

Environmental Monitoring Report

Reporting Period 01/08/2011-28/08/2011

Former Bayer Crop Science Site Hauxton Cambridgeshire

14th September 2011

Author:

M.J. Allsobrook M.Sc. B.Sc. Project Manager

On behalf of:

Harrow Estates Plc

Vertase F.L.I. Limited 3000 Aviator Way Manchester Business Park Manchester M22 5TG

Tel +44 (0) 161 437 2708 Fax +44 (0) 161 437 6300

Email info@vertasefli.co.uk www.vertasefli.co.uk

CONTENTS

1.0 In	troduction	1
1.1.	General	1
1.2.	The site	1
1.3.	Remediation Brief and Philosophy	1
2.0	Monthly Progress	3
V V	Week 73. Week Commencing 1 st August 2011	3 3 4
3.1.	Odour and VOC Emissions	5
3.2.	Dust Fibre and Particulate Emission	7
3.3.	Control of Mud and Debris	8
3.4.	Noise	8
3.5.	Litter	9
4.0	Surface and Ground Water Condition	10
4.1.	Surface Water Monitoring	10
4.2.	Surface Water Sampling and Analysis	10
4.3.	Groundwater Level Monitoring	11
4.4.	Groundwater Sampling and Analysis	12
5.0	Waste Water Treatment Plant	13
6.0	Contaminants Not Previously Identified	15

Α

APPENDICIES

Drawings

- B Environmental Monitoring Data
- C Long Term Passive VOC Monitoring
- D Directional Dust Monitoring
- E Groundwater Level Data
- F Surface Water and Groundwater Analysis Reports
- G Groundwater Level Graph
- H Waste Water Treatment Plant Discharge Analysis
- I Soil Characterisation Results Summary

1.0 Introduction

1.1. General

This report has been prepared and submitted in accordance Environmental Permitting Regulations 2007 with reference to the approved Deployment of Vertase FLI's Environmental Permit Ref: ERP/QP3293FY for the remediation works at the former Bayer CropScience site Hauxton, and in accordance with Condition 4 of the planning permission dated 5th February 2010.

The time period that this report represents is from the 1st of August 2011, until the 28th of August 2011.

1.2. The site

The site is the former Bayer Crop Science site, Cambridge Road, Hauxton, Cambridge. The site was used for the storage and production of agrichemicals from the 1940's through to ceasing production in 2004. The site was used primarily for the synthesis, formulation, packaging and storage of agrichemicals (both herbicides and pesticides). It is this former historical use that has led to the contamination legacy of soil and groundwater at the site.

There is also a Waste Water Treatment Plant (WWTP) and other agricultural land which is part of the former land holding of Bayer Crop Science and is part of that controlled by Harrow Estates. The WWTP will be utilised to assist in the treatment of recovered groundwater and will be improved to undertake this task and then maintained for the duration of the remediation. This area of the site will not be subject to remediation as part of this phase of works but will be remediated as a separate phase of work under a separate contract and separate Remediation Method Statement in the future.

1.3. Remediation Brief and Philosophy

The philosophy for this remediation project is set out in detail in the agreed Remediation Method Statement. The remediation of the site has been developed from knowledge of the site gained from historical site investigations, Atkins Preliminary Conceptual Model Report August 2006 (interpretative report defining the current and correct understanding of the geological and

environmental conditions) and subsequent sampling and analysis defining the extent of contamination following further investigation. This information has allowed the conceptual site model and pollutant linkages to be developed to form the remediation methodology. Whilst the remediation work itself is complex and varied, the philosophy is simple and defines the proposed remedial action required. This philosophy has been designed with the brief in mind. This brief can be defined as "a remediation to address all pollutant linkages and ensure that following remediation and re-development no unacceptable risks will remain associated with the treated area of the site by applying the best available techniques not entailing excessive costs (BATNEEC)".

The philosophy behind the remediation is to remove all uncertainty relating to soils and groundwater within the site area by the excavation, characterisation and treatment. All pathways between the identified sources and receptors will be removed and the contaminant mass within soils reduced as far as the practical limits of cost effective technology permit. The Remediation Method Statement sets out how this philosophy or strategy will be achieved practically on site and validated with confirmative post remediation risk assessment.

These remediation works are also required to satisfy the regulators that adequate remediation works have been completed to satisfy their requirements under Part IIa of the Environmental Protection Act 1990.

2.0 Monthly Progress

Week 73. Week Commencing 1st August 2011

No excavations undertaken were due to restricted space on site. Restoration using treated soils continued in the centre of the site. A number of stockpiles and treatment beds were relocated from the south eastern corner to the west of the site to allow for further excavation and validation in the south east corner of the site. Concrete slab from the eastern parts of the site was broken out and crushed for future use. Turning of treatment beds continued to promote biological degradation and dry the material in preparation for reinstatement.

Week 74. Week Commencing 8th August 2011

Excavation was undertaken in the southeast corner of the site with materials being stockpiled in the east of the site. Excavation of Gault clay was undertaken in the north of the site in preparation for the removal of the bentonite wall structure. Restoration of remediated soils continued in the centre of the site and northern parts of the site. The breaking out and crushing of concrete slab continued in the eastern part of the site, followed by a trial pitting exercise to investigate the geology and potential contamination in the eastern parts of the site. Turning of treatment beds was undertaken to promote biological degradation and dry the material in preparation for reinstatement. The north eastern boundary wall was demolished in preparation for the removal of the bentonite wall works.

Week 75. Week Commencing 15th August 2011

Excavation of the bentonite wall structure commenced in grid square G10 with impacted bentonite and marl being sent initially to treatment beds, as the materials became less impacted in the north of the site this material once excavated was used directly as fill in the centre of the site. The excavations along the route of the bentonite wall were restored with marl excavated from the southeast of the site.

Restoration of remediated soils continued in the centre of the site and along the bentonite wall. The breaking out and crushing of concrete slab continued in the eastern part of the site. Turning of treatment beds was undertaken to promote biological degradation and dry the material in preparation for reinstatement.

Week 76. Week Commencing 22nd August 2011

Excavation of the bentonite wall structure continued in grid squares I6, J5 and K5 with very low impacted bentonite and marl being used directly as fill in the centre of the site. The excavations along the route of the bentonite wall were restored with marl excavated from the southeast of the site.

Restoration of remediated soils continued in the centre of the site and along the bentonite wall. The breaking out and crushing of concrete slab continued in the eastern part of the site. Turning of treatment beds was undertaken to promote biological degradation and dry the material in preparation for reinstatement. Off site disposal of one particularly recalcitrant treatment bed commenced with this waste being transported under the hazardous waste regulations to an off site licensed disposal facility.

3.0 Environmental Monitoring Summary

The environmental monitoring locations detailed in the Environmental Permit deployment form for the site are highlighted in drawing D907_33C in Appendix A.

The detailed environmental monitoring data can be found in Appendix B, the following chapters summarise the finding from the monitoring undertaken by Vertase FLI Site Engineers.

3.1. Odour and VOC Emissions

Odour and VOC monitoring around the site boundary commenced on the 22nd March 2010 and has been undertaken twice daily at eight compass points around the site boundary, in the public access areas. Odour and VOC related observations in between the eight compass points around the site are also noted by the Vertase FLI representative undertaking the monitoring.

In addition to physical control via covers and management of activities odour controlling suppressants and masking agent are being used around the site boundary to mitigate the impact of odour migration off site. Three mobile telescopic misting fans were used on site and a full boundary misting system was also used to supplement the mobile units.

Site generated odours including those from the remediation processes and the odour suppression systems observed during the monitoring rounds beyond the site boundary are listed in the environmental monitoring data spreadsheet in Appendix B.

The Vertase FLI Environmental Engineers and Site Management team have been working closely to prevent odours and VOC's generated by the remediation processes migrating off site, along with trying to achieve a fine balance of using a specific odour control fragrance's at a variety of dilutions to reduce the impact of any odours detected off site.

The Environmental Engineers have logged the actions undertaken on site to reduce the impact of VOC/odours off site, these are noted in the environmental monitoring data in Appendix B. All mitigation measures have been in accordance with the actions stipulated in the deployment

form, including some additional actions to reduce the potential of odour nuisance e.g. repositioning of mobile odour control systems.

During the twice daily environmental monitoring a Photoionisation Detector (PID) has been used to record VOC's present beyond the site boundary. The PID will not function correctly in wet weather conditions, this has prevented real-time monitoring on a number of days and data is missing from the environmental monitoring spreadsheet for this reason. During the reported period VOC's were detected by the PID (Limit of detection of 0.1ppm) beyond the site boundary on the following occasions:

On the 10/08/2011at 17:20 the PID registered an intermittent peak of 0.1ppm at the northern monitoring location, odours related to the odour control solution sprays were intermittent and barely traceable. No action required.

On the 12/08/2011at 09:51 the PID registered an intermittent peak of 0.3ppm at the northeast, southwest, west and northwest monitoring locations, odours related to the odour control solution sprays were intermittent and barely traceable. No action required.

Long term passive VOC monitoring is carried out at eight compass point locations around the site boundary, in the public accessible areas, further monitoring locations are located within the centre of the waste water treatment works, on Church Road, Hauxton and Queens Close, Harston.

The results for the long term passive VOC monitoring carried out between 07/07/2011 and 11/08/2011 are reported in appendix C. The analysis undertaken for this monitoring period indicates that the majority of the VOC's detected are around the baseline, except for Tetrachloroethene which is on occasion slightly raised above the baseline values but are well below the levels considered to be within acceptable limits for published criteria.

The analysis for Church Road, Hauxton and Queens Close, Harston indicates there are some site related VOC's detected at these locations, but at levels that are considered to be within acceptable limits for published criteria.

The 28 day passive VOC monitoring results have been forwarded to the Health Protection Agency for review. The HPA have under taken independent risk assessment upon the data provided and have provided a positive non technical summary which is available on South Cambridgeshire District Councils website.

3.2. Dust Fibre and Particulate Emission

Both real time dust measurement and long term dust deposition monitoring has been undertaken around the site boundary at six compass point locations, north, east, south, west with two monitoring positions in the northeast (drawing D907_30C, Appendix A).

Real time airborne dust monitoring is undertaken as a minimum twice daily by an Environmental Engineer using a 'Dustmate' dust particle monitor around the site boundary as part of the environmental monitoring schedule, results are recorded in the environmental monitoring spreadsheet (Appendix B). The 'Dustmate' dust particle monitor will not function correctly in wet weather conditions, therefore on a number of days and data is missing from the environmental monitoring spreadsheet for this reason. Dust migration is however less likely in wet weather conditions.

Dust particle measurements at each monitoring location have varied, with the higher dust readings being generally at the locations adjacent to the heavily trafficked Cambridge Road (A10). The average Total Suspended Particulates (TSP) reading around the site is 112.55µg/m³, the average PM10 dust reading around the site is 61.57µg/m³. Where a potential for dust has been observed, on site dust suppression methods have been deployed immediately to reduce the generation of site dust and all haul routes are continually wetted to prevent dust release.

Directional dust deposition gauges at the six monitoring locations are analysed every fortnight for Effective Area Coverage (EAC) (percentage of dust deposition relating to the potential to cause nuisance), results generated by an external laboratory are presented in Appendix D.

Baseline dust monitoring undertaken between 19/02/2010 to 19/03/2010 (4 locations monitored) recorded a maximum dust deposition rate of 0.54%EAC at the western monitoring location.

Dust monitoring undertaken from the 25/07/2011 to 15/08/2011 (6 locations monitored) recorded a maximum dust deposition rate was 1.05%EAC at both the north and south monitoring locations. All other locations had a maximum dust deposition rate of 0.76%EAC, or less.

Dust monitoring undertaken from the 15/08/2011 to 30/08/2011(5 locations monitored only due to 1# damaged on site) recorded a maximum dust deposition rate was 1.40%EAC at the south monitoring location. All other locations had a maximum dust deposition rate of 0.67%EAC, or less.

Dust deposition values of less than 2.5% are regarded as having a very low nuisance potential. Only when percentages rise from 2.5% – 5% EAC is dust considered to have a low nuisance causing potential. During the reported period dust, fibre and particle emissions have been low, and have not caused visual dusting off site.

3.3. Control of Mud and Debris

A pressure washer and a fully automatic wheel wash has been on site during the reporting period to allow all maintenance, plant delivery and off site disposal vehicles leaving contaminated parts of the site to be washed down thoroughly first, as not to take potentially contaminated mud and debris through the clean zone and off site. The movement of vehicles between the contaminated and clean parts of the site is strictly controlled by the site management team.

3.4. Noise

Noise monitoring around the site boundary commenced on the 22nd March 2010 and has been undertaken twice daily as a minimum, recording findings at eight compass points around the site boundary in the public access areas (drawing D907_30C, Appendix A).

Site operations are restricted to 8am to 6pm and site noise levels are consistently at an average acceptable low background level of 68dB. Exceedance's of the 80dB threshold (stipulated in the Environmental Permit deployment document) have been recorded during the monitoring period, however traffic along the A10 has been identified as the source of the slightly elevated noise levels. Data is recorded in the environmental monitoring data spreadsheet, Appendix B.

3.5. Litter

All litter occurrences are removed from within the site, and off site around the boundary fence, and disposed of appropriately. Litter is generally low off site, and is well managed on site, by all site personnel. All recordings of the presence of litter are noted in the Environmental Monitoring Data spreadsheet in Appendix B.

4.0 Surface and Ground Water Condition

4.1. Surface Water Monitoring

As part of the environmental monitoring programme, the Riddy Brook located to the east of the site (Drawing D907_33C, Appendix A) is inspected daily as a minimum at two locations up and down stream for general observations, on any discolouration, sedimentation etc. The observations are recorded on the Environmental Monitoring Data (Appendix B). Throughout the monitoring period there have been no visual signs that the remediation works on site are having any impact on the Riddy Brook.

The water level within the Riddy Brook is monitored and recorded on a daily basis at a minimum of two locations, footbridge adjacent to Mill House (Riddy 1) and the most southerly footbridge over the Riddy Brook, adjacent to the eastern corner of the site (Riddy 4). Two further locations are also monitored, Riddy 2 at the footbridge over the Riddy Brook approximately 150m southeast of Mill House and the former fire exit bridge (Riddy 3), 210m southeast of Mill House. All the water level data is recorded in the main groundwater level data sheet in Appendix E.

During the monitoring period there have not been any significant changes in levels along the Riddy Brook.

4.2. Surface Water Sampling and Analysis

Upstream and downstream water samples from both the River Cam (Granta) and the Riddy Brook are taken on a monthly basis. The results for samples taken on 27th July 2011 are presented in Appendix F, results for samples taken on the 31st August 2011 are pending laboratory analysis and will be reported in a supplemental report.

The surface water analysis of the 27^{th} July 2011 shows trace levels of Mecoprop (2.9 µg/l) and Tetrachloroethylene (2 µg/l) detected in all surface water samples analysed, River Cam (Granta) up and down stream and the Riddy Brook up stream and down stream.

These trace levels identified in the July 2011 sampling round have been recorded in the baseline data collected prior to the commencement of the remediation project and are not related to a specific site incident.

4.3. Groundwater Level Monitoring

Groundwater levels are recorded within at least 11 borehole locations onsite on a daily basis, to ensure the groundwater beneath the site remains in a static condition during the remediation works and does not pose a risk to surface and groundwater bodies beyond the site boundary.

During the initial excavation works on site very little groundwater has been encountered, the majority of excavations located in the northern parts of the site have exceeded a depth of 4m below current ground level and have penetrated the Gault Clay in parts.

The main source of water encountered during excavations has been discontinuous contaminated perched water present in the Made Ground. This water has been captured and treated in the Waste Water Treatment Works associated with the site.

From approximately 2-3m below ground level discontinuous thin sand and gravel bands have also produced some limited quantities of water, which have tended to dry up within 24 hours.

The groundwater levels measured at locations around the site are shown in drawing D907_31G, in appendix A. The groundwater levels are presented in Appendix E.

A groundwater level graph has been constructed to illustrate the variation in groundwater level at the monitoring locations across the site for the reporting period (Appendix G).

The graph constructed (Appendix G) illustrates that there have been little changes to groundwater levels within the boreholes across the site during the monitoring period. However upon completion of the bentonite wall removal borehole S3/4 on the eastern side of the wall has dried up completely and remains dry.

There has been limited perched groundwater flow to some parts of the marl at approximately 2m below ground level to the south of the site during the excavation in this area, these have been easily managed and have generally stopped flowing after a day or so.

4.4. Groundwater Sampling and Analysis

Groundwater samples from 11 monitoring locations on site are taken on a monthly basis. The results for samples taken on 27th July 2011 and the 31st August 2011 are presented in appendix F.

The contaminant concentrations present in the samples taken on the 27th of July and the 30th August 2011, have a similar distribution of contaminants when compared to the baseline data collected during the summer of 2008, however there is a considerable reduction in concentration of the main contaminants in the groundwater samples adjacent to the areas that have undergone remediation.

