 VOC'S ON TENAX DIFFUSION TUBES BY GC/MS Analysis has been carried out in accordance with in-house method GLM 13

Tube Number	GRA 09148
Exposure Time(mins)	40320
Sample ID	Queens Close

Top 10 VOC'S		
Compounds	ng on tube	ppb in air*
Heptadecane	38.65	0.48
Pentadecane	22.40	0.28
Toluene	19.13	0.24
Hexadecane	16.84	0.21
p-Xylene	14.40	0.18
Tridecane	12.62	0.16
Tetradecane	12.52	0.16
Dodecane	10.07	0.12
Benzene	9.80	0.12
Phenol	9.71	0.12
Tube Number	GRA 09086	

Exposure Time(mins)	40320
Sample ID	Church Road

Top 10 VOC'S	ng on tube	ppb in air*
Naphthalene	559.17	6.93
Phenanthrene	75.90	0.94
Naphthalene, 2-methyl-	49.19	0.61
Heptadecane	46.18	0.57
Acenaphthene	40.41	0.50

The Diffusion Tubes have been tested within the scope of Gradko International Ltd. Laboratory Quality Procedures calculations and assessments involving the exposure procedures and periods provided by the client are not within the scope of our UKAS accreditation. Those results obtained using exposure data shall be indicated by an asterisk. Any queries concerning the data in this report should be directed to the Laboratory Manager Gradko International Ltd.

Form LQF32b Issue 3 – March 2011

REPORT OFFICIALLY CHECKED

Report Number GCMS4917

Page 1 of 6

	rage r or e
G	Fradko International Ltd
This signature c	onfirms the authenticity of these results
Signed	Byatis
0	ates, Laboratory Supervisor

LABORATO	RY ANALYSI	S REPORT	
Octadecane		31.79	0.39
Naphthalene, 1-methyl-		25.57	0.32
Fluorene		24.99	0.31
Toluene		21.73	0.27
Hexadecane		17.96	0.22
Tube Number	GRA 09025		
Exposure Time(mins)	40320		
Sample ID	Ν		
Top 10 VOC'S			
Compounds		ng on tube	ppb in air*
Tetrachloroethylene		79.42	0.98
Benzene, 1,2,3-trichloro-4-methyl-		32.31	0.40
Naphthalene		29.54	0.40
Toluene		23.54	0.28
Phenol		20.26	0.25
Trichloroethylene		18.27	0.23
Benzene, 1,2,4-trichloro-3-methyl-		15.18	0.23
Pentadecane		14.64	0.18
Tridecane		14.58	0.18
Dodecane		13.69	0.17
Doucoune		10.00	0.17
Tube Number	GRA 09142		
Exposure Time(mins)	40320		
Sample ID	NE		
Top 10 VOC'S Compounds		ng on tube	ppb in air*
Tetrachloroethylene		289.58	3.59
Toluene		93.91	1.16
Trichloroethylene		53.68	0.67
Benzene, 1,2,3-trichloro-4-methyl-		52.76	0.65
-		24.55	0.30
Naphthalene Benzene, 1,2,4-trichloro-3-methyl-		24.55	0.25
m/p-Xylene		17.33	0.23
Benzene, 1,4-dichloro-2-methyl-		12.60	0.21
Benzene, 1,2,4-trichloro-		10.59	0.13
o-Xylene		9.54	0.13
0 / 10/10		0.04	0.12

01962 841339 e-mail:diffusion@gradko.co.uk

The Diffusion Tubes have been tested within the scope of Gradko International Ltd. Laboratory Quality Procedures calculations and assessments involving the exposure procedures and periods provided by the client are not within the scope of our UKAS accreditation. Those results obtained using exposure data shall be indicated by an asterisk. Any queries concerning the data in this report should be directed to the Laboratory Manager Gradko International Ltd.

Form LQF32b Issue 3 – March 2011

REPORT OFFICIALLY CHECKED

Report Number GCMS4917

Page 2 of 6

	8
	Gradko International Ltd
This signa	ture confirms the authenticity of these results
Signed	Elates .
Signounnin	L. Gates, Laboratory Supervisor
and the second se	

LABORATORY ANALYSIS REPORT

Tube Number	GRA 09095
Exposure Time(mins)	40320
Sample ID	S

Top 10 VOC'S		
Compounds	ng on tube	ppb in air*
Tetrachloroethylene	29.93	0.37
5,9-Undecadien-2-one, 6,10-dimethyl-, (E)-	15.91	0.20
Phenol	14.16	0.18
Toluene	13.35	0.17
Pentadecane	10.63	0.13
m/p-Xylene	9.78	0.12
Hexadecane	9.21	0.11
Benzene	9.11	0.11
Benzene, 1,2,3-trichloro-4-methyl-	8.05	0.10
o-Xylene	6.23	0.08

Tube Number	GRA 09811
Exposure Time(mins)	40320
Sample ID	SE

Top 10 VOC'S		
Compounds	ng on tube	ppb in air*
Benzene, 1,2,3-trichloro-4-methyl-	41.12	0.51
Toluene	18.49	0.23
Trichloroethylene	12.93	0.16
Benzothiazole	12.70	0.16
Phenol	10.80	0.13
Benzene	9.92	0.12
Benzene, 1,2,4-trichloro-	9.39	0.12
m/p-Xylene	8.77	0.11
Naphthalene, 2,7-dimethyl-	7.15	0.09
o-Xylene	5.75	0.07

The Diffusion Tubes have been tested within the scope of Gradko International Ltd. Laboratory Quality Procedures calculations and assessments involving the exposure procedures and periods provided by the client are not within the scope of our UKAS accreditation. Those results obtained using exposure data shall be indicated by an asterisk. Any queries concerning the data in this report should be directed to the Laboratory Manager Gradko International Ltd.

Form LQF32b Issue 3 – March 2011

REPORT OFFICIALLY CHECKED

Report Number GCMS4917

Page 3 of 6

	8
	Gradko International Ltd
This sign:	ature confirms the authenticity of these results
Signed	Kates
5.g.teanin	L. Gates, Laboratory Supervisor

LABORATORY ANALYSIS REPORT

Tube Number	GRA 09016
Exposure Time(mins)	40320
Sample ID	NW

Top 10 VOC'S		
Compounds	ng on tube	ppb in air*
Tetrachloroethylene	130.96	1.62
Benzene, 1,2,3-trichloro-4-methyl-	43.56	0.54
Toluene	34.38	0.43
Trichloroethylene	23.30	0.29
m/p-Xylene	19.11	0.24
Benzene	13.85	0.17
Benzene, 1,2,4-trichloro-3-methyl-	13.65	0.17
Benzothiazole	12.01	0.15
Phenol	11.25	0.14
o-Xylene	10.75	0.13

Tube Number	GRA 09027
Exposure Time(mins)	40320
Sample ID	W

Top 10 VOC'S		
Compounds	ng on tube	ppb in air*
Tetrachloroethylene	156.11	1.94
Benzene, 1,2,3-trichloro-4-methyl-	87.19	1.08
Benzothiazole	72.09	0.89
Benzene, 1,2,4-trichloro-	37.06	0.46
Benzene, 1,2,4-trichloro-3-methyl-	35.20	0.44
Nonadecane	27.00	0.33
Toluene	26.47	0.33
Pentadecane	22.46	0.28
o-Xylene	22.33	0.28
Benzene, 1,4-dichloro-2-methyl-	21.33	0.26

The Diffusion Tubes have been tested within the scope of Gradko International Ltd. Laboratory Quality Procedures calculations and assessments involving the exposure procedures and periods provided by the client are not within the scope of our UKAS accreditation. Those results obtained using exposure data shall be indicated by an asterisk. Any queries concerning the data in this report should be directed to the Laboratory Manager Gradko International Ltd.

Form LQF32b Issue 3 – March 2011

REPORT OFFICIALLY CHECKED

Report Number GCMS4917

Page 4 of 6

	<u> </u>
	Gradko International Ltd
This signature confirms the authenticity of these results	
Signed	Katis
L. Gates, Laboratory Supervisor	

LABORATORY ANALYSIS REPORT

Tube Number	GRA 09151
Exposure Time(mins)	40320
Sample ID	E

Top 10 VOC'S		
Compounds	ng on tube	ppb in air*
Tetrachloroethylene	258.79	3.21
Benzene, 1,2,3-trichloro-4-methyl-	98.96	1.23
Toluene	60.92	0.76
Benzene, 1,2,4-trichloro-3-methyl-	43.21	0.54
Naphthalene	42.49	0.53
Trichloroethylene	41.70	0.52
m/p-Xylene	27.60	0.34
Benzene, 1,2,4-trichloro-	20.00	0.25
o-Xylene	16.92	0.21
Naphthalene, 2,7-dimethyl-	14.25	0.18

Tube Number	GRA 09105
Exposure Time(mins)	40320
Sample ID	SW

Top 10 VOC'S		
Compounds	ng on tube	ppb in air*
Heptadecane	545.35	6.76
Octadecane	365.68	4.53
Tetrachloroethylene	282.58	3.50
Hexadecane	126.82	1.57
Benzene, 1,2,3-trichloro-4-methyl-	118.44	1.47
Benzene, 1,2,4-trichloro-3-methyl-	41.68	0.52
Toluene	40.73	0.51
Benzene, 1,2,4-trichloro-	35.04	0.43
Naphthalene	34.35	0.43
Benzene, 1,4-dichloro-2-methyl-	29.88	0.37

The Diffusion Tubes have been tested within the scope of Gradko International Ltd. Laboratory Quality Procedures calculations and assessments involving the exposure procedures and periods provided by the client are not within the scope of our UKAS accreditation. Those results obtained using exposure data shall be indicated by an asterisk. Any queries concerning the data in this report should be directed to the Laboratory Manager Gradko International Ltd.

Form LQF32b Issue 3 – March 2011

REPORT OFFICIALLY CHECKED

Report Number GCMS4917

Page 5 of 6

	8
	Gradko International Ltd
This signat	ture confirms the authenticity of these results
Signed	BGatis
Signotanini	L. Gates, Laboratory Supervisor

LABORATORY ANALYSIS REPORT

Tube Number	GRA 09053
Exposure Time(mins)	40320
Sample ID	WWTW

Top 10 VOC'S					
Compounds	ng on tube	ppb in air*			
Heptadecane	1174	15			
Octadecane	701.69	8.70			
Hexadecane	463.49	5.75			
Hexadecane, 4-methyl-	403.66	5.01			
Heptadecane, 3-methyl-	380.92	4.72			
Heptadecane, 2-methyl-	374.66	4.65			
Hexadecane, 2-methyl-	346.16	4.29			
Nonadecane	282.96	3.51			
Pentadecane	26.44	0.33			
Tetrachloroethylene	19.88	0.25			

Comments: Results greater than 1000ng are outside of our UKAS accredited calibration range. Semi-quantitative results for ng on tube are calculated using toluene standards.

Analysts Name	M.Angelova	Date of Analysis	21.09.11
		Date of Report	26.09.11

The Diffusion Tubes have been tested within the scope of Gradko International Ltd. Laboratory Quality Procedures calculations and assessments involving the exposure procedures and periods provided by the client are not within the scope of our UKAS accreditation. Those results obtained using exposure data shall be indicated by an asterisk. Any queries concerning the data in this report should be directed to the Laboratory Manager Gradko International Ltd.

Form LQF32b Issue 3 - March 2011

REPO

Report Number GCMS4917

Page 6 of 6

RT OFFICIALLY CHECKED	

Gradko International Ltd This signature confirms the authenticity of these results Signed......L. Gates, Laboratory Supervisor

Appendix D

Directional Dust Monitoring

Results Pending

Appendix E Groundwater Level Data

Date	BH6/06	S3/4	BH4	BH10B/06	BH9	S1/8	BH11*	S2/6	BHB1	W1 (n)	W2	W3 (s)	Riddy 1	Riddy 2	Riddy 3	Riddy 4	V F12	V N3	WS17	P107	P73
1/9/2011	9.510	Dry	Blocked	Lost	10.039	Lost	9.633	Lost	9.010	Lost	Lost	DRY	9.159	9.294	9.490	9.629	9.608	9.532	9.921	Blocked	Covered
8/9/2011	9.610	Dry	Blocked	Lost	10.069	Lost	9.643	Lost	9.020	Lost	Lost	DRY	9.179	9.324	9.520	9.639	9.568	9.517	9.866	Blocked	9.644
9/9/2011	9.670	Dry	Blocked	Lost	10.039	Lost	9.618	Lost	8.995	Lost	Lost	DRY	9.169	9.324	9.510	9.629	9.558	9.522	9.856	Blocked	9.644
14/9/2011	9.070	Dry	Blocked	Lost	10.009	Lost	9.553	Lost	9.620	Lost	Lost	DRY	9.189	9.364	9.530	9.649	9.558	9.502	9.696	Blocked	9.614
16/9/2011	9.700	Dry	Blocked	Lost	10.009	Lost	9.548	Lost	8.990	Lost	Lost	DRY	9.179	9.364	9.530	9.659	9.563	9.502	9.611	Blocked	9.624
19/9/2011	9.790	Dry	Blocked	Lost	9.994	Lost	9.488	Lost	9.030	Lost	Lost	DRY	9.179	9.374	9.535	9.649	9.548	9.482	9.486	Blocked	9.599
23/9/2011	9.790	Dry	Blocked	Lost	9.994	Lost	9.487	Lost	9.020	Lost	Lost	DRY	9.179	9.374	9.538	9.659	9.498	9.492	9.486	Blocked	9.604
29/9/2011	9.790	Dry	Blocked	Lost	9.999	Lost	9.493	Lost	8.950	Lost	Lost	DRY	9.179	9.364	9.540	9.649	9.468	9.492	9.476	Blocked	9.609
30/9/2011	9.780	Dry	Blocked	Lost	10.004	Lost	9.493	Lost	8.920	Lost	Lost	DRY	9.179	9.354	9.540	9.659	9.538	9.487	9.473	Blocked	9.609
3/10/2011	9.770	Dry	Blocked	Lost	9.999	Lost	9.488	Lost	8.800	Lost	Lost	DRY	9.179	9.349	9.545	9.655	9.558	9.487	9.471	Blocked	9.614
5/10/2011	9.820	Dry	Blocked	Lost	9.999	Lost	9.493	Lost	8.910	Lost	Lost	DRY	9.179	9.342	9.540	9.651	9.558	9.484	9.476	Blocked	9.614

Appendix F Surface Water Analysis Reports

Scientific Analysis Laboratories Ltd

Certificate of Analysis

Hadfield House Hadfield Street Combrook Manchester M16 9FE Tel : 0161 874 2400 Fax : 0161 874 2468

Scientific Analysis Laboratories is a limited company registered in England and Wales (No 2514788) whose address is at Hadfield House, Hadfield Street, Manchester M16 9FE

Report Number: 249601-1

Date of Report: 14-Sep-2011

Customer: VertaseFLI Limited 19 Napier Court Barlborough Links Barlborough S43 4PZ

Customer Contact: The Project Management

Customer Job Reference: 907 BRI Customer Purchase Order: 907 BRI Date Job Received at SAL: 06-Sep-2011 Date Analysis Started: 06-Sep-2011 Date Analysis Completed: 14-Sep-2011

The results reported relate to samples received in the laboratory

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation This report should not be reproduced except in full without the written approval of the laboratory Tests covered by this certificate were conducted in accordance with SAL SOPs

Report checked and authorised by : Miss Emma Tibbitts Senior Project Manager Issued by : Miss Emma Tibbitts Senior Project Manager

- Etterath

SAL Reference: 249601

Customer Reference: 907 BRI

Water Vertase Hauxton Suite		Analysed	as Water					
			SA	L Reference	249601 001	249601 002	249601 003	249601 004
		Custon	ner Sampl	e Reference	Cam Downgradient	Riddy Downgradient	BHB1	VF12
			Da	ate Sampled	05-SEP-2011	05-SEP-2011	05-SEP-2011	05-SEP-2011
Determinand	Method	Test Sample	LOD	Units				
Electrical Conductivity	T7	AR	10	µS/cm	910	890	2100	1300
pН	T7	AR			8.1	8.2	7.2	7.4