5.0 Waste Water Treatment Plant

The Waste Water Treatment Plant (WWTP) is part of the former land holding of Bayer Cropscience and is part of that controlled by Harrow Estates. The WWTP was an integral part of the former Bayer Crop Science site, located to the west of the A10, specifically designed to treat and discharge liquid waste products derived from the production of agrochemicals (both herbicides and pesticides) and sewage from the facility.

The WWTP has been previously operated (until the 15th of March 2010) by Alpheus Environmental Ltd. to maintain the required discharge volume generated by the groundwater pumping systems on the main Bayer Cropscience site along the bentonite cut off wall and the high bay warehouse.

Vertase FLI have established a maintenance programme and control procedures to ensure the WWTP is operated within the constraints of the discharge consent. Essential system checks and improvements have been made to the plant to ensure it can treat the volume and concentrations of influent generated by the continued groundwater control and the contaminated water recovered during the remediation activities on the main site.

The composition of the water discharged to the River Cam (Granta) must not exceed the permitted levels in paragraphs 1.7.1, 1.8.1 and 1.8.2 of the discharge consent PR1NF/1744D01 Issued and regulated by the Environment Agency.

The treated effluent is sampled at the specified location as stipulated in the discharge consent. Vertase FLI also sample the influent to the WWTP, along with a sample taken after the primary carbon treatment, this is to assess the performance of main treatment process of the WWTP and highlight potential expiry of the primary carbon vessels.

The fortnightly samples are analytically tested for the water quality parameters and the chemical compounds specified in paragraph 1.7.1 of the discharge consent PR1NF/1744 D 01. The data is tabulated and presented in Appendix H along with the raw data from the laboratory reports.

Throughout the reporting period the WWTP has been successful in treating the compounds listed within paragraph 1.7.1 (consent PR1NF/1744D01) to acceptable levels for discharge to the River Cam (Granta) under the regulated discharge consent.

The Environment Agency carry out independent discharge monitoring at the WWTP on a monthly basis, during the reportable period Vertase FLI and Harrow Estates Plc have not been notified of any unacceptable effluent discharging to the River Cam (Granta) from the operating plant.

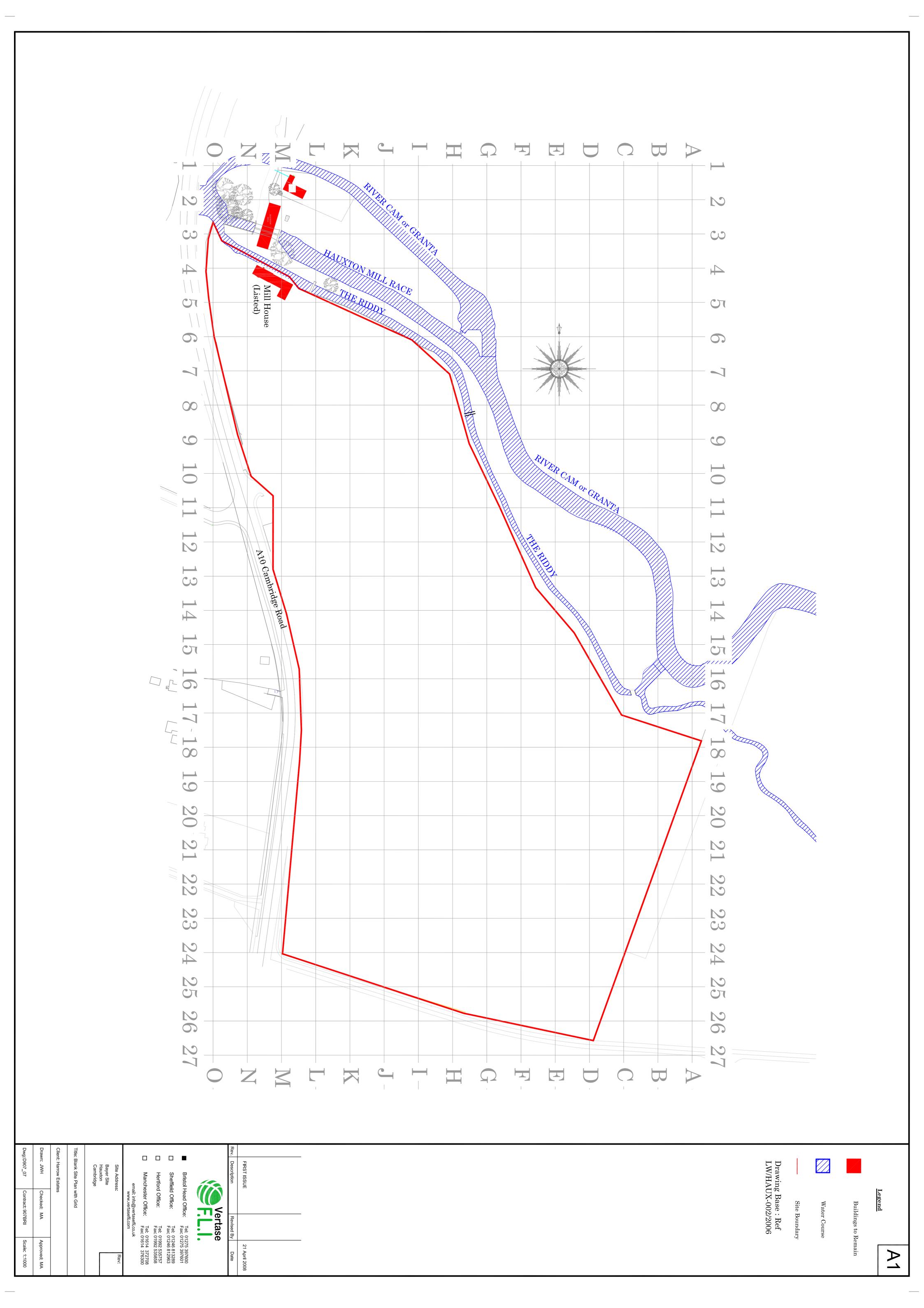
6.0 Contaminants Not Previously Identified

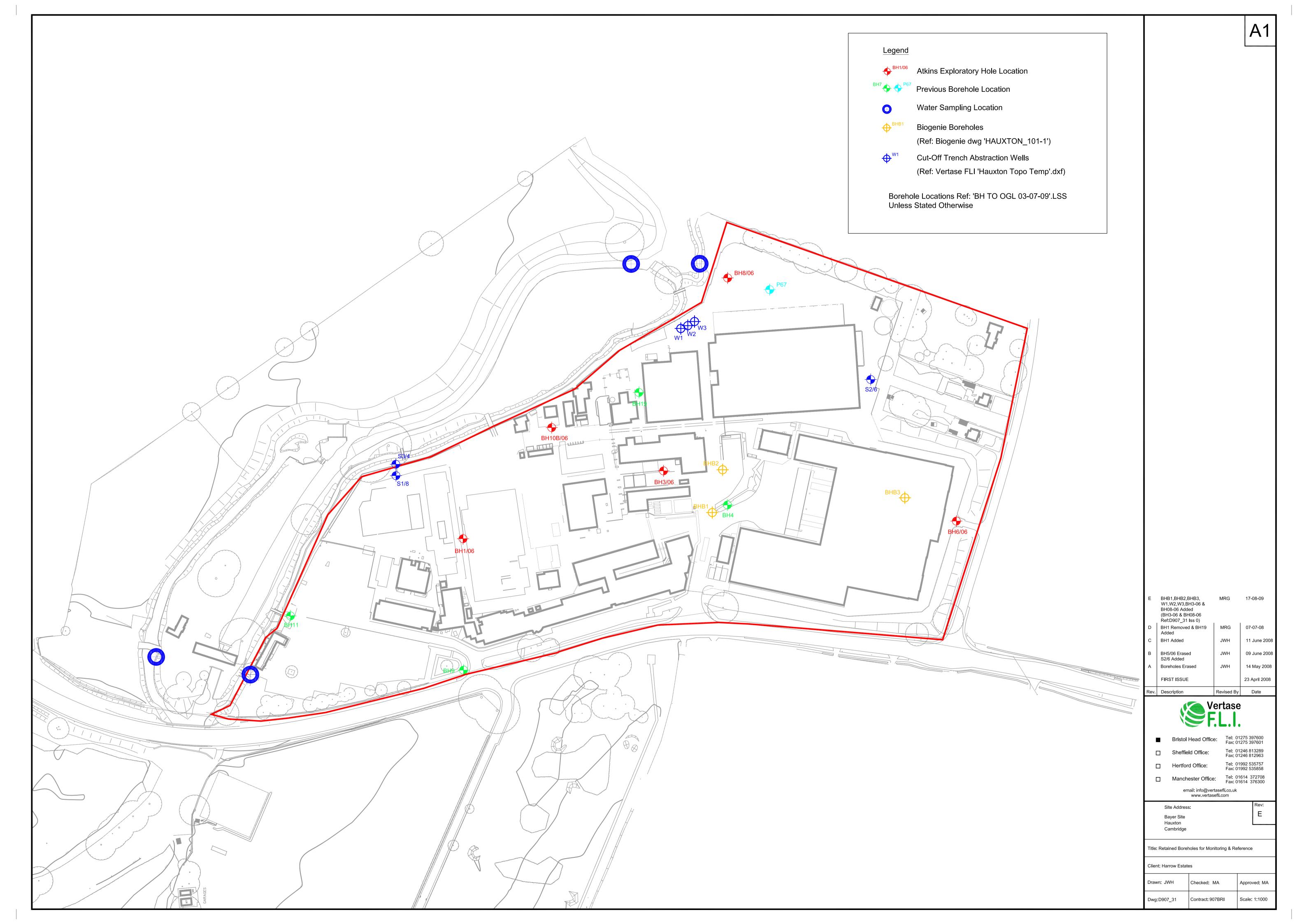
To fulfil the requirements of condition 4 and condition 9, Planning Condition Document ref:S/2307/06/f Issued 10/02/2010, Vertase FLI are continually undertaking soil characterisation sampling prior to remediation processes to identify the types and concentrations of contaminants present in the specific grid squares across the entire site.

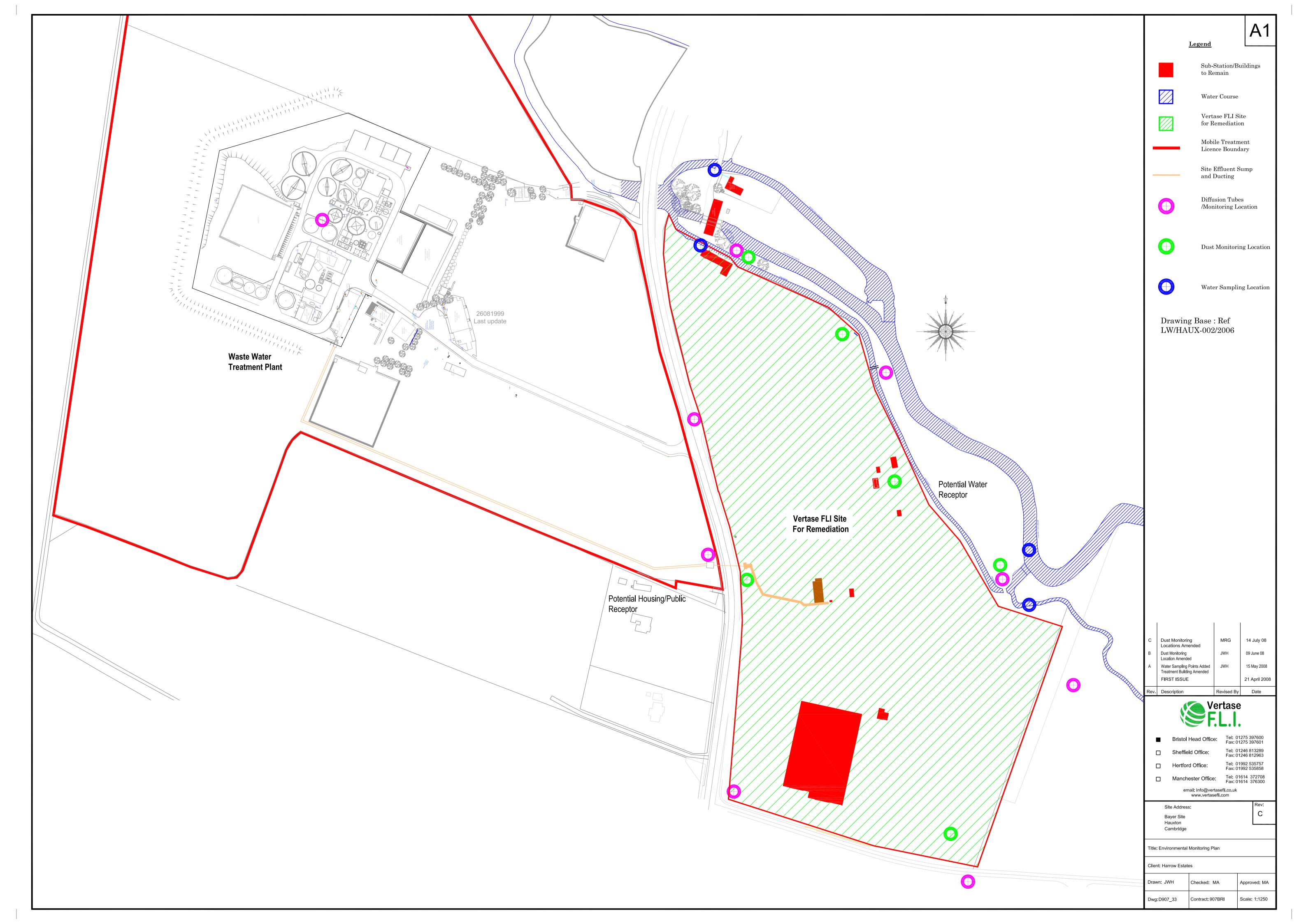
The soil characterisation samples undergo a series of laboratory analyses consisting of targeted analysis, screening against known contaminants and a full GCMS scan to identify any contaminants not previously identified.

All characterisation samples analysed and found to contain previously unidentified contaminants are reported in accordance with condition 9 of the Planning Condition Document ref:S/2307/06/f Issued 10/02/2010.

From the commencement of site works (15/03/2010) to 28/08/2011, eighty six characterisation samples have been taken by Vertase FLI in partnership with Atkins to assess the contamination type and concentrations prior to remediation of the materials. Thirty eight characterisation samples analysed contained a total of twenty five compounds / potential contaminants that had not been previously identified.


A summary table of the soil characterisation testing is presented in Appendix I, the previously unidentified compounds are listed here, with comments regarding the origin and likely usage on site.


The remediation project consultants Atkins continuously review the soil characterisation analysis and report previously unidentified contaminates in accordance with condition 9, Planning Condition Document ref:S/2307/06/f Issued 10/02/2010.



Appendix A

Drawings

Appendix B

Environmental Monitoring Data

											_											
Assessor Date	Daily Activity	Boundary	Start Finish Time Time	Detectability (Yes or No)	Intensity (1 to 9)	Quality (Description)	Tone Sensiti (-3 to+3) (1 to:	ion Odour ivity Source	PID (ppm)	TSP	PM10	(dBa) (De	resert attract	als ng Inspection	Water Level (mAOD	() Complaints	Action Required	Wind Speed	Wind Tem Direction (C)	Description (Rain, Sun)	Cloud Ground Cover Conditions (0 to 8) (Wet, dry)	General Motors
O Davies 1/8/2011 O Davies 1/8/2011 O Davies 1/8/2011	bed turning bed turning		10.45 10.4 10.49 10.5	y .	3 v	egetation	2	1 (110.5)	117.	3 10	7.9 6	0 00	no no	dear	18			4 8	(C) SE 25.3	overcast	7 dry	
O Davies 1/8/2011 O Davies 1/8/2011	bed suring bed suring	NE1	10.53 10.5 10.57 10.5						19	53	8 5	4 00	00	clear	26			H				
	ted turning bed turning	SE	11.01 11.0	3 n			3		48.9	21	1 6	3 00	100									
O Davies 1/8/2011 O Davies 1/8/2011 O Davies 1/8/2011	bed turning bed turning	SW W	11.05 11.0 11.09 11.1 11.13 11.1	1 n Sy	3 0	dour control	4	5 6	339.	9 66	19 6	en 8 on 8	no									
O Davies 1/8/2011 O Davies 1/8/2011	sed turning bed turning	NW N	11.17 11.1 16.43 16.4 16.47 16.4) in		regetation	2	-	38.9	10	22 6	3 no 1 no	00	dear	18			11.6	E 30.6	sun/cloud	3 dry	
O Davies 1/8/2011 O Davies 1/8/2011	bed turning bed turning	NE NE1	16.47 16.4) n			2) 416. 154	1 16	5	8 no	no	clear								
O Devies 1/8/2011	bed turning bed turning	E SE	18.51 16.55 16.50 17.01 17.03 17.03 17.03 17.01 17.11	7 n 1 n			3		65.2	50	13 5	8 no 2 no	no	clear	26							
O Davies 1/8/2011 O Davies 1/8/2011 O Davies 1/8/2011 O Davies 1/8/2011 O Davies 2/8/2011	bed turning bed turning	SW	17.03 17.0	5 n 9 y	3 c	creosote odour chemical odour and odour control	1 4	5 0	294.	2 23	11 6	2 10	no no									
O Davies 1/8/2011 O Davies 1/8/2011	bed suring bed suring bed suring	W NW	17.11 17.1 17.15 17.1	3 y 7 n			1 4	5 6	395.		8 6	3 no 8 no	100									
O Davies 2/8/2011 O Davies 2/8/2011	bad turning bad turning bad turning	N NE	9.12 9.14 9.16 9.11	ty Sy	2 v	wet vegetation wet vegetation	2	1 6	248 162	6 17	3.9 5 8.3 6	0 no 1 no	100	clear	18			6.9 5	E 18.8	doudy	7 wet	
O Davies 2/8/2011 O Davies 2/8/2011	bed turning bed turning	NE1 E	9.20 9.2 9.24 9.2	3 y	3 4	vet vegetation	2		178.	6 13	2.8 1.6 6	2 no	no	clear	26							
O Davies 2/8/2011 O Davies 2/8/2011 O Davies 2/8/2011	bed turning	S	9.28 9.3 9.32 9.3 9.36 9.3	y y	3 9	vet veg and odour control vet vegetation	3	1 0	130.	7 10	0.9 6	3 10	100									
O Davies 2/8/2011 O Davies 2/8/2011	bad suming bad suming bad suming	W	9.36 9.3 9.40 9.4	y	3 0	dour control dour control sewage odour	4	5 6	242	1 14	0.1 7	8 00	no									
O Davies 2/8/2011 O Davies 2/8/2011 D Scott 2/8/2011	bed turning	N N	9.40 9.4 9.40 9.4 17.25 17.2 17.29 17.3 17.37 17.3 17.37 17.3 17.41 17.4 17.45 17.4 17.45 17.5 17.53 17.5 17.53 17.5	y y	2 V	regetation	2	1 1	20.7	17	J (0 00	no	clear	20	n	ń	0.6	outh 27.8	cloudy	7 dry	
D Scott 2/8/2011	Bad suming bad suming bad suming	NE1	17.33 17.3			egetation egetation			271.	1 34	5	110	no	clear		0	h					
D Scott 2/8/2011 D Scott 2/8/2011	Said suming Said turning	SE S	17.41 17.4	3 y	2 9	egetation egetation	3		562 0 91.4	. 43	3	00	100		10	0	0					
D Scott 2/8/2011 D Scott 2/8/2011	bed turning	SW	17.49 17.5 17.53 17.9	y	2 0	regetation regetation docur control docur control docur control	4	4 (25.9	24	. 8	00	00			n	0					
D Scott 2/8/2011 O Davies 3/8/2011	bed surring bed surring	NW N	17.57 17.5	y Sin	2 0	dour control	2	4 (17.8	14	2 5	100	00	clear	18	n	ń	4.8	e 31.9	Sunny	1 dev	
D Scott 28:2011 D Daviss 38:2011	oed surring bed surring bed surring bed surring bed surring bid surring	NE NE1	11.03 11.02 11.07 11.02 11.11 11.11 11.15 11.1 11.19 11.2 11.23 11.2 11.23 11.2) n			2		271.	4 29 9 58	2.4 5	2 100	no	clear				Ħ		-		
O Davies 3/8/2011 O Davies 3/8/2011	bed turning	E SE	11.15 11.1 11.19 11.2	y In		nushroom compost	1 2	5 6	331.	6 13	1.6 5	4 no 8 no	no no	dear	26							
O Davies 3/8/2011 O Davies 3/8/2011 O Davies 3/8/2011	bed suming bed suming	S SW	11.23 11.2 11.27 11.2	i y i n		regetation	3 4	E	55.5		2 6	3 no 5 no	no no					E			HE	
O Davies 3/8/2011 O Davies 3/8/2011 O Davies 3/8/2011	bed turning bed turning	W NW	11.31 11.3 11.35 11.3 15.55 16.0	3 y 7 n		edour control	4 2	5 (221.	8 50	1.5 7	9 no 8 no	no no					Ħ	Œ			
O Davies 3/8/2011 O Davies 3/8/2011	bed turning bed turning	N NE	15.55 16.0 16.01 16.0	y	3 9	regetation regetation	2	17	6.2	2 86	.4 6	U no O no	no	dear	18			4.4	v 86.8	sunny	2 dry	
O Davies 3/8/2011 O Davies 3/8/2011	Sed turning Sed surning Sed surning Sed surning Sed surning	NE1 E	16.14 16.1	y	3 0	dour control and vegetation	2	3 0	314. 79.7 394.	6 17	0.1 7.1 6	5 no	no	dear	26			\vdash				
O Davies 3/8/2011 O Davies 3/8/2011	bed turning bed turning bed turning	SE S	16.20 16.2 16.27 16.3	on 2 n	1		3		0 47.8 0 68.5	13	6	1 no 4 no	no					\vdash				
O Devisis 382011 O Devisis 482011 O Devisis 482011	bed suring	W	16.40 16.4	y y	3 0	dour control and car exhaust idour control	4	5 (68.5	57	.2 7	5 00	no					$\boldsymbol{\vdash}$				
O Davies 4/8/2011	bed turning bed surning concrete crushing involving beds concrete crushing involving beds concrete crushing involving beds	N NF	16.01 16.0 16.08 16.1 16.14 16.1 16.20 16.2 16.27 16.3 16.34 0.6 16.40 16.4 16.40 16.4 16.40 10.4 10.11 10.17 10.24 10.2 10.31 10.3 10.34 10.4 10.44 10.4	y		vet veg	2	-			6	1 00	80	dear	18			8.5	17	raining	8 wet	dustimate not taken due to rain
O Davies 4/8/2011 O Davies 4/8/2011 O Davies 4/8/2011	concrete crushing moving bads concrete crushing moving bads concrete crushing moving bads	NE1	10.24 10.2			not van	2				- 1	2 00	00	clear	27			H				
O Davies 4/8/2011	concrete crushing/moving bads concrete crushing/moving bads	SE S	10.37 10.4	2 y	3 9	vet veg & odour control	3	3 0			6	5 no	00									
O Davies 4/8/2011 O Davies 4/8/2011 O Davies 4/8/2011	concrete crushing/moving bads concrete crushing/moving bads	SW	10.50 10.5	n I v	3 0	edour control	4				7	1 00	100									
		NW N	10.96 11.0 11.03 11.0 17.15 17.2 17.21 17.2 17.27 17.3 17.34 17.3 17.40 17.4 17.52 17.5 17.52 17.5 17.58 18.0 18.04 18.0 8.20 8.2 8.28 8.3	B in	1 /		2				7	8 no	00	dear	0.2	0	ń	8.2	w 21	rain	8 wet	no dust monitor or PID due to rain
D Scott 4/8/2011 D Scott 4/8/2011	None due to H&S meeting with drivers None due to H&S meeting with drivers	NE NE1	17.21 17.2	y 2			2	1 1)		6	1.2 no	no	dear		0	n n	H				
D Scott 4/8/2011 D Scott 4/8/2011 D Scott 4/8/2011	None due to H&S meeting with drivers None due to H&S meeting with drivers	E SE	17.34 17.3 17.40 17.4	y Sy	1 9	egetation egetation	2	1 0			5	1 00	no no	dear	0.26	0	n n	Ī				
D Scott 4/8/2011 D Scott 4/8/2011 D Scott 4/8/2011	None due to H&S meeting with drivers None due to H&S meeting with drivers	S SW	17.46 17.5 17.52 17.5	1 y 7 y	2 6	oed traffic oed traffic	1 3	2 0			7	7 no 5 no	no no			n n	h h					
D Scott 4/8/2011 D Scott 4/8/2011 D Scott 5/8/2011 D Scott 5/8/2011	None due to H&S meeting with drivers None due to H&S meeting with drivers	NW	17.58 18.0 18.04 18.0	y y	2 5	raffic & odour control raffic & odour control	1 4	2 (78.1		7	6 no 5 no	no			n	6	0 5		dry and cloudy		
D Scott 5/8/2011 D Scott 5/8/2011	Contract of contract to the co	N NE	8.20 8.2 8.26 8.3	y y	1 9	regulation speciation	2	1 0	78.1 102.	1 49	17 6 19 8	2 no 8.8 no	00	dear	0.2	0	ń ń	0 5	w 21.7	dry and cloudy	8 wet	
D Scott 5/8/2011 D Scott 5/8/2011 D Scott 5/8/2011	oed turning and excavating near perimiter fence bed turning and excavating near perimiter fence	NE1 E	8.32 8.3 8.39 8.4 8.45 8.5		1 0	idour control	2		61.7	95 57	4 7	5 00	00	dear	0.25		n n	\blacksquare				
D Scott 5/8/2011 D Scott 5/8/2011 D Scott 5/8/2011	ous surring and excavating near perimiter lance bed surring and excavating near perimiter fence bed surring and excavating near perimiter fence	S	8.52 8.5 8.58 9.0 9.04 9.0	y y	1 2	reg (trees) raffic fumes	3	1	48.7	43	.1 6	0 10	00				n	\blacksquare				
D Scott 5/8/2011	bed turning and excessing near perimiter fence bed turning and excessing near perimiter fence	W	9.04 9.0	y	1 0	adour control	4	2 (88.4	48	16 6	8 00	100			n	1					
D Scott 5/8/2011	bed turning and excavating near perimiter fence bed turning and excavating near perimiter fence		9.11 9.10 14.05 14.10 14.11 14.10	y y	1 0	regetation reg & water	2	-	29.7	8.1 54	1 5	7 no 4 no	00	dear	0.2	0	n n	0 s	outh 29.6	sun	2 dry	
D Scott 5/8/2011 D Scott 5/8/2011	bed turning and excavating near perimiter fence	NE1 E	14.17 14.2	2 By			2	-	911.	7 72	.7	8 no	10	clear	0.26	n n	n n					
D Scott 5/8/2011	bed turning and excavating near perimiter fonce bed turning and excavating near perimiter fonce and turning near expavation near perimiter fonce	SE S	14.17 14.2 14.23 14.2 14.29 14.3 14.35 14.4 14.42 14.4 14.43 14.5 14.55 15.0	4 y	2 v	reg & water reg & site	1 3	1 0	13.7	7.3	7 6	1 no 3 no	00			0	ń					
D Scott 5/8/2011 D Scott 5/8/2011	bed turning and excavating near perimiter fence bed turning and excavating near perimiter fence bed turning and excavating near perimiter fence	SW W	14.42 14.4	7 y 3 y	1 0	rafic rafic	4	1 6	10.4	- 11	.4 7	3 som 8 som	2 10			n	n n					
D Scott 5/8/2011 D Scott 8/8/2011 D Scott 8/8/2011	bed turning and excavating near perimiter fence bed turning and moving of bed 112a	NW N	14.55 15.0 8.19 8.2	t y	3 v	ing ing	2 2	1 0	67	41	7	0 som 3 no	10	dear	0.18	n n	h h	0 1	13.8	dry & bright	6 dry	
D Scott 8/8/2011	bed surning and moving of bed 112a bed surning and moving of bed 112a bed surning and moving of bed 112a bed surning and moving of bed 112a	NE1	8.25 8.3 8.32 8.3) n			2		29 48	56 67	. 6	5 yes	glove) no	clear		0	ń ń					
D Scott 8/8/2011 D Scott 8/8/2011 D Scott 8/8/2011	sed suming and moving of bed 112a bed suming and moving of bed 112a	SE S	14.55 15.00 8.19 8.2 8.25 8.3 8.32 8.3 8.38 8.4 8.44 8.4 8.51 8.9 8.57 9.00	y y	1 8	dour control lightly dusty	3	2 1	32.4	8 47	4 6	8 no	10	dear	V.26		n n	Ħ	= -			
D Scott 8/8/2011	bed turning and moving of bed 112a	SW	8.57 9.0	y V	1 8	exhaust fumes from traffic adour control	1 4	i i	72.8	- 4/	7 7	0 00	00				0	H				
D Scott 8/8/2011 D Scott 8/8/2011	sed turning and moving of bed 112a bed turning and moving of bed 112a	NAM	0.00 0.1	4 n	Ħ		2		140		ě	0 som	9 00			n	ń	H	_			metal panels of perimiter fence at SE location beginning to lean towards public path, will inform site manager or
D Scott 8/8/2011 D Scott 8/8/2011 D Scott 8/8/2011	bed turning and moving of bed 112a bed turning and moving of bed 112a	N NE	15.05 15.11 15.11 15.11 15.17 15.2 15.23 15.2 15.29 15.3 15.35 15.4 15.47 15.5 15.53 15.9 8.06 8.1 8.18 8.2	an By	1 0	idour control and dust	2	2 6	64.1	10	13 7	3 no	no no	clear	0.18	0	n n	13.1	20.5	dry	8 dry	Neum
D Scott 8/8/2011 D Scott 8/8/2011	sed suring and moving of bild 112a sed suring and moving of bild 112a	NE1 E	15.17 15.2 15.23 15.2	3 y	2 /	dour control and dust reg and odour control reg and pose dust) 2	2	165 28.8	82	.7 7	00 00	no	dear	0.26	0	ń.					
D Scott 8/8/2011 D Scott 8/8/2011 D Scott 8/8/2011	bed turning and moving of bed 112a bed turning and moving of bed 112a	SE S	15.29 15.3 15.35 15.4	t y On	1 0	eg and poss dust	3	2 (30.2	6.0	7	2 no 8 no	no no			yes n	none n	ø				lady (anon) complained that dust was blowing in her eyes, site manager informed
D Scott 8/8/2011 D Scott 8/8/2011 D Scott 8/8/2011 D Scott 9/8/2011 D Scott 9/8/2011 D Scott 9/8/2011	Sed suring and moving of bed 112a bed suring and moving of bed 112a bed suring	SW W	15.41 15.4 15.47 15.5	in Zy		exhaust fumes	4		24.9	6	7	S no S som	100			0	n n	Ħ			Ě	
D Scott 8/8/2011 D Scott 9/8/2011	bed turning and moving of bed 112a bed turning	NW N	15.53 15.5 8.06 8.1	3 n		reg and water fust and odour control	2	\pm	24.9 0 96.3 0 41.3	83	19 6	0 som 8 no	00	clear	0.18	0	n n	1.1	W 16.1	sunny and dry	2 dry	
D Scott 9/8/2011 D Scott 9/8/2011 D Scott 9/8/2011	bed turning bed turning	NÉ NE1	8.12 8.1	y S			1 2		202	12	6.5 E	4 100	no	clear		0	n n	ш				
D Scott 9/8/2011 D Scott 9/8/2011 D Scott 9/8/2011 D Scott 9/8/2011	Seed surining	SE 0	8.30 8.3 8.30 8.3	y	2 6	fust and odour control fust and odour control	1 3	3 (132	, 10	u.5 6	7 10	100	dear	v.26		n n	\vdash				
D Scott 9/8/2011		SW	8.43 8.4	d n		er#fo	, 4		90.9	91	2	3 00	no				6	$\boldsymbol{\vdash}$				
D Scott 9/8/2011 D Scott 9/8/2011 D Scott 9/8/2011	bed turning bed turning	NW N	8.12 8.1 8.18 8.2 8.24 8.2 8.30 8.3 8.37 8.4 8.43 8.4 8.49 8.5 8.55 9.0	Ý		raffic	2		103	33	2	8 som	2 00	desc	0.10		6	ш		tupes and dec	S to d show	
D Scott 10/8/2011 D Scott 10/8/2011 D Scott 10/8/2011	excavating in grids/bed turning/concrete crushing excavating in grids/bed turning/concrete crushing excavating in grids/bed turning/concrete crushing	NE NE1	13.06 13.1 13.12 19.1		1 8	edour control	2 2		17.6 28.6 211.	1 85	4 6	6 no	10	dear	v.10		0	H		sunny and dry	3 to 4 dry	
D Scott 10/8/2011 D Scott 10/8/2011 D Scott 10/8/2011	securation in editobated turningtoncesia cousting securation in editobated turningtoncesia cousting securation in editobated turningtoncesia cousting securation in editobated turningtoncesia cousting securation in editobat turningtoncesia cousting securation in editobated securities of securities and securities of securities and securities of securities and securities of securities and securities of securities and securities of securities and securities of securities and securities securities securities and securities sec	E SE	1300 130 1312 1311 1318 1322 1311 1318 1322 1324 132 1329 132 1329 132 1329 134 1349 135 17.15 17.22 17.21 17.23 17.33 17.33 17.33 17.33 17.33 17.33 17.33 17.33 17.33 17.33 17.33 17.33 17.35 17.45 17.51 17.51 17.51 17.51 17.51 17.51 17.51 17.51 17.53 17.51 17.51 17.51 17.51 17.53 17.53 17.53 17.53 17.53 17.53 17.53 17.53 17.53 17.53 17.53 17.53 17.54 17.55 1	y V	2 0	odour control odour control and some dust	2 1 3		126	8 41	.7 6	8 no	no no	dear	0.26	0	n n	H				
D Scott 10/8/2011 D Scott 10/8/2011	excavating in grids/bed turning/concrete crushing excavating in grids/bed turning/concrete crushing	S SW	13.30 13.3	n 2 n	-		3		52.7	11	.7 7	5 00	no			0	n n	П				
D Scott 10/8/2011 D Scott 10/8/2011 D Scott 10/8/2011	solutioning of artificiate furnispositioning continues consisting in profits the transpositioning coulding sensitivities an artificiate furnispositioning coulding sensitivities an artificiate furnispositioning coulding sensitivities are substitution of the coulding sensitivities are artificiated furnispositioning coulding sensitivities are profits the transpositioning coulding sensitivities are substitutioned to combine could be substituted to the could be substituted to combine the could be substituted to the could be substituted to combine sensitivities and the could be substituted to combine the could be substituted to the could be substituted to th	W	13.43 13.4	y n		edour control	2	+	36.3	10	7 7	4 som	9 00			0	0	H				
D Scott 10/8/2011	excavating in grids/bed turning/concrete crushing excavating in grids/bed turning/concrete crushing	N NE	17.15 17.2 17.21 17.2	y Sy	1 0	edour control	2	2 0	0.1 96.1 0 97	14 76	5 6	4 no 3 no	no no	dear	2			7.8	≤w 25.5	sunny	7 dry	
D Scott 10/8/2011 D Scott 10/8/2011 D Scott 10/8/2011	excavating in grids/bed turning/concrete crushing excavating in grids/bed turning/concrete crushing	NE1 E	17.27 17.3 17.33 17.3	3 n			2		107.	2 38	.2 6	8 no	no	clear	2.6			H	<u>_</u>			
D Scott 10/8/2011 D Scott 10/8/2011 D Scott 10/8/2011	excavating in grids/bed turning/concrete crushing excavating in grids/bed turning/concrete crushing	SE S	17.39 17.4 17.45 17.9	y y	5 0 3 v	edour control and dust reg	1 3	5 0	17.2	15	7 6	3 no 0 no	no					ЕŦ				
D Scott 10/8/2011 D Scott 10/8/2011 D Scott 10/8/2011	excevating in grids/bed turning/concrete crushing excevating in grids/bed turning/concrete crushing excevating in grids/bed turning/concrete crushing	SW W	17.51 17.59 17.57 18.00	in 2 n			4		20.7	12	.8 7	2 no 7 no	no no					П				
D Scott 11/8/2011	excevating in grids/bed turning/concrete crushing	NW N	18.03 18.0 8.00 8.0	3in 5in			2		59.2	31	7	4 no	00	clear	0.18			$oldsymbol{oldsymbol{eta}}$				
D Scott 11/8/2011 D Scott 11/8/2011 D Scott 11/8/2011	secovating in gridabad turningleorenate crushing secovating in gridabad turningleorenate crushing secovating in gridabad turningleorenate crushing	NE NE1	8.06 8.1 8.12 8.1 8.18 8.2 8.24 8.2 8.30 8.3 8.36 8.4 8.42 8.4 8.43 8.5 17.15 17.2	ly .	1 0	dour control	2	2	176. 94.9	8 87 46	.6 6	4 100	no	dear				曰	Œ			
D Scott 11/8/2011	excevating in grids/bed turning/concrete crushing	SE	8.18 8.2 8.24 8.2	y y	2 0	dour control and possible dust idour control and possible dust	1 3	2 0	73.3	30	12 6	00 00 00 00	no no	dear	0.26			ы				
D Scott 11/8/2011 D Scott 11/8/2011 D Scott 11/8/2011	excevating in grids/bed turning/concrete crushing	SW	8.30 8.3 8.36 8.4	on In	-		3		2		7	on S	100					ы				
D Scott 11/8/2011 D Scott 11/8/2011	excessating in gridssbad surming/concrete crushing excessating in gridssbad surming/concrete crushing excessating in gridssbad surming/concrete crushing excessating in gridssbad surming/concrete crushing	NW NW	8.48 8.5 17.16	3 n	z 0	idour control and traffic	2	2 (7.2			5 som 5 som 4.8 no	e 00	dov	A10			t.	_	rain, cloudy		
pr secon 11/0/2011	- granten mingstriam tilling		. r. r. r. 162		, P	-9	- J2		- p.2	15.5	- 6	110	110	p. mar	p=190			grow 1	100.5		to least	