SAL Reference: 249601

Customer Reference: 907 BRI

Water Analysed as Water

Vertase Hauxton OP/ON Suite

			SA	L Reference	249601 001	249601 002	249601 003	249601 004
		Custon	ner Sampl	e Reference	Cam Downgradient	Riddy Downgradient	BHB1	VF12
	Date Sample				05-SEP-2011	05-SEP-2011	05-SEP-2011	05-SEP-2011
Determinand	Method	Test Sample	LOD	Units				
Dimefox	T16	AR	0.1	µg/l	<0.1	<0.1	<0.1	<0.1
Ethofumesate	T16	AR	0.1	µg/l	<0.1	<0.1	250	240
Hempa	T16	AR	0.1	µg/l	<0.1	<0.1	<0.1	35
Schradan	T16	AR	0.1	µg/l	<0.1	<0.1	42	320
Simazine	T16	AR	0.01	µg/l	<0.01	<0.01	0.92	0.39

SAL Reference: 249601 Customer Reference: 907 BRI

Water

Analysed as Water Vertase Hauxton Phenoxy Acid Herbs Suite

	1.25		SA	L Reference	249601 001	249601 002	249601 003 BHB1 05-SEP-2011	249601 004 VF12 05-SEP-2011
		Custon	ner Sample	e Reference	Cam Downgradient	Riddy Downgradient		
			Da	ate Sampled	05-SEP-2011	05-SEP-2011		
Determinand	Method	Test Sample	LOD	Units				
Dicamba	T16	AR	0.1	µg/l	<0.1	<0.1	1.3	<0.1
Mecoprop	T16	AR	0.1	µg/l	1.3	0.6	30	27
Phenoxy Acetic acid herbicide: MCPA	T16	AR	0.1	µg/l	<0.1	<0.1	<0.1	<0.1
Dichlorprop	T16	AR	0.1	µg/l	<0.1	<0.1	2.2	0.4

SAL Reference: 249601 Customer Reference: 907 BRI

Water

Analysed as Water

			SA	L Reference	249601 001	249601 002	249601 003	249601 004
		Custon	ner Sampl	e Reference	Cam Downgradient	Riddy Downgradient	BHB1	VF12
			Da	ate Sampled	05-SEP-2011	05-SEP-2011	05-SEP-2011	05-SEP-2011
Determinand	Method	Test Sample	LOD	Units				
Vinyl chloride	T54	AR	1	µg/l	<1	<1	240	16
Cis-1,2-Dichloroethylene	T54	AR	1	µg/l	<1	<1	410	190
1,2-Dichloroethane	T54	AR	1	µg/l	<1	<1	23	27
Trichloroethene	T54	AR	1	µg/l	<1	<1	⁽¹⁷⁵⁾ 760	⁽¹⁷⁵⁾ 720
Toluene	T54	AR	1	µg/l	<1	<1	74	54
Tetrachloroethene	T54	AR	1	µg/l	1	1	⁽¹⁷⁵⁾ 1200	⁽¹⁷⁵⁾ 860
Xylene (Total)	T54	AR	1	µg/l	<1	<1	47	8
1,2-Dichlorobenzene	T54	AR	1	µg/l	<1	<1	4	3
Cyclohexanone	T54	AR	10	µg/l	<10	<10	<10	<10

SAL Refe	erence: 2	49601						
Customer Refe	erence: 9	07 BRI						
Water	A	nalysed as	Water					
Vertase Hauxton SVOC Sui	te							
			SA	L Reference	249601 001	249601 002	249601 003	249601 004
		Custor	ner Sampl	e Reference	Cam Downgradient	Riddy Downgradient	BHB1	VF12
			Da	ate Sampled	05-SEP-2011	05-SEP-2011	05-SEP-2011	05-SEP-2011
Determinand	Method	Test Sample	LOD	Units				
2,4,6-Trichlorophenol	T16	AR	10	µg/l	<10	<10	<10	<10
2-Methyl-4,6-dinitrophenol	T16	AR	10	µg/l	(36) <30	<10	<10	<10
4-Chloro-2-methylphenol	T16	AR	10	µg/l	<10	<10	2000	49
Bis (2-chloroethyl) ether	T16	AR	10	µg/l	<10	<10	390	380
Phenol	T16	AR	10	µg/l	⁽³⁶⁾ <30	⁽³⁶⁾ <30	(36) <30	(36) <30

Index to symbols used in 249601-1

Value	Description
AR	As Received
175	Results should be viewed with caution due to being outside of the instrument calibration range
36	LOD Raised due to low Matrix spike recovery
U	Analysis is UKAS accredited
Ν	Analysis is not UKAS accredited

Method Index

Value	Description
T54	GC/MS (Headspace)
T16	GC/MS
T7	Probe

Accreditation Summary

Determinand	Method	Test Sample	LOD	Units	Symbol	SAL References
Electrical Conductivity	T7	AR	10	µS/cm	N	001-004
рН	T7	AR			U	001-004
Dimefox	T16	AR	0.1	µg/l	N	001-004
Ethofumesate	T16	AR	0.1	µg/l	N	001-004
Hempa	T16	AR	0.1	µg/l	N	001-004
Schradan	T16	AR	0.1	µg/l	N	001-004
Simazine	T16	AR	0.01	µg/l	N	001-004
Dicamba	T16	AR	0.1	µg/l	N	001-004
Mecoprop	T16	AR	0.1	µg/l	N	001-004
Phenoxy Acetic acid herbicide: MCPA	T16	AR	0.1	µg/l	N	001-004
Dichlorprop	T16	AR	0.1	µg/l	N	001-004
Vinyl chloride	T54	AR	1	µg/l	U	001-004
Cis-1,2-Dichloroethylene	T54	AR	1	µg/l	U	001-004
1,2-Dichloroethane	T54	AR	1	µg/l	U	001-004
Trichloroethene	T54	AR	1	µg/l	U	001-004
Toluene	T54	AR	1	µg/l	U	001-004
Tetrachloroethene	T54	AR	1	µg/l	U	001-004
Xylene (Total)	T54	AR	1	µg/l	U	001-004
1,2-Dichlorobenzene	T54	AR	1	µg/l	U	001-004
Cyclohexanone	T54	AR	10	µg/l	N	001-004
2,4,6-Trichlorophenol	T16	AR	10	µg/l	U	001-004
2-Methyl-4,6-dinitrophenol	T16	AR	10	µg/l	N	001-004
4-Chloro-2-methylphenol	T16	AR	10	µg/l	N	001-004
Bis (2-chloroethyl) ether	T16	AR	10	µg/l	U	001-004
Phenol	T16	AR	10	µg/l	U	001-004

Scientific Analysis Laboratories Ltd

Certificate of Analysis

Hadfield House Hadfield Street Combrook Manchester M16 9FE Tel : 0161 874 2400 Fax : 0161 874 2468

Scientific Analysis Laboratories is a limited company registered in England and Wales (No 2514788) whose address is at Hadfield House, Hadfield Street, Manchester M16 9FE

Report Number: 249460-1

Date of Report: 14-Sep-2011

Customer: VertaseFLI Limited 19 Napier Court Barlborough Links Barlborough S43 4PZ

Customer Contact: The Project Management

Customer Job Reference: 907 BRI Customer Purchase Order: 907 BRI Date Job Received at SAL: 05-Sep-2011 Date Analysis Started: 06-Sep-2011 Date Analysis Completed: 14-Sep-2011

The results reported relate to samples received in the laboratory

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation This report should not be reproduced except in full without the written approval of the laboratory Tests covered by this certificate were conducted in accordance with SAL SOPs

Report checked and authorised by : Miss Emma Tibbitts Senior Project Manager Issued by : Miss Emma Tibbitts Senior Project Manager

- Etterath

SAL Reference: 249460

Customer Reference: 907 BRI

Analysed as Water

Water

Vertase Hauxton Suite							
			SA	L Reference	249460 001	249460 002	249460 003
		Custon	ner Sampl	e Reference	CAM UPGRADIENT	RIDDY UPGRADIENT	P107
			Da	ate Sampled	02-SEP-2011	02-SEP-2011	02-SEP-2011
Determinand	Method	Test Sample	LOD	Units			
Electrical Conductivity	T7	AR	10	µS/cm	890	1100	9500
рН	T7	AR			7.8	8.0	7.3