	These spread or book forward fields, could
1000 1000	These spread or boar formers fields could
1100 1100	been opered on boar femore fields, could
1	Name spread or both forward fields creaded
1969 1969	been spread on total femous fields couple
1.00 1.00	These special or book forward fields could
Section Control Cont	These spread on boar fermers fields create
Section Control Cont	toen spread on boal fermen fields create
Section Control Cont	i been spread on local farmers fields creatin
Section Control Cont	tean spread on local farmers fields created
Section Control Cont	i been spread on local farmers fields creading
Section Control Cont	s been spread on local farmers fields creatin
1.00 1.00	it been spread on local farmers fields creatin
Sect Mathematic products analysis of the product of the produc	a been spread on local farmers fields creatin
Sect Mathematic products analysis of the product of the produc	s been spread on local farmers fields creatin
1.00 1.00	a ceen apresed on local termera testas creatir
1.00 1.00	
1	
1	
1	
1	
1	
Sout 1950 Rearrange published transpropresses coulsing 91 8.32 8.37	
Sout 1950 Rearrange published transpropresses coulsing 91 8.32 8.37	
State 1952 Reading publish transporters using Y 152 143	
1-00 1-00	
D Scott 17/8/2011 (excurating in gridabled turning/concesse analysing SE 17.00 17/55 y 1 solaur D 3 D 72 No No	
D Scott 17/8/2011 [accountating in gridas-ball turning/concretate crushing S 17.07 17.12[y 2 fausty odour 0 3 1 0 35 61.7 175 Inc. Inc.	
100001 Proceeding problemation procedures counting 24 1770 1769 1760 176	
Start 1862 Residence analysis Start	
D Scott 1882071 Inscrining in gridshold string control counting E 8.33 8.38 2 0 54.8 81.7 83 10 10 10 10 10 10 10 1	
Stort 180/0711 electrolling-pg platched transpirements counting El 8.30 8.44 1 plater control 3 3 9 17.8 9 9 9 9 9 9 9 9 9	
D 3cdt 158/2011 Nacionaling in grassivid curring conceive dustring SW 8.52 8.57 h 4 D 73 ho ho	
D Sout 1982/01 security in grids-but principrocrease orushing N 8-30 8-35 y 1 years 0 2 1 0 82.4 8-33 83 no no gear 0.18 n n 0 SW 17.4 jurnyr dry 1 dry no odour at charch	
Stat 1982/11 knowledge geldsdet buringscoronic counting 451 8-4 8-5 1993 1993 1993 1993 1993 1993 1993 199	
Sout 1950 examing problem terringiances unding 161 8.40 8.41 8.42 8.41 19.42 19.44	
Discort 198/0711 Inconsisting in probability starting counting SE 8.541 5.50 / 1 Start observed D 3 D 102 D D D D D D D D D	
Soot 1960* Recommending producted controlling 91 512 517 4 5 1074 44.1 73 some 50 5 5 5 5 5 5 5 5	
District	
Sect	
Set 2-307 International production production and the set S	
Set 2507 Resemble projection coding N 50 519 1 table 1 1 52 62 107 62	
D Scott 228/2011 Necessitating in gridad bad furning/concesses crushing N 17.15 17.20 n (2 to 10.3 38.6 66 no sea clear 0.18 n n (0 NEE 25.8 jeunny day (5 day no oddour at charch	
Set	
S 2007 229/2015 Instrumental principles (S 173) 1739/5 2 0 054 124 025 0 10 10 10 10 10 10 10 10 10 10 10 10 1	
Sout 250071 securing a published transportance conting 55 17.20 17.40 3 5 70 60 6 6 70 70 70 70	
2.50 2.50	
Discott 20000011 reconstruing published transprogresses containing WV 1500 1500 1500 1500 1500 1500 1500 150	
Stort 2007 Incomplete in definited surregionesses counting SE 827 828 2 74.6 56.2 57 58 51 58 51 58 58 58 58	
Section 2450011 Institution a collection	
Doort 208001 learning in plate that management in a second control of the control	
25 cot 245071 reconstruity in probability surregiones containing 50 5.50 5	
2,5001 2,5001 counting a global transplances counting 9	
2-800 2-800 (1990) (199	
5 cott 1,980011 (securities) a problem funniciprocess contring \$5 17.40 (1.5) \$	
District 200000000000000000000000000000000000	to hounday.
25 cm 24 c	
Set	
Data 2427 International purposes and action E A2 25 2 2 2 2 2 2 2 2	
1	
Discret 248/2011 Accordate in professed surring/concesses coughing WW 9,211 9,219 1 solar control 0 2 5 0 74 Komp to	
Sout 24007 Insurating published transportation curvature S 772 775 1 1 1 1 1 1 1 1 1	
August A	
250 Add	
5 to 10 to 1	
2 doct 2362/2/11 (containing in grassed contring/concers coloring/concers	
2-0.00 2	
2 out 2-55(21) exclusive graphed temperature contemplate special data 5	
District 2-8-9/07 Prescribing of pathwels transportation such registrated supposed data S 7-86 55 19 17.29 19 19 19 19 19 19 19	
2-0.00 2	
2-001 2-002 1-002 2-002	
25 ml 25 m	
Sect 25-07 recording a published terring contract analysis of a section of the section of t	
Sect 25-07 recording a published terring contract analysis of a section of the section of t	
Sect 25-07 recording a published terring contract analysis of a section of the section of t	
2-50 2-50	

M Allsobrook 26/8/2011 off site	disnosal	R		v	3	bbo smell, chercoal	3 1	0			49.2 n	10	30			ń					
M Allsobrook 26/8/2011 off site	disposal	SW			2	matter .1	4 1	ů.			72.1 0	10	30			6					
M Allsobrook 26/8/2011 off site		W		ń			4	o o			80.1 n	10	10			ń					
M Allsobrook 26/8/2011 off site	dispresal	NW.		v	2	wet veg	2 1	0			72.4 0	10	30			0					
Stephenson 30/8/2011 excever	sting in grids/bed turning	N 9.4	40 9.46	ń			2	o o			0	10	10	clear	19	ń	n	1.7 WNW 15	4 doudy	8	no odour at church
Stephenson 30/8/2011 excever	ating in grids/bed turning		.35 9.40	n			2	0			n	10	10	clear		ń	n				
Stephenson 30/8/2011 excever	sting in grids/bed turning	NE1 9.3	30 9.35											clear		n	0				
Stephenson 30/8/2011 exceval	sting in grids/bed turning	E 9.3	25 9.30	Y	3	vehicle fumes	2 2	0			0	10	10	dear	27	n	0				
Stephenson 30/8/2011 excever	sting in grids/bed turning	SE 9.3	20 9.25	y	5	car fumes/wet concrete 1	3 3	0			n	10	10			ń	n				
Stephenson 30/8/2011 exceval	sting in grids/bed turning	S 9.1	.15 9.20 .10 9.15	ń			3	0			- 1	10	10			n	0				
Stephenson 30/8/2011 excever	sting in grids/bed turning	SW 9.1	10 9.15	Y	4	car fumes 0	4 1	0			- 1	10	10			n	0				
Stephenson 30/8/2011 exceval	ating in grids/bed turning	W 9.0	.05 9.10	n			4	0			n	10	10			ń	n				
Stephenson 30/8/2011 exceval	sting in grids/bed turning	NW 9.0	.00 9.05	ń			2	0			- 1	10	10			n	0				
D Scott 30/8/2011 excever	sting in grids/bed turning	N 17.2	.25	n			2	0	21	9.3	66 n	10	10	clear	0.18	ń	n	2 wnw 17	doudy	8 damp	no odour at church
D Scott 30/8/2011 excever	ating in grids/bed turning	NE		n			2	0	85.3	8	68.5 n	10	10	clear		ń	n				
D Scott 30/8/2011 excever	sting in grids/bed turning	NE1							50.9	60.7				clear		ń	n				
D Scott 30/8/2011 excever	ating in grids/bed turning E	E		Y	1	odour control 0	2 2	0	50.9	23.3	63 n	10	10	dear	0.26	n	0				
D Scott 30/8/2011 excever	sting in grids/bed turning	SE		y	3	odour control 0	3 3	0			70 n	10	10			ń	n				
D Scott 30/8/2011 excavar	ating in grids/bed turning	S		ń			3	0	47.6	16.9	61 n	10	10			ń	ń				
D Scott 30/8/2011 excever	ating in grids/bed turning	SW		Y	3	odour control 0	4 3	0			81 n	10	10			n	0				
D Scott 30/8/2011 excever	sting in grids/bed turning	W		n			4	0	47.6	48.1	76 n	10	10			ń	n				
D Scott 30/8/2011 excever	ating in grids/bad turning	NW		ń			2	0			78 n	10	10			ń	ń				
																					no odours on approach to church, signs of possible digging/sampling been undertaken at locations frequently
D Scott 31/8/2011 excever	ating in grids/bed turning	N 8.3	.30	n	l I		2	0	140.9	90.3	64 n	10	10	clear	0.18	ń	n	0 WNW 15	7 dry, cloudy	8 dry	along roadside and at locations around site perimiter, possibly animals.
D Scott 31/8/2011 excever	ating in grids/bad turning	NE		ń			2	0	68.8	48.2	67 n	10	10	clear		ń	ń				
D Scott 31/8/2011 excever	ating in grids/bed turning	NE1							140	77.3				clear		ń	n				
D Scott 31/8/2011 excever	ating in grids/bed turning E	E		ń			2	0	84.9	46.2	63 n	10	10	clear	0.26	ń	n				
D Scott 31/8/2011 excever	sting in grids/bed turning	SE		n			3	0			62 n	10	10			n	n				
D Scott 31/8/2011 excever	sting in grids/bed turning	8		y	3	odour control and dusty odour -1	3 3	0	245	42.9	63 n	10	10			ń	n				
		SW		y	2	traffic -1	4 1	0			75 n	0	10			n	ń				
D Scott 31/8/2011 exceval	sting in grids/bed turning	W		y	2	traffic -1	4 1	0	76.5	76.1	74 n	10	10			n	n			1 1	
D Scott 31/8/2011 excever	sting in grids/bad turning sting in grids/bad turning	NW	9.15	n			2	0			76 n	10	10			ń	n				
D Scott 31/8/2011 excavar	eting in grids/bed turning	N 17.3	.30	e			2	0	17.3	21	63 n	0	10	clear	0.16	n	ń	0 ENE 20	8 dry, cloudy	8 dry	no odour at church
D Scott 31/8/2011 excever	ating in grids/bad turning	NE		n	1 1		2	0	82.9	16.1	72 n	10	10	clear		n	n			1 1	
D Scott 31/8/2011 excever	sting in grids/bed turning	NE1							9.7	5.3				clear		ń	n				
D Scott 31/8/2011 excavat	ating in grids/bad turning	E		6			2	0	25	22	63 n	0	10	clear	0.24	n	ń				
D Scott 31/8/2011 exceval	ating in grids/bad turning	SE		y	2	dusty odour 0	3 2	0			70 n	10	10			n	n			1 1	
D Scott 31/8/2011 excever	sting in grids/bed turning	S		n			3	0	7.6	52	66 n	10	10			ń	n				
D Scott 31/8/2011 excever	ating in grids/bed turning	SW		y	2	odour control -1	4 3	0			68 n	10	10			ń	n				
D Scott 31/8/2011 exceval	sting in grids/bed turning	W		y	1	traffic -1	4 1	0	30.5	76.7	73 n	10	10			n	n			1 1	
D Scott 31/8/2011 excever	ating in grids/bed turning	NW	18.00	y	1	traffic -1	2 1	0			73 n	10	10			ń	n				

Appendix C

Long term Passive VOC Monitoring

LABORATORY ANALYSIS REPORT

REPORT NUMBER GCMS 4875
CUSTOMER Vertase FLI Ltd
GRADKO LAB REFERENCE GMSF 1237-1247

DATE SAMPLES RECEIVED 18.08.11
DESPATCH REF.NUMBER SOR006001
JOB NUMBER 907BRI/5302
BOOKING IN REF. E 4320

SEMI-QUANTITATIVE ANALYSIS FOR TOP 10 VOC'S ON TENAX DIFFUSION TUBES BY GC/MS

Analysis has been carried out in accordance with in-house method GLM 13

Tube Number	GRA 05723
Exposure Time(mins)	50400
Sample ID	www

Top 10 VOC'S

Compounds	ng on tube	ppb in air*
Benzothiazole	75.09	0.74
Benzamide, N,N-dimethyl-	45.13	0.45
Tetrachloroethylene	21.74	0.22
Trichloroethylene	12.14	0.12
Formamide, N,N-dimethyl-	10.88	0.11
Cyclohexanone	10.76	0.11
Phenol	10.33	0.10
Benzene	8.56	0.08
m/p-Xylene	8.53	0.08
Toluene	7.63	0.08

Tube Number GRA 02602
Exposure Time(mins) 50400
Sample ID New Road

Top 10 VOC'S

Compounds	ng on tube	ppb in air*
Toluene	86.09	0.85
Benzamide, N,N-dimethyl-	32.86	0.33
m/p-Xylene	30.13	0.30
Benzothiazole	23.11	0.23

The Diffusion Tubes have been tested within the scope of Gradko International Ltd. Laboratory Quality Procedures calculations and assessments involving the exposure procedures and periods provided by the client are not within the scope of our UKAS accreditation. Those results obtained using exposure data shall be indicated by an asterisk. Any queries concerning the data in this report should be directed to the Laboratory Manager Gradko International Ltd.

Form LQF32b Issue 3 - March 2011

REPORT OFFICIALLY CHECKED

Report Number GCMS4875

Page 1 of 6

Gradko International Ltd
This signature confirms the authenticity of these results

(A division of Gradko International Ltd.)

St. Martins House, 77 Wales Street Winchester, Hampshire SO23 0RH tel.: 01962 860331 fax: 01962 841339 e-mail:diffusion@gradko.co.uk

LABORATORY ANALYSIS REPORT

o-Xylene	17.06	0.17
Ethylbenzene	14.59	0.14
Phenol	12.74	0.13
Benzene	12.44	0.12
Tetrachloroethylene	12.23	0.12
Formamide, N,N-dimethyl-	11.15	0.11

Tube Number GRA 04295 50400 **Exposure Time(mins)** Sample ID **Queens Close**

Top 10 VOC'S

Compounds	ng on tube	ppb in air*
m/p-Xylene	97.83	0.97
Ethylbenzene	94.34	0.94
o-Xylene	44.94	0.45
Benzamide, N,N-dimethyl-	36.29	0.36
Benzothiazole	32.87	0.33
Phenol	24.34	0.24
Toluene	19.15	0.19
Heptane, 2,2,4,6,6-pentamethyl-	16.02	0.16
Tetrachloroethylene	12.24	0.12
Benzene	10.82	0.11

Tube Number	GRA 03438
Exposure Time(mins)	50400
Sample ID	NW
Top 40 VOCIS	

10p 10 VOC'S		
Compounds	ng on tube	ppb in air*
Tetrachloroethylene	191.04	1.90
Benzene, 1,2,3-trichloro-4-methyl-	65.23	0.65
Trichloroethylene	60.46	0.60
Toluene	51.97	0.52
Benzene, 1,2,4-trichloro-3-methyl-	40.44	0.40
Benzamide, N,N-dimethyl-	33.20	0.33
m/p-Xylene	32.90	0.33
Phenol	32.46	0.32
Benzene, 1,2,4-trichloro-	20.61	0.20
Benzothiazole	19.04	0.19

The Diffusion Tubes have been tested within the scope of Gradko International Ltd. Laboratory Quality Procedures calculations and assessments involving the exposure procedures and periods provided by the client are not within the scope of our UKAS accreditation. Those results obtained using exposure data shall be indicated by an asterisk. Any queries concerning the data in this report should be directed to the Laboratory Manager Gradko International Ltd.

Form LOF32b Issue 3 - March 2011

REPORT OFFICIALLY CHECKED

Report Number

GCMS4875

Page 2 of 6

Gradko International Ltd This signature confirms the authenticity of these results

LABORATORY ANALYSIS REPORT

Tube Number	GRA 05623
Exposure Time(mins)	50400
Sample ID	SE

Top 10 VOC'S

Compounds	ng on tube	ppb in air*
Tetrachloroethylene	264.17	2.62
Benzene, 1,2,3-trichloro-4-methyl-	126.45	1.25
Trichloroethylene	78.38	0.78
Benzene, 1,2,4-trichloro-3-methyl-	54.81	0.54
Toluene	50.92	0.51
m/p-Xylene	40.23	0.40
Benzene, 1,2,4-trichloro-	33.61	0.33
Benzene, 1,4-dichloro-2-methyl-	31.80	0.32
Phenol	25.97	0.26
Benzothiazole	25.39	0.25

Tube Number	GRA 06071
Exposure Time(mins)	50400
Sample ID	W

Top 10 VOC'S

Compounds	ng on tube	ppb in air*
Tetrachloroethylene	403.42	4.00
Heptadecane	397.71	3.95
Octadecane	318.77	3.16
Heptadecane, 4-methyl-	168.09	1.67
Heptadecane, 3-methyl-	144.01	1.43
Heptadecane, 2-methyl-	142.97	1.42
Hexadecane	113.54	1.13
Nonadecane	112.72	1.12
Benzene, 1,2,3-trichloro-4-methyl-	97.50	0.97
Toluene	45.21	0.45

The Diffusion Tubes have been tested within the scope of Gradko International Ltd. Laboratory Quality Procedures calculations and assessments involving the exposure procedures and periods provided by the client are not within the scope of our UKAS accreditation. Those results obtained using exposure data shall be indicated by an asterisk. Any queries concerning the data in this report should be directed to the Laboratory Manager Gradko International Ltd.

Form LQF32b Issue 3 - March 2011

REPORT OFFICIALLY CHECKED

Report Number

GCMS4875

Page 3 of 6

Gradko International Ltd
This signature confirms the authenticity of these results

Signed...

LABORATORY ANALYSIS REPORT

Tube Number	GRA 03924
Exposure Time(mins)	50400
Sample ID	S

Top 10 VOC'S

Compounds	ng on tube	ppb in air*
Tetrachloroethylene	125.88	1.25
Benzene, 1,2,4-trichloro-3-methyl-	30.99	0.31
Trichloroethylene	26.65	0.26
Toluene	26.35	0.26
m/p-Xylene	23.63	0.23
Phenol	20.52	0.20
Ethylbenzene	14.96	0.15
Benzene, 1,2,4-trichloro-	13.29	0.13
Benzene, 1,4-dichloro-2-methyl-	13.11	0.13
o-Xylene	12.47	0.12

Tube Number GRA 03053
Exposure Time(mins) 50400
Sample ID E

Top 10 VOC'S

Compounds	ng on tube	ppb in air*
Tetrachloroethylene	298.90	2.97
Benzene, 1,2,3-trichloro-4-methyl-	141.89	1.41
Trichloroethylene	113.60	1.13
Benzene, 1,2,4-trichloro-3-methyl-	64.85	0.64
Toluene	54.08	0.54
m/p-Xylene	50.57	0.50
Naphthalene	48.61	0.48
Naphthalene, 1-methyl-	34.13	0.34
Benzene, 1,4-dichloro-2-methyl-	30.68	0.30
Benzene, 1,2,4-trichloro-	28.08	0.28

The Diffusion Tubes have been tested within the scope of Gradko International Ltd. Laboratory Quality Procedures calculations and assessments involving the exposure procedures and periods provided by the client are not within the scope of our UKAS accreditation. Those results obtained using exposure data shall be indicated by an asterisk. Any queries concerning the data in this report should be directed to the Laboratory Manager Gradko International Ltd.

Form LQF32b Issue 3 - March 2011

REPORT OFFICIALLY CHECKED

Report Number

GCMS4875

Page 4 of 6

Gradko International Ltd
This signature confirms the authenticity of these results

Signed.....

LABORATORY ANALYSIS REPORT

Tube Number	GRA 00140
Exposure Time(mins)	50400
Sample ID	N

Top 10 VOC'S

Compounds	ng on tube	ppb in air*
Tetrachloroethylene	161.78	1.60
Benzene, 1,2,3-trichloro-4-methyl-	76.73	0.76
Benzene, 1,2,4-trichloro-3-methyl-	38.75	0.38
Phenol	36.09	0.36
Toluene	32.03	0.32
Trichloroethylene	31.37	0.31
m/p-Xylene	19.16	0.19
Benzamide, N,N-dimethyl-	16.58	0.16
Benzene, 1,2,4-trichloro-	15.62	0.15
Benzene, 1,4-dichloro-2-methyl-	15.09	0.15

Tube Number GRA 06118
Exposure Time(mins) 50400
Sample ID Church Road

Top 10 VOC'S

Compounds	ng on tube	ppb in air*
Naphthalene	666.51	6.61
Naphthalene, 1-methyl-	86.71	0.86
m/p-Xylene	50.39	0.50
Phenanthrene	49.12	0.49
Naphthalene, 2-methyl-	47.94	0.48
Acenaphthene	47.01	0.47
Toluene	40.73	0.40
Phenol	37.07	0.37
Fluorene	30.46	0.30
o-Xylene	30.44	0.30

The Diffusion Tubes have been tested within the scope of Gradko International Ltd. Laboratory Quality Procedures calculations and assessments involving the exposure procedures and periods provided by the client are not within the scope of our UKAS accreditation. Those results obtained using exposure data shall be indicated by an asterisk. Any queries concerning the data in this report should be directed to the Laboratory Manager Gradko International Ltd.

Form LQF32b Issue 3 - March 2011

REPORT OFFICIALLY CHECKED

Report Number

GCMS4875

Page 5 of 6

Gradko International Ltd
This signature confirms the authenticity of these results

Signed...

LABORATORY ANALYSIS REPORT

Tube Number GRA 02027 Exposure Time(mins) 50400 Sample ID NE

Top 10 VOC'S

•		
Compounds	ng on tube	ppb in air*
Tetrachloroethylene	507.08	5.03
Toluene	424.91	4.22
Trichloroethylene	93.29	0.93
Benzene, 1,2,3-trichloro-4-methyl-	92.29	0.92
m/p-Xylene	43.08	0.43
Benzene, 1,4-dichloro-	40.96	0.41
Benzene, 1,2,4-trichloro-3-methyl-	36.28	0.36
Bis(2-chloroethyl) ether	35.73	0.35
Naphthalene, 1-methyl-	28.36	0.28
Benzothiazole	26.81	0.27

Semi-quantitative results for ng on tube are calculated using toluene standards.

Analysts Name M.Angelova Date of Analysis 26.08.11

Date of Report 31.08.11

The Diffusion Tubes have been tested within the scope of Gradko International Ltd. Laboratory Quality Procedures calculations and assessments involving the exposure procedures and periods provided by the client are not within the scope of our UKAS accreditation. Those results obtained using exposure data shall be indicated by an asterisk. Any queries concerning the data in this report should be directed to the Laboratory Manager Gradko International Ltd.

Form LQF32b Issue 3 - March 2011

REPORT OFFICIALLY CHECKED

Report Number

GCMS4875

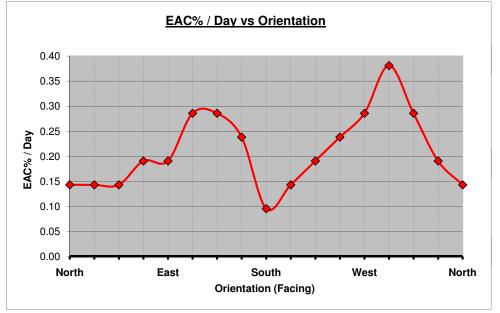
Page 6 of 6

Gradko International Ltd
This signature confirms the authenticity of these results

gned.....

Appendix D

Directional Dust Monitoring


Sticky Pad Data

Gauge Number- West offsite Location 907BRI

Sticky Pad Data

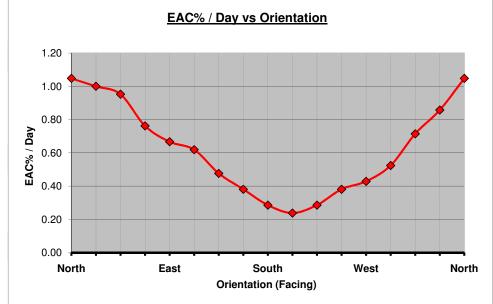
Date On Clean = 25/07/2011 Date Off 15/08/2011 Days = 21

X Axis mm	Meter	Angle Deg	Orientation	EAC% / Day
0	97	360	North	0.14
20	96	337		0.19
40	94	314		0.29
60	92	291		0.38
80	94	269	West	0.29
100	95	246		0.24
120	96	223		0.19
140	97	200		0.14
160	98	177	South	0.10
180	95	154		0.24
200	94	131		0.29
220	94	109		0.29
240	96	86	East	0.19
260	96	63		0.19
280	97	40		0.14
300	97	17		0.14
315	97	0	North	0.14

Note: Cells coloured red are inputs.

The rest are either constants or calculated values.

The calculation is based on taking readings at 20mm intervals along the sticky pad.


Sticky Pad Data

Gauge Number- North offsite Location 907BRI

Sticky Pad Data

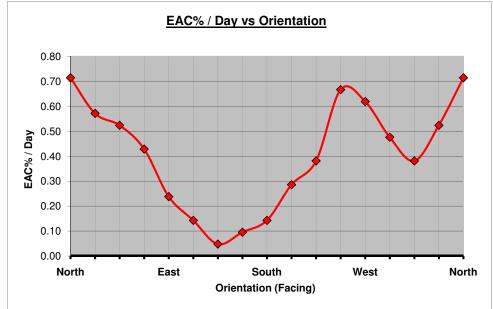
Date On Clean = 100 Date Off 15/08/2011 Days = 21

V Auda mana	Matau	Anala Dan	Ouisustatiaus	[[A CO(/ Day
X Axis mm	Meter	Angle Deg	Orientation	EAC% / Day
0	78	360	North	1.05
20	82	337		0.86
40	85	314		0.71
60	89	291		0.52
80	91	269	West	0.43
100	92	246		0.38
120	94	223		0.29
140	95	200		0.24
160	94	177	South	0.29
180	92	154		0.38
200	90	131		0.48
220	87	109		0.62
240	86	86	East	0.67
260	84	63		0.76
280	80	40		0.95
300	79	17		1.00
315	78	0	North	1.05

Note: Cells coloured red are inputs.

The rest are either constants or calculated values.

The calculation is based on taking readings at 20mm intervals along the sticky pad.



Gauge Number-North East Offsite Location 907BRI

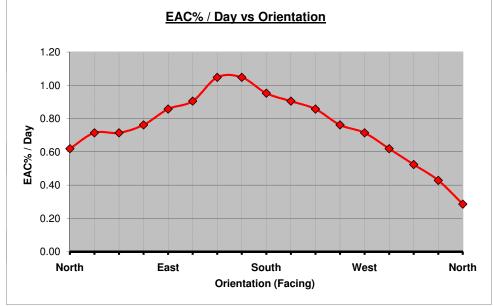
Sticky Pad Data

Date On Clean = 25/07/2011 Date Off 15/08/2011 Days = 21

X Axis mm	Meter	Angle Deg	Orientation	EAC% / Day
	85	360	North	0.71
0			INOITI	_
20	89	337		0.52
40	92	314		0.38
60	90	291		0.48
80	87	269	West	0.62
100	86	246		0.67
120	92		0.38	
140	94	200		0.29
160	97	177	South	0.14
180	98	154		0.10
200	99	131		0.05
220	97	109		0.14
240	95	86	East	0.24
260	91	63		0.43
280	89	40		0.52
300	88	17		0.57
315	85	0	North	0.71

Note: Cells coloured red are inputs.

The rest are either constants or calculated values.



Gauge Number-South Onsite Location 907BRI

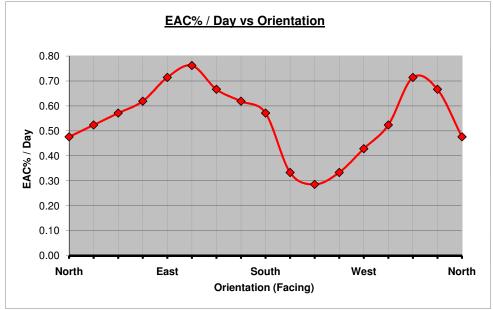
Sticky Pad Data

Date On Clean = 25/07/2011 Date Off 15/08/2011 Days = 21

		ı		r
X Axis mm	Meter	Angle Deg	Orientation	EAC% / Day
0	94	360	North	0.29
20	91	337		0.43
40	89	314		0.52
60	87	291		0.62
80	85	269	West	0.71
100	84	246		0.76
120	82	223		0.86
140	81	200		0.90
160	80	177	South	0.95
180	78	154		1.05
200	78	131		1.05
220	81	109		0.90
240	82	86	East	0.86
260	84	63		0.76
280	85	40		0.71
300	85	17		0.71
315	87	0	North	0.62

Note: Cells coloured red are inputs.

The rest are either constants or calculated values.