SAL Reference: 249460

Customer Reference: 907 BRI

Water Analysed as Water

Vertase Hauxton OP/ON Suite											
			SA	L Reference	249460 001	249460 002	249460 003				
		Custor	ner Sampl	le Reference	CAM UPGRADIENT	RIDDY UPGRADIENT	P107				
Date Sampled 02-SEP-2011 02-SEP-2011											
Determinand	Method	Test Sample	LOD	Units							
Dimefox	T16	AR	0.1	µg/l	<0.1	<0.1	<0.1				
Ethofumesate	T16	AR	0.1	µg/l	<0.1	<0.1	14				
Hempa	T16	AR	0.1	µg/l	<0.1	<0.1	<0.1				
Schradan	T16	AR	0.1	µg/l	<0.1	<0.1	7.1				
Simazine	T16	AR	0.01	µg/l	<0.01	<0.01	<0.01				

SAL Reference: 249460 Customer Reference: 907 BRI

Analysed as Water

Vertase Hauxton Phenoxy Acid Herbs Suite

Water

	1.25	249460 001	249460 002	249460 003			
		Custon	ner Sampl	e Reference	CAM UPGRADIENT	RIDDY UPGRADIENT	P107
			Da	ate Sampled	02-SEP-2011	02-SEP-2011	02-SEP-2011
Determinand	Method	Test Sample	LOD	Units			
Dicamba	T16	AR	0.1	µg/l	<0.1	<0.1	⁽⁹⁾ <10
Dichlorprop	T16	AR	0.1	µg/l	<0.1	<0.1	16
Phenoxy Acetic acid herbicide: MCPA	T16	AR	0.1	µg/l	<0.1	<0.1	⁽⁹⁾ <10
Mecoprop	T16	AR	0.1	µg/l	0.1	<0.1	2100

SAL Reference: 249460 Customer Reference: 907 BRI

Water Analysed as Water Vertase Hauxton VOC Suite SAL Reference 249460 001 249460 002 249460 003 Customer Sample Reference CAM UPGRADIENT RIDDY UPGRADIENT P107 Date Sampled 02-SEP-2011 02-SEP-2011 02-SEP-2011 Test Sample Method LOD Units Determinand 1,2-Dichlorobenzene T54 AR 1 <1 <1 <1 µg/l 1,2-Dichloroethane T54 AR 26 <1 <1 1 µg/l Cis-1,2-Dichloroethylene T54 AR 1 µg/l <1 <1 580 T54 AR 10 <10 Cyclohexanone µg/l <10 <10 Tetrachloroethene T54 AR 1 2 2 2 µg/l Toluene T54 AR 1 µg/l <1 <1 270 Trichloroethene T54 AR <1 <1 1 1 µg/l Vinyl chloride T54 AR 1 µg/l <1 <1 1100 T54 AR Xylene (Total) 1 µg/l <1 <1 160

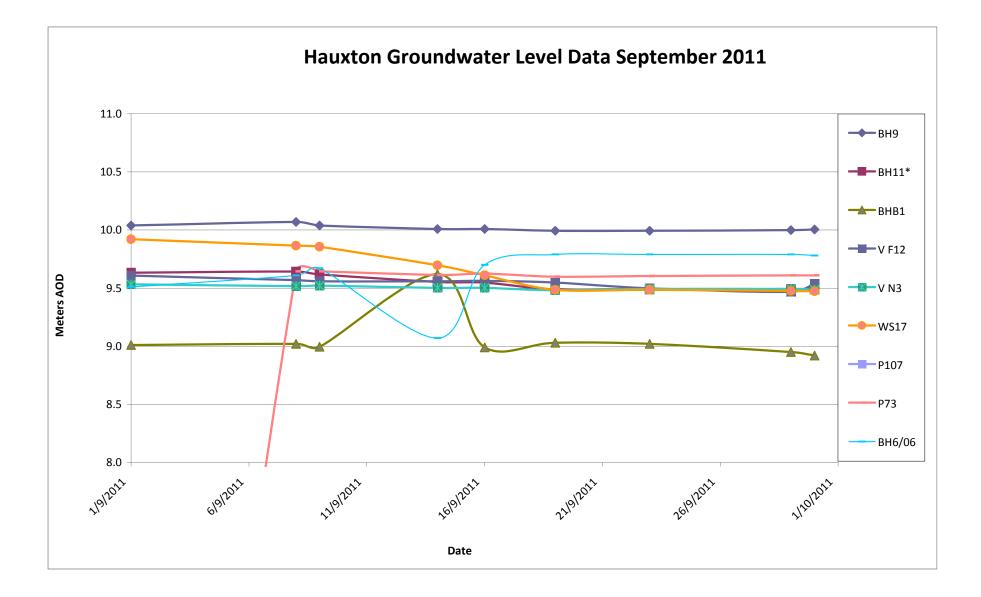
SAL Refe	rence: 24	19460					
Customer Refe	rence: 90	07 BRI					
Water Vertase Hauxton SVOC Sui		nalysed as '	Water				
			SA	L Reference	249460 001	249460 002	249460 003
		Custor	ner Sampl	e Reference	CAM UPGRADIENT	RIDDY UPGRADIENT	P107
			Da	ate Sampled	02-SEP-2011	02-SEP-2011	02-SEP-2011
Determinand	Method	Test Sample	LOD	Units			
2,4,6-Trichlorophenol	T16	AR	10	µg/l	<10	<10	38
2-Methyl-4,6-dinitrophenol	T16	AR	10	µg/l	<10	<10	<10
4-Chloro-2-methylphenol	T16	AR	10	µg/l	<10	<10	4600
Bis (2-chloroethyl) ether	T16	AR	10	µg/l	<10	<10	15000
Phenol	T16	AR	10	µg/l	⁽³⁶⁾ <30	⁽³⁶⁾ <30	⁽³⁶⁾ <30

Index to symbols used in 249460-1

Value	Description
AR	As Received
36	LOD Raised due to low Matrix spike recovery
9	LOD raised due to dilution of sample
U	Analysis is UKAS accredited
N	Analysis is not UKAS accredited

Method Index

Value	Description
T16	GC/MS
T54	GC/MS (Headspace)
T7	Probe


Accreditation Summary

Determinand	Method	Test Sample	LOD	Units	Symbol	SAL References
Electrical Conductivity	T7	AR	10	µS/cm	N	001-003
pH	T7	AR			U	001-003
Dimefox	T16	AR	0.1	µg/l	Ν	001-003
Ethofumesate	T16	AR	0.1	µg/l	N	001-003
Hempa	T16	AR	0.1	µg/l	N	001-003
Schradan	T16	AR	0.1	µg/l	N	001-003
Simazine	T16	AR	0.01	µg/l	N	001-003
Dicamba	T16	AR	0.1	µg/l	N	001-003
Dichlorprop	T16	AR	0.1	µg/l	N	001-003
Phenoxy Acetic acid herbicide: MCPA	T16	AR	0.1	µg/l	N	001-003
Месоргор	T16	AR	0.1	µg/l	N	001-003
1,2-Dichlorobenzene	T54	AR	1	µg/l	U	001-003
1,2-Dichloroethane	T54	AR	1	µg/l	U	001-003
Cis-1,2-Dichloroethylene	T54	AR	1	µg/l	U	001-003
Cyclohexanone	T54	AR	10	µg/l	N	001-003
Tetrachloroethene	T54	AR	1	µg/l	U	001-003
Toluene	T54	AR	1	µg/l	U	001-003
Trichloroethene	T54	AR	1	µg/l	U	001-003
Vinyl chloride	T54	AR	1	µg/l	U	001-003
Xylene (Total)	T54	AR	1	µg/l	U	001-003
2,4,6-Trichlorophenol	T16	AR	10	µg/l	U	001-003
2-Methyl-4,6-dinitrophenol	T16	AR	10	µg/l	N	001-003
4-Chloro-2-methylphenol	T16	AR	10	µg/l	N	001-003
Bis (2-chloroethyl) ether	T16	AR	10	µg/l	U	001-003
Phenol	T16	AR	10	µg/l	U	001-003

Results Pending

Appendix G Groundwater Level Graph

Appendix H Waste Water Treatment Plant Discharge Analysis

Water Quality Analysis of Effluent Discharge Sample

														Total					
							Cuenended		Dischamical					Atrazine,					
						Culphoto	Suspended Solids	Ammonicael	Biochemical					Trietazine and					
				Bromide	Chloride	Sulphate Ion	(Total)	Ammoniacal Nitrogen	Oxygen Demand	рH	Atrazine	Trietazine	Simazine		Benazolin	2,3,6-TBA	Dicamba	Hempa	Schradan
Sample Taken	Report Date	Report Number	Sample Location	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	p	µg/l	µg/l	µg/l	ug/l	µg/l	μg/l	µg/l	µg/l	µg/l
		ented Levels		50	3000	5000	45	15	30	na		otal of all th		250	50	20	50	274	135
13/1/2011	25/1/2011	224623	WWTW Discharge	<0.2	92.00	140.00	<10	0.38	<3	7.6	<0.01	0.05	< 0.01	0.05	<0.1	<0.1	0.1	15	6.5
15/2/2011	23/2/2011	228099	WWTW Discharge	<0.1	170.00	220.00	<10	0.08	<3	9.1	<0.01	<0.01	<0.01	0.00	1.1	<0.1	< 0.01	<0.1	<0.1
23/2/2011	9/3/2011	229026	WWTW Discharge	1.70	200.00	250.00	<10	<0.05	<3	8.1	<0.01	<0.01	<0.01	0.00	<0.1	0.20	<0.1	0.40	0.20
2/3/2011	15/3/2011	229789	WWTW Discharge	<0.1	220.00	290.00	<10	<0.05	<3	8.2	<0.01	0.02	<0.01	0.02	<0.1	0.4	<0.1	0.9	0.4
7/3/2011	18/3/2011	230442	WWTW Discharge	NT	NT	NT	NT	NT	NT	8.1	NT	NT	<0.01	NT	NT	NT	0.20	0.6	0.3
23/3/2011	1/4/2011	232143	WWTW Discharge	<0.1	190.00	210.00	<10	< 0.05	<3	7.9	<0.01	0.02	<0.01	0.02	<0.1	<0.1	<0.1	0.5	0.2
5/4/2011	13/4/2011	233543	WWTW Discharge	<0.1	190.00	200.00	<10	< 0.05	<3	8.0	<0.01	0.03	<0.01	0.03	<0.1	0.8	<0.1	1.1	0.5
20/4/2011	3/5/2011		WWTW Discharge	<0.1	150.00	190.00	<10	<0.05	<3	4.0	<0.01	<0.01	<0.01	0.00	<0.1	<0.1	<0.1	1.2	0.4
4/5/2011	16/5/2011		WWTW Discharge	<0.2	150.00	180.00	<10	<0.01	<3	8.1	0.03	0.07	0.01	0.11	<0.1	0.8	<0.1	0.8	0.3
12/5/2011	26/5/2011		WWTW Discharge	<0.1	160.00	190.00	15	0.18	<3	8.1	0.03	0.09	<0.01	0.12	<0.1	0.3	<0.1	0.5	<0.1
18/5/2011	31/5/2011		WWTW Discharge	<0.1	130.00	170.00	<10	<0.05	<3	7.9	<0.01	<0.01	<0.01	0.00	<0.1	0.2	0.1	0.4	0.1
2/6/2011	14/6/2011		WWTW Discharge	0.5	130.00	190.00	<10	<0.05	<3	7.8	0.05	0.07	<0.01	0.12	<0.1	3.3	0.3	10	6.7
14/6/2011	22/6/2011		WWTW Discharge	<0.1	140.00	220.00	<10	<0.05	24	8.1	<0.01	<0.01	<0.01	0.00	<0.1	2.5	<0.1	31	30
29/6/2011	7/7/2011		WWTW Discharge	<0.2	160.00	260.00	<10	< 0.05	<3	8.2	<0.01	0.01	<0.01	0.01	<0.1	<0.1	<0.1	16	5
11/7/2011	21/7/2011		WWTW Discharge	<0.1	150.00	240.00	<10	< 0.05	<3	8.1	<0.01	0.03	<0.01	0.03	<0.1	3	<0.1	12	9.9
25/7/2011	1/8/2011		WWTW Discharge	<0.1	150.00	240.00	<10	0.07	<3	8.2	<0.01	<0.01	<0.01	0.00	<0.1	10	0.4	19	12
30/8/2011	8/9/2011		WWTW Discharge	0.3	89.00	95.00	<10	< 0.05	<3	8.0	0.01	0.04	< 0.01	0.05	<0.1	0.1	<0.1	23	8.7
8/9/2011	19/9/2011	250134	WWTW Discharge	0.3	100.00	99.00	<10	<0.05	<3	8.4	0.01	0.02	<0.01	0.03	<0.1	1.1	<0.01	<0.1	<0.1

Scientific Analysis Laboratories Ltd

Certificate of Analysis

Hadfield House Hadfield Street Combrook Manchester M16 9FE Tel : 0161 874 2400 Fax : 0161 874 2468

Scientific Analysis Laboratories is a limited company registered in England and Wales (No 2514788) whose address is at Hadfield House, Hadfield Street, Manchester M16 9FE

Report Number: 250134-1

Date of Report: 19-Sep-2011

Customer: VertaseFLI Limited 19 Napier Court Barlborough Links Barlborough S43 4PZ

Customer Contact: The Project Management

Customer Job Reference: 907 BRI Customer Purchase Order: 907 BRI Date Job Received at SAL: 12-Sep-2011 Date Analysis Started: 12-Sep-2011 Date Analysis Completed: 19-Sep-2011

The results reported relate to samples received in the laboratory

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation This report should not be reproduced except in full without the written approval of the laboratory Tests covered by this certificate were conducted in accordance with SAL SOPs

Report checked and authorised by : Miss Emma Tibbitts Senior Project Manager Issued by : Miss Emma Tibbitts Senior Project Manager

- Etterath

SAL Referen	:e: 2501	34				
Customer Reference	:e: 907 E	BRI				
Water Miscellaneous	Analy	sed as Wat	er			
			SA	L Reference	250134 001	250134 002
		Custor	ner Sampl	le Reference	WWTW Primary	WWTW Discharge
			D	ate Sampled	08-SEP-2011	08-SEP-2011
Determinand	Method	Test Sample	LOD	Units		
Ammoniacal nitrogen	T4	AR	0.05	mg/l	0.11	<0.05
Biochemical Oxygen Demand	T7	AR	3	mg/l	<3	<3
pН	T7	AR			8.2	8.4

SAL R	eference:	250134				
Customer Re	eference:	907 BRI				
Water		Analysed	as Water			
Suite A						
			SA	L Reference	250134 001	250134 002
		Custon	ner Sampl	e Reference	WWTW Primary	WWTW Discharge
			Da	ate Sampled	08-SEP-2011	08-SEP-2011
Determinand	Method	Test Sample	LOD	Units		
Atrazine	T16	AR	0.01	µg/l	0.04	0.01
Trietazine	T16	AR	0.01	µg/l	0.10	0.02

SAL	Reference:	250134				
Customer	Reference:	907 BRI				
Water Suite B		Analysed	as Water			
			SA	L Reference	250134 001	250134 002
		Custon	ner Sample	e Reference	WWTW Primary	WWTW Discharge
		20	Da	ate Sampled	08-SEP-2011	08-SEP-2011
Determinand	Method	Test Sample	LOD	Units		
Benazolin	T16	AR	0.1	µg/l	<0.1	<0.1
2,3,6-TCB	T16	AR	0.1	µg/l	1.6	1.1

SAL Re	ference: 2	250134				
Customer Re	ference: 9	907 BRI				
Water	ŀ	Analysed as	Water			
Suite C						
			SA	L Reference	250134 001	250134 002
		Custor	ner Sampl	e Reference	WWTW Primary	WWTW Discharge
			Da	ate Sampled	08-SEP-2011	08-SEP-2011
Determinand	Method	Test Sample	LOD	Units		
Bromide	T253	AR	0.1	mg/l	0.2	0.3
Chloride	T253	AR	0.2	mg/l	78	100
Sulphate ion	T253	AR	0.1	mg/l	63	99
Suspended Solids (Total)	T2	AR	10	mg/l	<10	<10

SAL	Reference:	250134				
Custome	r Reference:	907 BRI				
Water		Analysed	as Water			
Suite D						
			SA	L Reference	250134 001	250134 002
		Custor	ner Samp	le Reference	WWTW Primary	WWTW Discharge
			D	ate Sampled	08-SEP-2011	08-SEP-2011
Determinand	Method	Test Sample	LOD	Units		
Dicamba	T16	AR	0.1	µg/l	<0.1	<0.1
Hempa	T16	AR	0.1	µg/l	0.1	<0.1
Simazine	T16	AR	0.01	µg/l	0.02	<0.01
Schradan	T16	AR	0.1	µg/l	<0.1	<0.1