Gauge Number-North East Onsite Location 907BRI

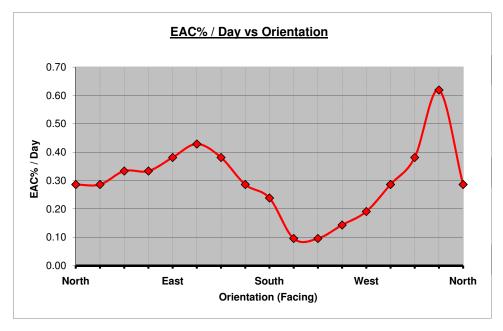
Sticky Pad Data

Date On Clean = 25/07/2011 Date Off 15/08/2011 Days = 21

V Auda mana	Matau	Anala Dan	Ouisustatiaus	FAC0/ / Davi
X Axis mm	Meter	Angle Deg	Orientation	EAC% / Day
0	90	360	North	0.48
20	86	337		0.67
40	85	314		0.71
60	89	291		0.52
80	91	269	West	0.43
100	93	246		0.33
120	94	223		0.29
140	93	200		0.33
160	88	177	South	0.57
180	87	154		0.62
200	86	131		0.67
220	84	109		0.76
240	85	86	East	0.71
260	87	63		0.62
280	88	40		0.57
300	89	17	_	0.52
315	90	0	North	0.48

Note: Cells coloured red are inputs.

The rest are either constants or calculated values.



Gauge Number-West side Entrance Location 907BRI

Sticky Pad Data

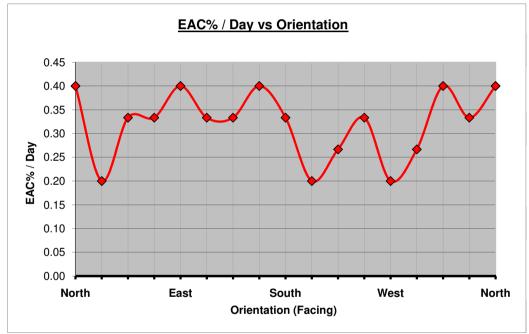
Date On Clean = 25/07/2011 Date Off 15/08/2011 Days = 21

X Axis mm	Meter	Angle Deg	Orientation	EAC% / Day
0	94	360	North	0.29
20	87	337		0.62
40	92	314		0.38
60	94	291		0.29
80	96	269	West	0.19
100	97	246		0.14
120	98	223		0.10
140	98	200		0.10
160	95	177	South	0.24
180	94	154		0.29
200	92	131		0.38
220	91	109		0.43
240	92	86	East	0.38
260	93	63		0.33
280	93	40		0.33
300	94	17		0.29
315	94	0	North	0.29

+

Note: Cells coloured red are inputs.

The rest are either constants or calculated values.



Gauge Number- West Location 907 BRI

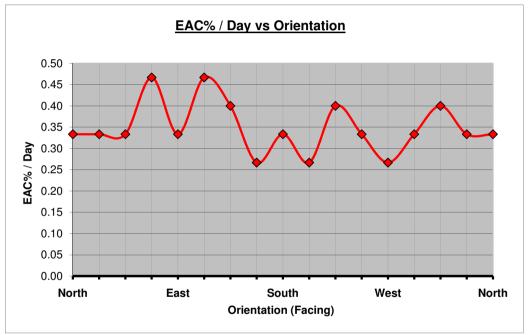
Sticky Pad Data

Date On 15/08/2011 Date Off 30/08/2011 Days = 15 Clean = 100

X Axis mm	Meter	Angle Deg	Orientation	EAC% / Day	
0	94	360	North	0.40	
20	95	337		0.33	
40	94	314		0.40	
60	96	291		0.27	
80	97	269	West	0.20	
100	95	246		0.33	
120	96	223		0.27	
140	97	200		0.20	
160	95	177	South	0.33	
180	94	154		0.40	
200	95	131		0.33	
220	95	109		0.33	
240	94	86	East	0.40	
260	95	63		0.33	
280	95	40		0.33	
300	97	17		0.20	
315	94	0	North	0.40	

Note: Cells coloured red are inputs.

The rest are either constants or calculated values.



Gauge Number- North Location 907BRI

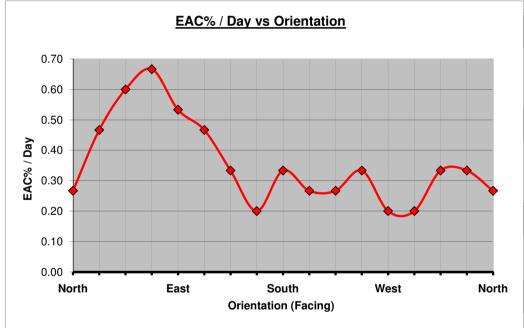
Sticky Pad Data

Date On Clean = 15/08/2011 Date Off 30/08/2011 Days = 15

X Axis mm	Meter	Angle Deg	Orientation	EAC% / Day
0	95	360	North	0.33
20	95	337		0.33
40	94	314		0.40
60	95	291		0.33
80	96	269	West	0.27
100	95	246		0.33
120	94	223		0.40
140	96	200		0.27
160	95	177	South	0.33
180	96	154		0.27
200	94	131		0.40
220	93	109		0.47
240	95	86	East	0.33
260	93	63		0.47
280	95	40		0.33
300	95	17		0.33
315	95	0	North	0.33

Note: Cells coloured red are inputs.

The rest are either constants or calculated values.



Gauge Number-North East 2 Location 907BRI

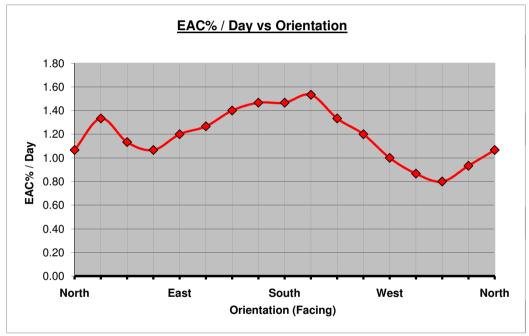
Sticky Pad Data

Date On Clean = 15/08/2011 Date Off 30/08/2011 Days = 15

X Axis mm	Meter	Angle Deg	Orientation	EAC% / Day
0	96	360	North	0.27
20	95	337		0.33
40	95	314		0.33
60	97	291		0.20
80	97	269	West	0.20
100	95	246		0.33
120	96	223		0.27
140	96	200		0.27
160	95	177	South	0.33
180	97	154		0.20
200	95	131		0.33
220	93	109		0.47
240	92	86	East	0.53
260	90	63		0.67
280	91	40		0.60
300	93	17		0.47
315	96	0	North	0.27

Note: Cells coloured red are inputs.

The rest are either constants or calculated values.



Gauge Number-South Location 907BRI

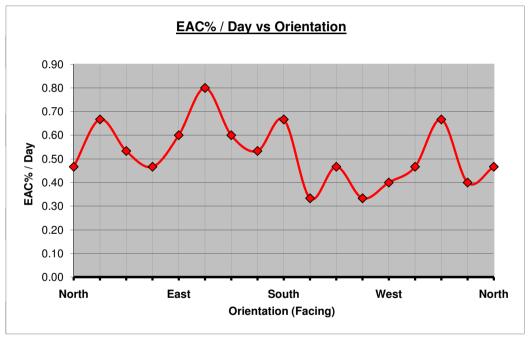
Sticky Pad Data

Date On 15/08/2011 Date Off 30/08/2011 Days = 15 Clean = 100

X Axis mm	Meter	Angle Deg	Orientation	EAC% / Day
0	84	360	North	1.07
20	86	337		0.93
40	88	314		0.80
60	87	291		0.87
80	85	269	West	1.00
100	82	246		1.20
120	80	223		1.33
140	77	200		1.53
160	78	177	South	1.47
180	78	154		1.47
200	79	131		1.40
220	81	109		1.27
240	82	86	East	1.20
260	84	63		1.07
280	83	40		1.13
300	80	17		1.33
315	84	0	North	1.07

Note: Cells coloured red are inputs.

The rest are either constants or calculated values.



Gauge Number East Location 907BRI

Sticky Pad Data

Date On 15/08/2011 Date Off 30/08/2011 Days = 15 Clean = 100

X Axis mm	Meter	Angle Deg	Orientation	EAC% / Day
0	93	360	North	0.47
			NOILII	_
20	94	337		0.40
40	90	314		0.67
60	93	291		0.47
80	94	269	West	0.40
100	95	246		0.33
120	93	223		0.47
140	95	200		0.33
160	90	177	South	0.67
180	92	154		0.53
200	91	131		0.60
220	88	109		0.80
240	91	86	East	0.60
260	93	63		0.47
280	92	40		0.53
300	90	17	_	0.67
315	93	0	North	0.47

Note: Cells coloured red are inputs.

The rest are either constants or calculated values.

Appendix E Groundwater Level Data

Former Bayer Cropscience Site Groundwater and surface water levels

Date	BH6/06	S3/4	BH4	BH10B/06	BH9	S1/8	BH11*	S2/6	BHB1	W1 (n)	W2	W3 (s)	Riddy 1	Riddy 2	Riddy 3	Riddy 4	V F12	V N3	WS17	P73
1/8/2011	9.775	10.229	Blocked	Covered	10.201	Lost	9.611	Covered	8.930	No Access	No Access	DRY	9.154	9.279	9.511	9.627	Covered	9.533	9.596	9.856
5/8/2011	9.728	10.279	Blocked	Covered	10.196	Lost	9.657	Covered	8.890	No Access	No Access	DRY	9.151	9.283	9.518	9.623	Covered	9.567	9.583	9.873
11/8/2011	9.720	10.340	Blocked	Covered	10.019	Lost	9.663	Covered	8.900	No Access	No Access	DRY	9.159	9.314	9.480	9.619	9.678	9.542	9.566	9.894
12/8/2011	9.750	10.030	Blocked	Covered	10.009	Lost	9.623	Covered	8.900	No Access	No Access	DRY	9.159	9.324	9.510	9.639	9.688	9.492	9.556	9.804
16/8/2011	9.690	No Access	Blocked	Covered	10.019	Lost	9.613	Covered	8.940	No Access	No Access	DRY	9.159	No Access	9.520	9.619	9.668	9.552	9.546	9.884
19/8/2011	9.550	No Access	Blocked	Covered	10.139	Lost	9.663	Covered	8.920	No Access	No Access	DRY	9.179	9.324	9.520	9.624	9.668	9.552	9.546	10.034
22/8/2011	9.400	No Access	Blocked	Covered	10.039	Lost	9.613	Covered	8.820	No Access	No Access	DRY	9.179	9.324	9.520	9.629	9.638	9.542	9.536	9.984
24/8/2011	9.360	10.330	Blocked	Covered	10.039	Lost	9.603	Covered	8.795	No Access	No Access	DRY	9.179	9.344	9.540	9.629	9.608	9.542	9.536	9.934

Appendix F Surface Water Analysis Reports

Scientific Analysis Laboratories Certificate of Analysis

Hadfield House Hadfield Street Cornbrook Manchester M16 9FE

Tel: 0161 874 2400 Fax: 0161 874 2468

Scientific Analysis Laboratories is a limited company registered in England and Wales (No 2514788) whose address is at Hadfield House, Hadfield Street, Manchester M16 9FE

Report Number: 245390-1

Date of Report: 10-Aug-2011

Customer: VertaseFLI Limited

19 Napier Court Barlborough Links Barlborough S43 4PZ

Customer Contact: The Project Management

Customer Job Reference: 907 BRI
Date Job Received at SAL: 29-Jul-2011
Date Analysis Started: 29-Jul-2011
Date Analysis Completed: 10-Aug-2011

The results reported relate to samples received in the laboratory

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation

This report should not be reproduced except in full without the written approval of the laboratory

Tests covered by this certificate were conducted in accordance with SAL SOPs

Report checked and authorised by : Amelia McVennon Project Manager Issued by : Amelia McVennon Project Manager

CAAA.

SAL Reference: 245390 Customer Reference: 907 BRI

Water Analysed as Water

Vertase Hauxton Suite

			SA	L Reference	245390 001	245390 002	245390 003	245390 004	245390 005	245390 006	245390 007		
	ner Sampl	e Reference	P107	P73	WS17	Cam Up	Cam Down	Riddy Up	Riddy Down				
			Da	ate Sampled	28-JUL-2011								
					1								
Determinand	Method	Test Sample	LOD	Units									
Electrical Conductivity	T7	AR	10	μS/cm	5800	2400	3200	830	800	820	800		
pH	T7	AR			7.1	7.3	6.9	7.8	8.2	8.0	8.1		

SAL Reference: 245390 Customer Reference: 907 BRI

Water Analysed as Water

Vertase Hauxton OP/ON Suite

			SA	L Reference	245390 001	245390 002	245390 003	245390 004	245390 005	245390 006	245390 007
		Custor	ner Samp	le Reference	P107	P73	WS17	Cam Up	Cam Down	Riddy Up	Riddy Down
			D	ate Sampled	28-JUL-2011						
Determinand	Method	Test Sample	LOD	Units							
Dimefox	T16	AR	0.1	μg/l	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethofumesate	T16	AR	0.1	μg/l	11	1.1	0.5	<0.1	<0.1	<0.1	<0.1
Hempa	T16	AR	0.1	μg/l	<0.1	<0.1	2.0	<0.1	<0.1	<0.1	<0.1
Schradan	T16	AR	0.1	μg/l	2.2	0.4	2.9	<0.1	<0.1	<0.1	<0.1
Simazine	T16	AR	0.01	ug/l	6.6	0.12	<0.01	<0.01	<0.01	<0.01	<0.01

SAL Reference: 245390 Customer Reference: 907 BRI

Water Analysed as Water

Vertase Hauxton Phenoxy Acid Herbs Suite

		F-10179	S	AL Reference	245390 001	245390 002	245390 003	245390 004	245390 005	245390 006	245390 007
	-	Custon	ner Samp	ole Reference	P107	P73	WS17	Cam Up	Cam Down	Riddy Up	Riddy Down
				ate Sampled	28-JUL-2011						
Determinand	Method	Test Sample	LOD	Units					N		
Dicamba	T16	AR	0.1	μg/l	0.1	0.4	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorprop	T16	AR	0.1	μg/l	0.6	0.5	0.9	<0.1	<0.1	<0.1	<0.1
Phenoxy Acetic acid herbicide: MCPA	T16	AR	0.1	μg/l	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mecoprop	T16	AR	0.1	μg/l	23	1.0	24	2.9	1.3	1.0	0.4

SAL Reference: 245390 Customer Reference: 907 BRI

Water Analysed as Water

Vertase Hauxton SVOC Suite

			SA	L Reference	245390 001	245390 002	245390 003	245390 004	245390 005	245390 006	245390 007
		Custor	ner Samp	e Reference	P107	P73	WS17	Cam Up	Cam Down	Riddy Up	Riddy Down
			D	ate Sampled	28-JUL-2011	28-JUL-2011	28-JUL-2011	28-JUL-2011	28-JUL-2011	28-JUL-2011	28-JUL-2011
Determinand	Method	Test Sample	LOD	Units							
2,4,6-Trichlorophenol	T16	AR	10	μg/l	⁽⁹⁾ <100	⁽⁹⁾ <100	⁽⁹⁾ <100	<10	<10	<10	<10
2-Methyl-4,6-dinitrophenol	T16	AR	10	μg/l	⁽⁹⁾ <100	⁽⁹⁾ <100	⁽⁹⁾ <100	<10	<10	<10	<10
4-Chloro-2-methylphenol	T16	AR	10	μg/l	530	74	300	<10	<10	<10	<10
Bis (2-chloroethyl) ether	T16	AR	10	μg/l	2100	220	⁽⁹⁾ <100	<10	<10	<10	<10
Phenol	T16	AR	10	μg/l	⁽⁹⁾ <100	⁽⁹⁾ <100	⁽⁹⁾ <100	<10	<10	<10	<10

SAL Reference: 245390 Customer Reference: 907 BRI

Water Analysed as Water

Vertase Hauxton VOC Suite

			SA	L Reference	245390 001	245390 002	245390 003	245390 004	245390 005	245390 006	245390 007
		Custon	ner Sampl	e Reference	P107	P73	WS17	Cam Up	Cam Down	Riddy Up	Riddy Down
			Da	ate Sampled	28-JUL-2011	28-JUL-2011	28-JUL-2011	28-JUL-2011	28-JUL-2011	28-JUL-2011	28-JUL-2011
Determinand	Method	Test Sample	LOD	Units							
1,2-Dichlorobenzene	T54	AR	1	μg/l	<1	<1	<1	<1	<1	<1	<1
1,2-Dichloroethane	T54	AR	1	μg/l	11	2	<1	<1	<1	<1	<1
Cis-1,2-Dichloroethylene	T54	AR	1	μg/l	350	31	27	<1	<1	<1	<1
Cyclohexanone	T54	AR	10	μg/l	<10	<10	<10	<10	<10	<10	<10
Tetrachloroethene	T54	AR	1	μg/l	<1	<1	2	2	1	2	1
Toluene	T54	AR	1	μg/l	120	<1	<1	<1	<1	<1	<1
Trichloroethene	T54	AR	1	μg/l	<1	2	2	<1	<1	<1	<1
Vinyl chloride	T54	AR	1	μg/l	⁽¹⁷⁵⁾ 600	18	32	<1	<1	<1	<1
Xylene (Total)	T54	AR	1	μg/l	87	<1	<1	<1	<1	<1	<1

Index to symbols used in 245390-1

Value	Description
AR	As Received
9	LOD raised due to dilution of sample
175	Results should be viewed with caution due to being outside of the instrument calibration range
U	Analysis is UKAS accredited
N	Analysis is not UKAS accredited