SAL Re	eference:	250134				
Customer Re	eference:	907 BRI				
Water		Analysed	as Water			
Suite E						
			SA	L Reference	250134 001	250134 002
		Custon	ner Sampl	e Reference	WWTW Primary	WWTW Discharge
			Da	ate Sampled	08-SEP-2011	08-SEP-2011
Determinand	Method	Test Sample	LOD	Units		
TVC at 22 C	T34	AR	10	cfu/ml	4200	5600
TVC at 37 C	T34	AR	10	cfu/ml	720	260

Index to symbols used in 250134-1

Value	Description
AR	As Received
W	Analysis was performed at another SAL laboratory
U	Analysis is UKAS accredited
N	Analysis is not UKAS accredited

Method Index

Value	Description
T16	GC/MS
T7	Probe
T34	Micro
T2	Grav
T4	Colorimetry
T253	IC(EID299)

Accreditation Summary

Determinand	Method	Test Sample	LOD	Units	Symbol	SAL References
Ammoniacal nitrogen	T4	AR	0.05	mg/l	U	001-002
Biochemical Oxygen Demand	T7	AR	3	mg/l	N	001-002
рН	T7	AR			U	001-002
Atrazine	T16	AR	0.01	µg/l	N	001-002
Trietazine	T16	AR	0.01	µg/l	N	001-002
Benazolin	T16	AR	0.1	µg/l	N	001-002
2,3,6-TCB	T16	AR	0.1	µg/l	N	001-002
Bromide	T253	AR	0.1	mg/l	WU	001-002
Chloride	T253	AR	0.2	mg/l	WU	001-002
Sulphate ion	T253	AR	0.1	mg/l	WU	001-002
Suspended Solids (Total)	T2	AR	10	mg/l	N	001-002
Dicamba	T16	AR	0.1	µg/l	N	001-002
Hempa	T16	AR	0.1	µg/l	N	001-002
Schradan	T16	AR	0.1	µg/l	N	001-002
Simazine	T16	AR	0.01	µg/l	N	001-002
TVC at 22 C	T34	AR	10	cfu/ml	WN	001-002
TVC at 37 C	T34	AR	10	cfu/ml	WN	001-002

Appendix I Soil Characterisation Results Summary

Results Received	Reported to SCDC	Grid square	Contaminant	Concentration (µg/kg)	Likely use/origin
12.04.2010	06.05.2010	K15		VOC/SVOC peal	ks detected
12.04.2010	06.05.2010	K16	Series of Aromatic Hydrocarbons circa C ₁₃ -C ₁₆	17,000	Potential herbicide degradation products. The structures are smaller and less complex than contaminants of concern and will therefore degrade more readily than the target contaminants and will be captured by the remediation process.
			2(1-methylpropyl)-phenol	10,000	Encountered and assessed during site investigation, not a priority contaminant
			2,6-bis(1-methylpropyl)-phenol	100,000	Commonly used in the manufacture of specialty surfactants used as wetting agents for agrochemicals.
15.04.2010	06.05.2010 (09.06.2010)		2,6-bis(1,1-dimethylethyl)-4-(1- methylpropyl)-phenol	6,000	Commonly used as an antioxidant and stabiliser, also used in oils used in industrial applications.
			Unidentified branched aromatic alcohol, C ₁₄	240,000	Potential herbicide degradation products. The structures are smaller and less complex
			Unidentified branched aromatic alcohol, C ₁₈	290,000	than contaminants of concern and will therefore degrade more readily than the target contaminants and will be captured by
		05.2010 K14	Phenanthrene	4,100	
15.04.2010	06 05 2010		Fluoranthene	4,800	Encountered and assessed during site investigation, concentration below target value
10.04.2010	00.03.2010		Pyrene	3,900	
			Benzo(b/k)Fluoranthene	2,200	
			Dodecanoic acid (Lauric acid), isooctyl ester	2,400	Lauric acid - main acid in coconut oil and palm kernel oil, is non-toxic and safe to handle, is used in many soaps, shampoos and body butters.
07.05.2010	24.05.2010	K9	Unidentified Aliphatic Hydrocarbon circa C ₃₀	2,300	Potential herbicide degradation products. The structures are smaller and less complex than contaminants of concern and will therefore degrade more readily than the target contaminants and will be captured by the remediation process.
			2,4-Dichloro-o-cresol	9,000	Potential herbicide degradation product
			Bis(2-ethylhexyl) maleate	3,800	Commonly used as an intermediate in hydrogenation or acetylation reactions, possibly used in agrochemicals manufacture
			Cyclo octaatomic sulphur	2,800	S_8 is the most common form of sulphur in the solid state, widely used in insecticide and fungicide manufacture

07 05 2010	24.05.2010 (09.06.2010)	L8	Dodecanoic acid (Lauric acid), isooctyl ester	7,400	Lauric acid - main acid in coconut oil and palm kernel oil, is non-toxic and safe to handle, is used in many soaps, shampoos and body butters.
			Unidentified aromatic hydrocarbon containing O and Cl circa C ₇	8,400	Potential herbicide degradation products. The structures are smaller and less complex than contaminants of concern and will therefore degrade more readily than the target contaminants and will be captured by the remediation process.
07.05.2010	24.05.2010	L9	Unidentified Aliphatic Hydrocarbon circa C ₃₀	2,300	Potential herbicide degradation products. The structures are smaller and less complex than contaminants of concern and will therefore degrade more readily than the target contaminants and will be captured by the remediation process.
13.05.2010	24.05.2010	H8	No VOC/SVOC peaks detected		
			1,2-bis(2,4,6- trichlorophenoxy)ethane	6,900	Potential Prochloraz degradation product
			Prochloraz	9,100	Fungicide
	04.05.0040		Unidentified aromatic	9,400	Potential herbicide degradation products.
13.05.2010	24.05.2010 (09.06.2010)	на	hydrocarbon containing CI circa C_8		The structures are smaller and less complex than contaminants of concern and will
			Unidentified aromatic amine containing CI circa C ₁₁	2,100	therefore degrade more readily than the target contaminants and will be captured by the remediation process.
13.05.2010	24.05.2010	17	No SVOC peaks detected		
			2,4-Dichloro-o-cresol	29,000	
			2,3,6-Trichlorotoluene	47,000	Detential barbicide degradation product
			1-(2-Chloroethoxy)-2-(o-Tolyloxy) ethane	20,000	 Potential herbicide degradation product
13.05.2010	24.05.2010 (09.06.2010)	19	Unidentified aromatic alcohol containing CI circa C ₇	25,000	Potential herbicide degradation products. The structures are smaller and less complex
			Unidentified aromatic hydrocarbon containing O circa C ₁₆₋₁₈	12,000	than contaminants of concern and will therefore degrade more readily than the target contaminants and will be captured by the remediation process.
13.05.2010	24.05.2010	J7	No VOC/SVOC peaks detected		
20.05.2010	24.05.2010	J8	No VOC/SVOC peaks detected		
26.05.2010		J9	No VOC/SVOC peaks detected		
04.06.2010	16.06.2010 (09.06.2010)	H7	Dichloromethyl phenol	2,100	Same as 2,4-Dichloro-o-cresol (19)
05.05.2010	16.06.2010 (09.06.2010)	K7	1,2-bis(2,4,6- trichlorophenoxy)ethane	2400.0	As for H9
05.05.2010	16.06.2010	K8	No VOC/SVOC peaks detected		

18.06.2010 29.06.2010	20.06.2010	18	2-methyl phenol	5,500	Encountered and assessed during site investigation, not a priority contaminant
18.06.2010	29.00.2010 10	10	1,2-dichlorobenzene	3,600	Contaminant of concern, already included in the standard validation suite
17.06.2010	29.06.2010 (09.06.2010)	K10	2,4-Dichloro-o-cresol	550,000	As for I9 and H7
22.06.2010		L10	Cyclo octaatomic sulphur	16,000	As for L8 - Sulphur
			Dichloromethyl phenol	1,800,000	As for 2,4-Dichloro-o-cresol (I9, H7, K10)
			Naphthalene	4,600,000	Encountered and assessed during site
			2-methylnaphthalene	3,900,000	investigation, not a priority contaminant
20.07.2010	21.07.2010	K10 NAPL	1-methylnaphthalene CAS 90-12-0	2,400,000	More toxic than 2-methylnaphthalene, must be assessed separately
			Dinoseb		2-(1-methylpropyl)-4,6-dinitro- phenol -
			CAS 88-85-7	68,000,000	herbicide and insecticide. Yellow crystalline solid.
			Dichloromethyl phenol	24,000	As for 2,4-Dichloro-o-cresol (I9, H7, K10)
			1-(2-Chloroethoxy)-2-(o-Tolyloxy) ethane CAS 21120- 80-9	13,000	Same as I9
			1,2,4-Trichlorobenzene	28,000	
21.07.2010	22.07.2010	2010 J10	Trichlorobenzene	32,000	Encountered and assessed during site
			2-Chlorotoluene	60,000	investigation, not a priority contaminant
			Trichloro toluene isomer	48,000	Same as I9
			Trichloro benzenamine isomer	11,000	
			2,3-Dichlorotoluene CAS 32768-54-0	290,000	Potential herbicide degradation product
21.07.2010	22.07.2010	L11	Dichloromethyl phenol	5,000	As for 2,4-Dichloro-o-cresol (I9, H7, K10, J10)
			2,4-Dichloro-o-cresol CAS 1570-65-6	10,000	As for I9, H7, K10, J10, L11
28.07.2010	02.08.2010	H10	Trichloro toluene isomers	58,000	Same as I9, J10
20.07.2010	02.00.2010	1110	Dichlorotoluene isomer	52,000	6 possible isomers, but very little data, using surrogate.
			2-Chlorotoluene	39,000	Encountered and assessed during site
			Trichlorobenzene	350,000	investigation, not a priority contaminant
28.07.2010	02.08.2010	110	2,4-Dichloro-o-cresol CAS 1570-65-6	5,000	As for I9, H7, K10, J10, L11, H10
28.07.2010	02.00.2010	110	Trichloro toluene isomers	24,000	Same as I9, J10, H10
03.08.2010	04.08.2010	L12	2,4-Dichloro-o-cresol CAS 1570-65-6	7,000	As for I9, H7, K10, J10, L11, H10, I10
03.08.2010	04.08.2010	L13	No VOC/SVOC peaks detected		
03.08.2010	04.08.2010	K12	2,4-Dichloro-o-cresol CAS 1570-65-6	7,000	As for I9, H7, K10, J10, L11, H10, I10, L12

03.08.2010	04.08.2010	K13 sand & gravel	Cyclo octaatomic sulphur	68,000	As for L8, L10 - Sulphur
05.08.2010	N/A	K13 chalk	2,4-Dichloro-o-cresol CAS 1570-65-6	650,000	As for I9, H7, K10, J10, L11, H10, I10, L12 K12
			Trichloro toluene isomers	1,140,000	Same as 19, J10, H10, I10
			1-(2-Chloroethoxy)-2-(o-Tolyloxy) ethane CAS 21120- 80-9	140,000	Same as I9 and J10
			Dichlorotoluene isomer	99,000	Same as J10, H10
			2-Chlorotoluene	12,000	Encountered and assessed during sit investigation, not a priority contaminant
05.08.2010	N/A	K11	2,4-Dichloro-o-cresol CAS 1570-65-6	22,000	As for I9, H7, K10, J10, L11, H10, I10, L12, K12, K13
05.08.2010	N/A	J11	2,4-Dichloro-o-cresol CAS 1570-65-6	220,000	As for I9, H7, K10, J10, L11, H10, I10, L12 K12, K13
		1	Trichloro toluene isomers	376,000	Same as I9, J10, H10, I10, K13
			Dinoseb CAS 88-85-7	90,000	Same as K10
			Dichlorotoluene isomer	18,000	Same as H10, K13
			2-Chlorotoluene	13,000	Encountered and assessed during sit
				-,	investigation, not a priority contaminant
12.08.2010	17.08.2010	J12	2-chloro Benzenemethanol CAS 17849-38-6	620	Potential agrochemical synthesis ingredient further investigation is required
			2-Chlorobenzalazine CAS 5328-80-3	5,900	
			2,4-Dichloro-o-cresol CAS 1570-65-6	2,000	As for I9, H7, K10, J10, L11, H10, I10, L12 K12, K13, J11
			2(1-methylpropyl)-phenol	610	Encountered and assessed during site investigation, not a priority contaminant
12.08.2010	N/A	J13	2,4-Dichloro-o-cresol CAS 1570-65-6	3,400	As for I9, H7, K10, J10, L11, H10, I10, L12, K12, K13, J11, J12
24.08.2010	25.08.2010	J14	Total Petroleum Hydrocarbons (C5-C12)	43,000	Encountered and assessed during site investigation, not a priority contaminant
			1,3,5-Trimethylbenzene CAS 108-67-8	1,600	Encountered and assessed during site investigation, not a priority contaminant
			1,2,4-Trimethylbenzene CAS 95-63-6	600	
			1,2,3-Trimethylbenzene CAS 526-73-8	700	Isomers encountered and assessed during site investigation, quantitative risk assessment not required
			1-Ethyl-2-Methylbenzene CAS 611-14-3	500	Potential agrochemical synthesis ingredient further investigation is required
25.08.2010	N/A	113	1-methylnaphthalene CAS 90-12-0	100	Same as K10NAPL

			Phenanthrene	200	Encountered and assessed during site
			Fluoranthene	300	investigation, not a priority contaminant
			Pyrene	300	
			Benzo(b/k)Fluoranthene	200	
01.09.2010	N/A	114	Trichloro methyl benzene	400	Same as I9, J10, H10, I10, K13, J11
		(trichloro toluene)			
01.09.2010	N/A	115	Dichlorocresol	2600	As for I9, H7, K10, J10, L11, H10, I10, L12 K12, K13, J11, J12
			Dichlorophenoxybutyric acid	6300	Herbicide encountered and assessed durir site investigation, similar to MCPA and Mecoprop which are higher risk substance therefore not a priority contaminant
01.09.2010	N/A	H14	No VOC/SVOC peaks detected		
01.09.2010	N/A	H15	No VOC/SVOC peaks detected		
03.09.2010	N/A	111	Dichlorocresol	3,300	As for I9, H7, K10, J10, L11, H10, I10, L12 K12, K13, J11, J12, I15
			Trichloro methyl benzene (trichloro toluene)	1,000	Same as I9, J10, H10, I10, K13, J11, I14
			Prochloraz CAS 67747-09-5	800	Same as H9
03.09.2010 N	N/A	112	1-methylnaphthalene CAS 90-12-0	40,000	Same as K10NAPL, I13
			Dibenzofuran	24,000	Encountered and assessed during site
			Phenanthrene	60,000	investigation, not a priority contaminant
			Fluoranthene	29,000	
			Acenaphthene	31,000	
24.09.2010	N/A	J15	Methylpropyl phenol	340	Encountered and assessed during site investigation, not a priority contaminant
24.09.2010	28.09.2010	H13	Oxathiane 4,4-dioxide CAS 107-61-9	220	
	N/A		Trichloro methyl benzene (trichloro toluene)	230	Same as I9, J10, H10, I10, K13, J11, I14, I11
			Dichloromethylphenol	2100	As for I9, H7, K10, J10, L11, H10, I10, L12 K12, K13, J11, J12, I15, I11
			1-(2-Chloroethoxy)-2-(o-Tolyloxy) ethane CAS 21120- 80-9	470	Same as I9, J10, K13
01.10.2010	N/A	H11	No VOC/SVOC peaks detected		
01.10.2010	05.10.2010	H12	Indane CAS 496-11-7	3700000	2-ring hydrocarbon
	N/A		Ethyltoluene (ethyl methyl benzene) isomer	4500000	As J14
			Bis methylpropyl phenol isomer	980000	As J16
			1,3,5-Trimethylbenzene	3900000	Encountered and assessed during site