Method Index

Value	Description
T7	Probe
T16	GC/MS
T54	GC/MS (Headspace)

Accreditation Summary

Determinand	Method	Test Sample	LOD	Units	Symbol	SAL References
Electrical Conductivity	T7	AR	10	μS/cm	N	001-007
pH	T7	AR			U	001-007
Dimefox	T16	AR	0.1	μg/l	N	001-007
Ethofumesate	T16	AR	0.1	μg/l	N	001-007
Hempa	T16	AR	0.1	μg/l	N	001-007
Schradan	T16	AR	0.1	μg/l	N	001-007
Simazine	T16	AR	0.01	μg/l	N	001-007
Dicamba	T16	AR	0.1	μg/l	N	001-007
Dichlorprop	T16	AR	0.1	μg/l	N	001-007
Phenoxy Acetic acid herbicide: MCPA	T16	AR	0.1	μg/l	N	001-007
Mecoprop	T16	AR	0.1	μg/l	N	001-007
2,4,6-Trichlorophenol	T16	AR	10	μg/l	U	001-007
2-Methyl-4,6-dinitrophenol	T16	AR	10	μg/l	N	001-007
4-Chloro-2-methylphenol	T16	AR	10	μg/l	N	001-007
Bis (2-chloroethyl) ether	T16	AR	10	μg/l	U	001-007
Phenol	T16	AR	10	μg/l	U	001-007
1,2-Dichlorobenzene	T54	AR	1	μg/l	U	001-007
1,2-Dichloroethane	T54	AR	1	μg/l	U	001-007
Cis-1,2-Dichloroethylene	T54	AR	1	μg/l	U	001-007
Cyclohexanone	T54	AR	10	μg/l	N	001-007
Tetrachloroethene	T54	AR	1	μg/l	U	001-007
Toluene	T54	AR	1	μg/l	U	001-007
Trichloroethene	T54	AR	1	μg/l	U	001-007
Vinyl chloride	T54	AR	1	μg/l	U	001-007
Xylene (Total)	T54	AR	1	μg/l	U	001-007

Scientific Analysis Laboratories Certificate of Analysis

Hadfield House Hadfield Street Cornbrook Manchester M16 9FE

Tel: 0161 874 2400 Fax: 0161 874 2468

Scientific Analysis Laboratories is a limited company registered in England and Wales (No 2514788) whose address is at Hadfield House, Hadfield Street, Manchester M16 9FE

Report Number: 245903-1

Date of Report: 10-Aug-2011

Customer: VertaseFLI Limited

19 Napier Court
Barlborough Links
Barlborough
S43 4PZ

Customer Contact: The Project Management

Customer Job Reference: 907BRI

Date Job Received at SAL: 03-Aug-2011

Date Analysis Started: 03-Aug-2011

Date Analysis Completed: 10-Aug-2011

The results reported relate to samples received in the laboratory

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation

This report should not be reproduced except in full without the written approval of the laboratory

Tests covered by this certificate were conducted in accordance with SAL SOPs

Report checked and authorised by : Amelia McVennon Project Manager Issued by : Amelia McVennon Project Manager

CAAA.

SAL Reference: 245903 Customer Reference: 907BRI

Water Analysed as Water

Vertase Hauxton Suite

			SA	L Reference	245903 001	245903 002	245903 003	245903 004	245903 005	245903 006	245903 007
		Custon	ner Sampl	e Reference	VN3	BH11	ВН9	S3/4	VF12	BHB1	BH6:06
			Da	ate Sampled	01-AUG-2011	01-AUG-2011	01-AUG-2011	02-AUG-2011	02-AUG-2011	02-AUG-2011	02-AUG-2011
	1										
Determinand	Method	Test Sample	LOD	Units							
Electrical Conductivity	T7	AR	10	μS/cm	2200	1400	1800	3300	1200	1900	870
pН	T7	AR			7.2	7.3	7.5	7.2	7.4	7.1	7.2

SAL Reference: 245903 Customer Reference: 907BRI

Water Analysed as Water

Vertase Hauxton OP/ON Suite

			SA	L Reference	245903 001	245903 002	245903 003	245903 004	245903 005	245903 006	245903 007
		Custon	ner Sampl	e Reference	VN3	BH11	ВН9	S3/4	VF12	BHB1	BH6:06
			D	ate Sampled	01-AUG-2011	01-AUG-2011	01-AUG-2011	02-AUG-2011	02-AUG-2011	02-AUG-2011	02-AUG-2011
Determinand	Method	Test Sample	LOD	Units							
Dimefox	T16	AR	0.1	μg/l	<0.1	<0.1	<0.1	0.6	<0.1	<0.1	<0.1
Ethofumesate	T16	AR	0.1	μg/l	9.7	33	15	2.5	280	850	2.1
Hempa	T16	AR	0.1	μg/l	<0.1	<0.1	3.6	410	190	<0.1	1.0
Schradan	T16	AR	0.1	μg/l	0.9	17	2.2	560	100	620	2.0
Simazine	T16	AR	0.01	µg/l	0.08	0.09	<0.01	0.15	0.42	4.6	0.06

SAL Reference: 245903 Customer Reference: 907BRI

Water Analysed as Water

Vertase Hauxton Phenoxy Acid Herbs Suite

	13,000	77.65	SA	L Reference	245903 001	245903 002	245903 003	245903 004	245903 005	245903 006	245903 007
	-	Custon	ner Sampl	le Reference	VN3	BH11	ВН9	S3/4	VF12	BHB1	BH6:06
			D	ate Sampled	01-AUG-2011	01-AUG-2011	01-AUG-2011	02-AUG-2011	02-AUG-2011	02-AUG-2011	02-AUG-2011
Determinand	Method	Test Sample	LOD	Units							
Dicamba	T16	AR	0.1	μg/l	<0.1	0.1	0.2	0.4	<0.1	1.6	0.3
Dichlorprop	T16	AR	0.1	μg/l	0.2	0.4	0.2	2.7	0.2	2.0	<0.1
Phenoxy Acetic acid herbicide: MCPA	T16	AR	0.1	μg/l	<0.1	<0.1	<0.1	<0.1	<0.1	0.8	<0.1
Mecoprop	T16	AR	0.1	μq/l	25	9.1	3.0	27	26	24	3.6

SAL Reference: 245903 Customer Reference: 907BRI

Water Analysed as Water

Vertase Hauxton SVOC Suite

			SA	L Reference	245903 001	245903 002	245903 003	245903 004	245903 005	245903 006	245903 007
		Custon	ner Sampl	e Reference	VN3	BH11	ВН9	S3/4	VF12	BHB1	BH6:06
			Da	ate Sampled	01-AUG-2011	01-AUG-2011	01-AUG-2011	02-AUG-2011	02-AUG-2011	02-AUG-2011	02-AUG-2011
Determinand	Method	Test Sample	LOD	Units							
2,4,6-Trichlorophenol	T16	AR	10	μg/l	<10	<10	<10	11	<10	<10	<10
2-Methyl-4,6-dinitrophenol	T16	AR	10	μg/l	<10	<10	<10	<10	<10	<10	<10
4-Chloro-2-methylphenol	T16	AR	10	μg/l	<10	<10	10	54	140	600	<10
Bis (2-chloroethyl) ether	T16	AR	10	μg/l	350	40	350	910	50	190	<10
Phenol	T16	AR	10	μg/l	<10	<10	10	<10	<10	<10	<10

SAL Reference: 245903 Customer Reference: 907BRI

Water Analysed as Water

Vertase Hauxton VOC Suite

			SA	L Reference	245903 001	245903 002	245903 003	245903 004	245903 005	245903 006	245903 007
		Custon	ner Sampl	e Reference	VN3	BH11	ВН9	S3/4	VF12	BHB1	BH6:06
			Da	ate Sampled	01-AUG-2011	01-AUG-2011	01-AUG-2011	02-AUG-2011	02-AUG-2011	02-AUG-2011	02-AUG-2011
Determinand	Method	Test Sample	LOD	Units							
1,2-Dichlorobenzene	T54	AR	1	μg/l	<1	<1	<1	<1	<1	1	<1
1,2-Dichloroethane	T54	AR	1	μg/l	<1	18	<1	<1	8	12	<1
Cis-1,2-Dichloroethylene	T54	AR	1	μg/l	<1	5	1	<1	10	570	3
Cyclohexanone	T54	AR	10	μg/l	<10	<10	<10	<10	<10	<10	<10
Tetrachloroethene	T54	AR	1	μg/l	<1	<1	<1	<1	35	3	<1
Toluene	T54	AR	1	μg/l	<1	<1	<1	55	4	7	<1
Trichloroethene	T54	AR	1	μg/l	<1	<1	<1	<1	19	3	<1
Vinyl chloride	T54	AR	1	μg/l	<1	3	<1	1	6	260	1
Xylene (Total)	T54	AR	1	μg/l	<1	<1	<1	45	6	82	<1

Index to symbols used in 245903-1

Value	Description
AR	As Received
U	Analysis is UKAS accredited
N	Analysis is not UKAS accredited

Method Index

Value	Description
T7	Probe
T54	GC/MS (Headspace)
T16	GC/MS

Accreditation Summary

Determinand	Method	Test Sample	LOD	Units	Symbol	SAL References
Electrical Conductivity	T7	AR	10	μS/cm	N	001-007
pH	T7	AR			U	001-007
Dimefox	T16	AR	0.1	μg/l	N	001-007
Ethofumesate	T16	AR	0.1	μg/l	N	001-007
Hempa	T16	AR	0.1	μg/l	N	001-007
Schradan	T16	AR	0.1	μg/l	N	001-007
Simazine	T16	AR	0.01	μg/l	N	001-007
Dicamba	T16	AR	0.1	μg/l	N	001-007
Dichlorprop	T16	AR	0.1	μg/l	N	001-007
Phenoxy Acetic acid herbicide: MCPA	T16	AR	0.1	μg/l	N	001-007
Mecoprop	T16	AR	0.1	μg/l	N	001-007
2,4,6-Trichlorophenol	T16	AR	10	μg/l	U	001-007
2-Methyl-4,6-dinitrophenol	T16	AR	10	μg/l	N	001-007
4-Chloro-2-methylphenol	T16	AR	10	μg/l	N	001-007
Bis (2-chloroethyl) ether	T16	AR	10	μg/l	U	001-007
Phenol	T16	AR	10	μg/l	U	001-007
1,2-Dichlorobenzene	T54	AR	1	μg/l	U	001-007
1,2-Dichloroethane	T54	AR	1	μg/l	U	001-007
Cis-1,2-Dichloroethylene	T54	AR	1	μg/l	U	001-007
Cyclohexanone	T54	AR	10	μg/l	N	001-007
Tetrachloroethene	T54	AR	1	μg/l	U	001-007
Toluene	T54	AR	1	μg/l	U	001-007
Trichloroethene	T54	AR	1	μg/l	U	001-007
Vinyl chloride	T54	AR	1	μg/l	U	001-007
Xylene (Total)	T54	AR	1	μg/l	U	001-007

Scientific Analysis Laboratories Ltd Certificate of Analysis

Hadfield House Hadfield Street Cornbrook Manchester M16 9FE

Tel: 0161 874 2400 Fax: 0161 874 2468

Scientific Analysis Laboratories is a limited company registered in England and Wales (No 2514788) whose address is at Hadfield House, Hadfield Street, Manchester M16 9FE

Report Number: 249485-1

Date of Report: 12-Sep-2011

Customer: VertaseFLI Limited

19 Napier Court
Barlborough Links
Barlborough
S43 4PZ

Customer Contact: The Project Management

Customer Job Reference: 907 BRI
Customer Purchase Order: 907 BRI
Date Job Received at SAL: 05-Sep-2011
Date Analysis Started: 06-Sep-2011
Date Analysis Completed: 12-Sep-2011

The results reported relate to samples received in the laboratory

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation

This report should not be reproduced except in full without the written approval of the laboratory

Tests covered by this certificate were conducted in accordance with SAL SOPs

Report checked and authorised by : Miss Emma Tibbitts Senior Project Manager Issued by : Miss Emma Tibbitts Senior Project Manager SAL Reference: 249485 Customer Reference: 907 BRI

Water Analysed as Water

Vertase Hauxton Suite

			SA	249485 001	249485 002	249485 003	249485 004	
		Custon	ner Sampl	BH11	WS17	VN3	ВН9	
	D	02-SEP-2011	02-SEP-2011	02-SEP-2011	02-SEP-2011			
	I							
Determinand	Determinand Method Test Sample LOD Units							
Electrical Conductivity	T7	AR	10	μS/cm	900	1800	2400	1900
рН	T7	AR			6.8	7.0	7.0	7.2

SAL Reference: 249485
Customer Reference: 907 BRI

Water Analysed as Water

Vertase Hauxton OP/ON Suite

Vertase Hauxton OF/	out outle		SA	L Reference	249485 001	249485 002	249485 003	249485 004	
	Customer Sample Reference						WS17 VN3	BH9	
							02-SEP-2011	1 02-SEP-201	
Determinand	Method	Test Sample	LOD	Units	3 33.33		Sylvania	The L	
Dimefox	T16	AR	0.1	μg/l	<0.1	<0.1	<0.1	<0.1	
Ethofumesate	T16	AR	0.1	μg/l	<0.1	0.9	7.8	0.1	
Hempa	T16	AR	0.1	μg/l	3.0	1.3	<0.1	4.0	
Schradan	T16	AR	0.1	μg/l	14	1.8	0.7	0.8	
Simazina	T16	ΔR	0.01	ug/l	0.33	0.52	<0.01	<0.01	

SAL Reference: 249485 Customer Reference: 907 BRI

Water Analysed as Water

Vertase Hauxton Phenoxy Acid Herbs Suite

		249485 001	249485 002	249485 003	249485 004			
	-01	Custon	ner Sampl	e Reference	BH11	WS17	VN3	ВН9
			Da	ate Sampled	02-SEP-2011	02-SEP-2011	02-SEP-2011	02-SEP-2011
Determinand	Method	Test Sample	LOD	Units				
Dicamba	T16	AR	0.1	μg/l	<0.1	0.4	<0.1	<0.1
Dichlorprop	T16	AR	0.1	μg/l	<0.1	0.5	<0.1	<0.1
Phenoxy Acetic acid herbicide: MCPA	T16	AR	0.1	μg/l	<0.1	<0.1	<0.1	<0.1
Mecoprop	T16	AR	0.1	μg/l	1.9	30	5.8	2.1

SAL Reference: 249485 Customer Reference: 907 BRI

Water Analysed as Water

Vertase Hauxton VOC Suite

			SA	L Reference	249485 001	249485 002	249485 003	249485 004			
		Custon	ner Samp	le Reference	BH11	WS17	VN3	ВН9			
			D	02-SEP-2011	02-SEP-2011	02-SEP-2011	02-SEP-2011				
Determinand	Determinand Method Test Sample LOD Units										
Vinyl chloride	T54	AR	1	μg/l	<1	5	<1	2			
Cis-1,2-Dichloroethylene	T54	AR	1	μg/l	<1	6	1	4			
1,2-Dichloroethane	T54	AR	1	μg/l	<1	<1	<1	<1			
Trichloroethene	T54	AR	1	μg/l	<1	<1	<1	<1			
Toluene	T54	AR	1	μg/l	<1	<1	<1	<1			
Tetrachloroethene	T54	AR	1	μg/l	<1	<1	<1	<1			
Xylene (Total)	T54	AR	1	μg/l	<1	<1	<1	<1			
1,2-Dichlorobenzene	T54	AR	1	μg/l	<1	<1	<1	<1			
Cyclohexanone	T54	AR	10	μg/l	<10	<10	<10	<10			

SAL Reference: 249485 Customer Reference: 907 BRI

Water Analysed as Water

Vertase Hauxton SVOC Suite

			SA	249485 001	249485 002	249485 003	249485 004	
		Custon	BH11	WS17	VN3	ВН9		
			02-SEP-2011	02-SEP-2011	02-SEP-2011	02-SEP-2011		
Determinand	Method	Method Test Sample LOD Units						
2,4,6-Trichlorophenol	T16	AR	10	μg/l	<10	<10	<10	<10
2-Methyl-4,6-dinitrophenol	T16	AR	10	μg/l	<10	<10	<10	<10
4-Chloro-2-methylphenol	T16	AR	10	μg/l	<10	56	<10	<10
Bis (2-chloroethyl) ether	T16	AR	10	μg/l	<10	1500	550	340
Phenol	T16	AR	10	μg/l	(36) < 50	(36) < 50	(36) <50	(36) <50

Index to symbols used in 249485-1

Value	Description
AR	As Received
36	LOD Raised due to low Matrix spike recovery
U	Analysis is UKAS accredited
N	Analysis is not UKAS accredited

Method Index

Value	Description
T7	Probe
T16	GC/MS
T54	GC/MS (Headspace)