			1,2,4-Trimethylbenzene	1000000	investigation, not a priority contaminant
			1,2,3-Trimethylbenzene	3100000	
22.10.2010	25.10.2010	G12	Nicotine	6400	Natural insecticide
(216017)	N/A		Dichloromethyl phenol	2900	As for I9, H7, K10, J10, L11, H10, I10, L12, K12, K13, J11, J12, I15, I11, H13
			Methylpropyl phenol	9400	Encountered and assessed during site investigation, not a priority contaminant
			Schradan	1200	Contaminant of concern, already included in the standard validation suite
22.10.2010 (216017)	N/A	G13	1-methylnaphthalene CAS 90-12-0	170	Same as K10NAPL, I13, I12
· · ·			Isophorone CAS 78-59-1	530	Encountered and assessed during site investigation, not a priority contaminant
			Naphthalene	690	
			2-methylnaphthalene	270	7
			Phenanthrene	410	
			Fluoranthene	380	
			Pyrene	310	
22.10.2010 (216017)	N/A	G14	No VOC/SVOC peaks detected		
29.10.2010 (216821)	N/A	H17	No VOC/SVOC peaks detected		
29.10.2010 (216821)	N/A	G17	No VOC/SVOC peaks detected		
01.11.2010 (216817)	30.11.2010	G10	Dibromochloromethane CAS 124-48-1	300	Risk Assessment
	N/A		Dichloromethyl phenol	1300	As for I9, H7, K10, J10, L11, H10, I10, L12, K12, K13, J11, J12, I15, I11, H13, G12
			Isophorone	7100	Encountered and assessed during site
			Benzyl Chloride (1-chloro-2-methylbenzene CAS 95-49-8)	200	investigation, not a priority contaminant
			Methylpropyl phenol	7100	
			3,3,5- trimethyl cyclohexanone	700	_
01.11.2010 (216817)	N/A	G11	Dichloromethyl phenol	2300	As for I9, H7, K10, J10, L11, H10, I10, L12, K12, K13, J11, J12, I15, I11, H13, G12, G10
			Trichloro methyl benzene (trichloro toluene)	2400	Same as I9, J10, H10, I10, K13, J11, I14, I11, H13
			1-Methyl naphthalene	760	Same as K10NAPL, I13, I12, G13
			2-methyl phenol	800	Encountered and assessed during site
			Methylpropyl phenol	22000	investigation, not a priority contaminant

	1		2-Methylnaphthalene	1500	
			2,4,5-Trichlorophenol	360	
			Chloroform	500	
			1,2-dibromoethane	700	
			EthylBenzene	1800	
			1,4-Dichlorobenzene	700	
			1,2,3-Trichlorobenzene	2000	
01.11.2010	30.11.2010	G15	Ethyl methyl phenol	18000	Risk Assessment
(216817)			Dimethyl naphthalene	59000	Risk Assessment
	N/A		Dichloromethyl phenol	2400	As for I9, H7, K10, J10, L11, H10, I10, L12 K12, K13, J11, J12, I15, I11, H13, G12, G10, G11
			1-Methyl naphthalene	26000	Same as K10NAPL, I13, I12, G13
			1-ethyl-3-	600	As J14, H12
			methyl benzene (ethyl toluene)		
			Ethyltoluene	300	
			Isophorone	37000	Encountered and assessed during site
			Naphthalene	43000	investigation, not a priority contaminant
			Methylpropyl phenol	30000	
			2-Methylnaphthalene	21000	
			Phenanthrene	110000	
			Fluoranthene	69000	
			1,3,5-Trimethylbenzene	900	
			1,2,4-Trimethylbenzene	1600	
			1,2,3-Trimethylbenzene	400	
08.11.2010 (217789)	N/A	M7	No VOC/SVOC peaks detected		·
08.11.2010 (217789)	N/A	M8	2-methyl phenol	11,000	Encountered and assessed during site investigation, not a priority contaminant
08.11.2010 (217793)	N/A	M6	No VOC/SVOC peaks detected		·
08.11.2010 (217793)	N/A	N6	No VOC/SVOC peaks detected		
08.11.2010 (217795)	N/A	L5	No VOC/SVOC peaks detected		
08.11.2010 (217795)	N/A	M4	No VOC/SVOC peaks detected		
08.11.2010 (217797)	N/A	M5	No VOC/SVOC peaks detected		
08.11.2010 (217797)	N/A	N4	No VOC/SVOC peaks detected		
08.11.2010 (217797)	N/A	N5	No VOC/SVOC peaks detected		
08.11.2010 (217800)	N/A	M9	No VOC/SVOC peaks detected		

18.11.2010 (218834)	N/A	16	No VOC/SVOC peaks detected					
23.11.2010 (219458)	N/A	L4	No VOC/SVOC peaks detected					
23.11.2010 (219456)	N/A	N3	No VOC/SVOC peaks detected	No VOC/SVOC peaks detected				
20.01.2011 (224432)	N/A	F11	No VOC/SVOC peaks detected					
20.01.2011 (224432)	N/A	F12	No VOC/SVOC peaks detected					
20.01.2011 (224432)	24.01.2011	F13	Total Petroleum Hydrocarbons (C8-C14)	16000	Controlled Waters risk assessment required, Human Health risk assessment previously actioned			
20.01.2011 24 (224432)	24.01.2011	E12	Total Petroleum Hydrocarbons (C8-C14)	28000	Controlled Waters risk assessment required, Human Health risk assessment previously actioned			
	N/A		1-Ethyl-2-Methylbenzene (o-ethyl toluene) CAS 611-14-3	300	As J14, H12, G15			
			1,2,4-Trimethylbenzene	700	Encountered and assessed during site investigation, not a priority contaminant			
20.01.2011	24.01.2011	E13	DDD	4100	Pesticide Risk Assessment Required.			
(224432)	N/A		m/p ethyl toluene m-ethyl toluene:1-ethyl-3- methylbenzene, CAS 620-14-4	1200	Encountered and assessed during site investigation, not a priority contaminants			
			p-ethyl toluene: 1-ethyl-4- methylbenzene, CAS 622-96-8					
	24.01.2011		Total Petroleum Hydrocarbons (C8-C13)	73000	Controlled Waters risk assessment required, Human Health risk assessment previously actioned			
	N/A		2,6-bis(1-methylpropyl)-phenol	5000	As J16, H12			
			DDT	3200	Encountered and assessed during site investigation, not a priority contaminant			
			4-(1-methylpropyl)phenol	2700				
			2(1-methylpropyl)-phenol	12000				
			1,2,3-trimethylbenzene	600				
			1,3,5-trimethylbenzene	1700				
			1,2,4-trimethylbenzene	3000				
			p-Isopropyltoluene	400				
24.01.2011 (224621)	25.01.2011	F15A	No VOC/SVOC peaks detected					
24.01.2011 (224621)	25.01.2011	F15B	No VOC/SVOC peaks detected					

09.02.2011 (226719)	10.02.2011	H6	No VOC/SVOC peaks detected				
09.02.2011 (226719)	10.02.2011	J5	No VOC/SVOC peaks detected				
09.02.2011 (226719)	10.02.2011	J6	No VOC/SVOC peaks detected				
17.03.2011 (230436)	21.03.2011	K5	Bis(2-ethylhexyl) maleate CAS 142-16-5	1,800	As L8		
21.03.2011 (230436)	22.03.2011	K6	2,3-Dichlorotoluene CAS 32768-54-0	300	As J10, J11, H10, K13		
			Bis(2-ethylhexyl) maleate CAS 142-16-5	2,000	As L8, K5		
			Squalene CAS 7683-64-9	2,000	Natural organic compound found in the human body. Used in cosmetics, vaccines and steroid synthesis. Risk assessment not required.		
			Glycerol tricaprylate CAS 538-28-8	4,700	Cosmetic ingredient. RisK Assessment notrequired.		
28.03.2011 (231689)	29.03.2011	M10	No VOC/SVOC peaks detected				
30.03.2011 (232134)	01.04.2011	L14	No VOC/SVOC peaks detected				
31.03.2011	24.05.2011	TB100 (J13,	Dimethyl nitroaniline isomer	5,400	Risk Assesment Required		
(232138)		K12, K13)	Chlorazine, CAS 580-48-3	2,400	listed as antipsychotic drug, very similar in structure to the herbicide simazine. Risk Assessment required.		
	N/A		Dinoseb	57,000	As J11, K10, Already actioned		
			DDD	9,300	As E13, Already actioned.		
			Trietazine	8,600	Encountered and assessed during site investigation, not a priority contaminant		
13.06.2011 (239403)	N/A	G16	No VOC/SVOC peaks detected				
13.06.2011 (239403)	N/A	H16	No VOC/SVOC peaks detected				
13.06.2011 (239578)	N/A	L6	No VOC/SVOC peaks detected				
13.06.2011 (239578)	N/A	L7	No VOC/SVOC peaks detected				