Accreditation Summary

Determinand	Method	Test Sample	LOD	Units	Symbol	SAL References
Vinyl chloride	T54	AR	1	μg/l	U	001-004
Cis-1,2-Dichloroethylene	T54	AR	1	μg/l	U	001-004
1,2-Dichloroethane	T54	AR	1	μg/l	U	001-004
Trichloroethene	T54	AR	1	μg/l	U	001-004
Toluene	T54	AR	1	μg/l	U	001-004
Tetrachloroethene	T54	AR	1	μg/l	U	001-004
Xylene (Total)	T54	AR	1	μg/l	U	001-004
1,2-Dichlorobenzene	T54	AR	1	μg/l	U	001-004
Cyclohexanone	T54	AR	10	μg/l	N	001-004
Electrical Conductivity	T7	AR	10	μS/cm	N	001-004
pH	T7	AR			U	001-004
Dimefox	T16	AR	0.1	μg/l	N	001-004
Ethofumesate	T16	AR	0.1	μg/l	N	001-004
Hempa	T16	AR	0.1	μg/l	N	001-004
Schradan	T16	AR	0.1	μg/l	N	001-004
Simazine	T16	AR	0.01	μg/l	N	001-004
Dicamba	T16	AR	0.1	μg/l	N	001-004
Dichlorprop	T16	AR	0.1	μg/l	N	001-004
Phenoxy Acetic acid herbicide: MCPA	T16	AR	0.1	μg/l	N	001-004
Mecoprop	T16	AR	0.1	μg/l	N	001-004
2,4,6-Trichlorophenol	T16	AR	10	μg/l	U	001-004
2-Methyl-4,6-dinitrophenol	T16	AR	10	μg/l	N	001-004
4-Chloro-2-methylphenol	T16	AR	10	μg/l	N	001-004
Bis (2-chloroethyl) ether	T16	AR	10	μg/l	U	001-004
Phenol	T16	AR	10	μg/l	U	001-004

Scientific Analysis Laboratories Ltd Certificate of Analysis

Hadfield House Hadfield Street Cornbrook Manchester M16 9FE

Tel: 0161 874 2400 Fax: 0161 874 2468

Scientific Analysis Laboratories is a limited company registered in England and Wales (No 2514788) whose address is at Hadfield House, Hadfield Street, Manchester M16 9FE

Report Number: 249764-1

Date of Report: 13-Sep-2011

Customer: VertaseFLI Limited

19 Napier Court
Barlborough Links
Barlborough
S43 4PZ

Customer Contact: The Project Management

Customer Job Reference: 907 BRI
Customer Purchase Order: 907 BRI
Date Job Received at SAL: 07-Sep-2011
Date Analysis Started: 08-Sep-2011
Date Analysis Completed: 13-Sep-2011

The results reported relate to samples received in the laboratory

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation

This report should not be reproduced except in full without the written approval of the laboratory

Tests covered by this certificate were conducted in accordance with SAL SOPs

Report checked and authorised by : Miss Emma Tibbitts Senior Project Manager Issued by : Miss Emma Tibbitts Senior Project Manager SAL Reference: 249764 Customer Reference: 907 BRI

Water Analysed as Water

Vertase Hauxton Suite

	249764 001									
	BH6/06									
	05-SEP-2011									
	1	Test	1							
Determinand										
Electrical Conductivity T7 AR 10 μS/cm 1200										
nH	T7	ΔR			72					

SAL Reference: 249764
Customer Reference: 907 BRI

Water Analysed as Water

Vertase Hauxton OP/ON Suite

	249764 001				
	BH6/06				
	05-SEP-2011				
Determinand					
Dimefox	T16	AR	0.1	μg/l	<0.1
Ethofumesate	T16	AR	0.1	μg/l	1.0
Hempa	T16	AR	0.1	μg/l	<0.1
Schradan	T16	AR	0.1	μg/l	<0.1
Simazine	T16	AR	0.01	μg/l	0.01

SAL Reference: 249764 Customer Reference: 907 BRI

Water Analysed as Water

Vertase Hauxton Phenoxy Acid Herbs Suite

	SAL Reference					
	Customer Sample Reference BH6/06					
	Date Sampled 05-S					
Determinand	Method	Test Sample	LOD	Units		
Dicamba	T16	AR	0.1	μg/l	<0.1	
Dichlorprop	T16	AR	0.1	μg/l	0.5	
Phenoxy Acetic acid herbicide: MCPA	T16	AR	0.1	μg/l	1.9	

T16

SAL Reference: 249764 Customer Reference: 907 BRI

Water Analysed as Water

Vertase Hauxton VOC Suite

Mecoprop

	SAL Reference						
	Customer Sample Reference						
			Da	ate Sampled	05-SEP-2011		
Determinand	Determinand Method Test Sample LOD Units						
1,2-Dichlorobenzene	T54	AR	1	μg/l	<1		
1,2-Dichloroethane	T54	AR	1	μg/l	<1		
Cis-1,2-Dichloroethylene	T54	AR	1	μg/l	18		
Cyclohexanone	T54	AR	10	μg/l	<10		
Tetrachloroethene	T54	AR	1	μg/l	300		
Toluene	T54	AR	1	μg/l	14		
Trichloroethene	T54	AR	1	μg/l	180		
Vinyl chloride	T54	AR	1	μg/l	<1		
Xvlene (Total)	T54	AR	1	ua/l	<1		

μg/l

SAL Refe	rence: 24	19764				
Customer Refe	rence: 90	7 BRI				
Water	Aı	nalysed as '	Water			
Vertase Hauxton SVOC Suite						
SAL Reference 249764 001						
Customer Sample Reference BH6/06						
			Da	ate Sampled	05-SEP-2011	
		Test				
Determinand	Method	Sample	LOD	Units		
2,4,6-Trichlorophenol	T16	AR	10	μg/l	<10	
2-Methyl-4,6-dinitrophenol	T16	AR	10	μg/l	<10	
4-Chloro-2-methylphenol	T16	AR	10	μg/l	<10	
Bis (2-chloroethyl) ether	T16	AR	10	μg/l	32	
Phonol	T16	ΛD	10	ua/l	(36) -20	

Index to symbols used in 249764-1

Value	Description
AR	As Received
36	LOD Raised due to low Matrix spike recovery
U	Analysis is UKAS accredited
N	Analysis is not UKAS accredited

Method Index

Value	Description
T16	GC/MS
T54	GC/MS (Headspace)
T7	Probe

Accreditation Summary

Determinand	Method	Test Sample	LOD	Units	Symbol	SAL References
Electrical Conductivity	T7	AR	10	μS/cm	N	001
pH	T7	AR			U	001
Dimefox	T16	AR	0.1	μg/l	N	001
Ethofumesate	T16	AR	0.1	μg/l	N	001
Hempa	T16	AR	0.1	μg/l	N	001
Schradan	T16	AR	0.1	μg/l	N	001
Simazine	T16	AR	0.01	μg/l	N	001
Dicamba	T16	AR	0.1	μg/l	N	001
Dichlorprop	T16	AR	0.1	μg/l	N	001
Phenoxy Acetic acid herbicide: MCPA	T16	AR	0.1	μg/l	N	001
Mecoprop	T16	AR	0.1	μg/l	N	001
2,4,6-Trichlorophenol	T16	AR	10	μg/l	U	001
2-Methyl-4,6-dinitrophenol	T16	AR	10	μg/l	N	001
4-Chloro-2-methylphenol	T16	AR	10	μg/l	N	001
Bis (2-chloroethyl) ether	T16	AR	10	μg/l	U	001
Phenol	T16	AR	10	μg/l	U	001
1,2-Dichlorobenzene	T54	AR	1	μg/l	U	001
1,2-Dichloroethane	T54	AR	1	μg/l	U	001
Cis-1,2-Dichloroethylene	T54	AR	1	μg/l	U	001
Cyclohexanone	T54	AR	10	μg/l	N	001
Tetrachloroethene	T54	AR	1	μg/l	U	001
Toluene	T54	AR	1	μg/l	U	001
Trichloroethene	T54	AR	1	μg/l	U	001
Vinyl chloride	T54	AR	1	μg/l	U	001
Xylene (Total)	T54	AR	1	μg/l	U	001

Scientific Analysis Laboratories Ltd Certificate of Analysis

Hadfield House Hadfield Street Cornbrook Manchester M16 9FE

Tel: 0161 874 2400 Fax: 0161 874 2468

Scientific Analysis Laboratories is a limited company registered in England and Wales (No 2514788) whose address is at Hadfield House, Hadfield Street, Manchester M16 9FE

Report Number: 249765-1

Date of Report: 13-Sep-2011

Customer: VertaseFLI Limited

19 Napier Court
Barlborough Links
Barlborough
S43 4PZ

Customer Contact: The Project Management

Customer Job Reference: 907 BRI
Customer Purchase Order: 907 BRI
Date Job Received at SAL: 07-Sep-2011
Date Analysis Started: 08-Sep-2011
Date Analysis Completed: 13-Sep-2011

The results reported relate to samples received in the laboratory

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation

This report should not be reproduced except in full without the written approval of the laboratory

Tests covered by this certificate were conducted in accordance with SAL SOPs

Report checked and authorised by : Miss Emma Tibbitts Senior Project Manager Issued by : Miss Emma Tibbitts Senior Project Manager

SAL Reference: 249765 Customer Reference: 907 BRI

Water Analysed as Water

Vertase Hauxton Suite

	249765 001					
	S3/6					
	05-SEP-2011					
	1					
Determinand	Method	Method Test LOD Units				
Electrical Conductivity	T7	AR	10	μS/cm	5900	
pН	T7	AR			7.7	

SAL Reference: 249765 Customer Reference: 907 BRI

Water Analysed as Water

Vertase Hauxton OP/ON Suite

Schradan

Simazine

SAL Reference 249765 001 **Customer Sample Reference** S3/6 Date Sampled 05-SEP-2011 Test Sample Method LOD Determinand Units T16 Dimefox AR 0.1 <0.1 μg/l Ethofumesate T16 AR 0.1 μg/l T16 AR 0.1 2400 Hempa μg/l

AR

AR

0.1

0.01

μg/l

12000

0.90

SAL Reference: 249765 Customer Reference: 907 BRI

Water Analysed as Water

T16

T16

Vertase Hauxton Phenoxy Acid Herbs Suite

	SAL Reference 2							
	Customer Sample Reference							
			Da	ate Sampled	05-SEP-2011			
Determinand	Method	Test Sample	LOD	Units				
Dicamba	T16	AR	0.1	μg/l	42			
Dichlorprop	T16	AR	0.1	μg/l	120			

Determinand	Method	Test Sample	LOD	Units	
Dicamba	T16	AR	0.1	μg/l	42
Dichlorprop	T16	AR	0.1	μg/l	120
Phenoxy Acetic acid herbicide: MCPA	T16	AR	0.1	μg/l	2200
Mecoprop	T16	AR	0.1	μg/l	270

SAL Reference: 249765 Customer Reference: 907 BRI

Water Analysed as Water

Vertase Hauxton VOC Suite

	S3/6				
			Da	ate Sampled	05-SEP-2011
Determinand	Method	Test Sample	LOD	Units	
1,2-Dichlorobenzene	T54	AR	1	μg/l	⁽¹⁹⁾ 220
1,2-Dichloroethane	T54	AR	1	μg/l	⁽¹⁹⁾ 5100
Cis-1,2-Dichloroethylene	T54	AR	1	μg/l	⁽¹⁹⁾ 22000
Cyclohexanone	T54	AR	10	μg/l	(19,9) <2000
Tetrachloroethene	T54	AR	1	μg/l	⁽¹⁹⁾ 97000
Toluene	T54	AR	1	μg/l	⁽¹⁹⁾ 5100
Trichloroethene	T54	AR	1	μg/l	⁽¹⁹⁾ 77000
Vinyl chloride	T54	AR	1	μg/l	⁽¹⁹⁾ 1500
Xylene (Total)	T54	AR	1	μg/l	(9,19) <200

SAL Reference 249765 001

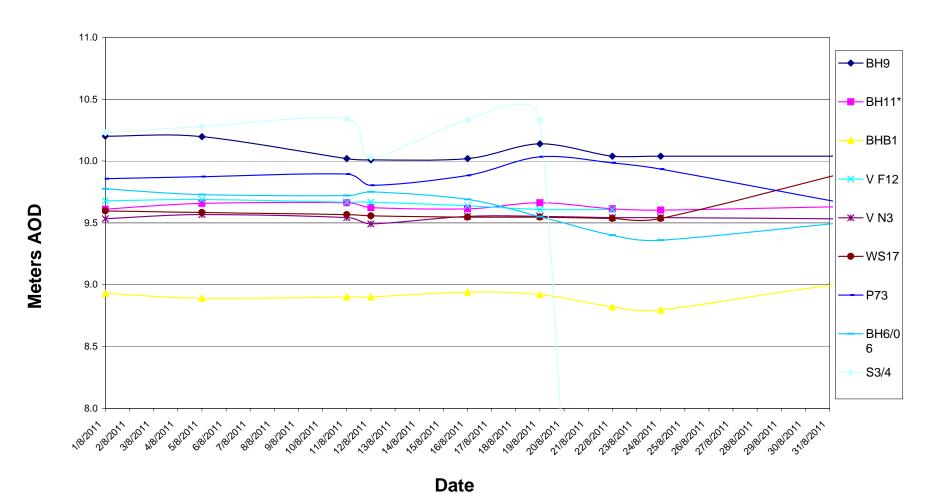
SAL Refe	rence: 24	19765				
Customer Refe	rence: 90	7 BRI				
Water Vertase Hauxton SVOC Sui		nalysed as '	Water			
SAL Reference 249765 001						
Customer Sample Reference S3/6						
			Da	ate Sampled	05-SEP-2011	
Determinand	Method	Method Test LOD Units				
2,4,6-Trichlorophenol	T16	AR	10	μg/l	1300	
2-Methyl-4,6-dinitrophenol	T16	AR	10	μg/l	(36) < 30	
4-Chloro-2-methylphenol	T16	AR	10	μg/l	6000	
Bis (2-chloroethyl) ether	T16	AR	10	μg/l	79000	
Phenol	T16	AR	10	ua/l	(36) <30	

Index to symbols used in 249765-1

Value	Description
AR	As Received
36	LOD Raised due to low Matrix spike recovery
9	LOD raised due to dilution of sample
19	Due to high levels the analysis was conducted on a diluted sample
U	Analysis is UKAS accredited
N	Analysis is not UKAS accredited

Method Index

Value	Description					
T16	GC/MS					
T7	Probe					
T54	GC/MS (Headspace)					


Accreditation Summary

Determinand	Method	Test Sample	LOD	Units	Symbol	SAL References
Electrical Conductivity	T7	AR	10	μS/cm	N	001
pH	T7	AR			U	001
Dimefox	T16	AR	0.1	μg/l	N	001
Ethofumesate	T16	AR	0.1	μg/l	N	001
Hempa	T16	AR	0.1	μg/l	N	001
Schradan	T16	AR	0.1	μg/l	N	001
Simazine	T16	AR	0.01	μg/l	N	001
Dicamba	T16	AR	0.1	μg/l	N	001
Dichlorprop	T16	AR	0.1	μg/l	N	001
Phenoxy Acetic acid herbicide: MCPA	T16	AR	0.1	μg/l	N	001
Mecoprop	T16	AR	0.1	μg/l	N	001
2,4,6-Trichlorophenol	T16	AR	10	μg/l	U	001
2-Methyl-4,6-dinitrophenol	T16	AR	10	μg/l	N	001
4-Chloro-2-methylphenol	T16	AR	10	μg/l	N	001
Bis (2-chloroethyl) ether	T16	AR	10	μg/l	U	001
Phenol	T16	AR	10	μg/l	U	001
1,2-Dichlorobenzene	T54	AR	1	μg/l	U	001
1,2-Dichloroethane	T54	AR	1	μg/l	U	001
Cis-1,2-Dichloroethylene	T54	AR	1	μg/l	U	001
Cyclohexanone	T54	AR	10	μg/l	N	001
Tetrachloroethene	T54	AR	1	μg/l	U	001
Toluene	T54	AR	1	μg/l	U	001
Trichloroethene	T54	AR	1	μg/l	U	001
Vinyl chloride	T54	AR	1	μg/l	U	001
Xylene (Total)	T54	AR	1	μg/l	U	001

Appendix G
Groundwater Level Graph

Hauxton Groundwater Level Data August 2011

Appendix H
Waste Water Treatment Plant Discharge Analysis

			Bromide	Chloride	Sulphate Ion	Suspended Solids (Total)	Ammoniacal Nitrogen	Biochemical Oxygen Demand		Atrazine	Trietazine	Simazine	Total Atrazine, Trietazine and Simazine	Benazolin	2,3,6-TBA	Dicamba	Hempa	Schradan
Sample Taken	Report Date	Report Number Sample Location	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l		μg/l	μg/l	μg/l	ug/l	μg/l	μg/l	μg/l	μg/l	μg/l
	Conse	ented Levels	50	3000	5000	45	15	30	na	To	otal of all th	ree	250	50	20	50	274	135
13/1/2011	25/1/2011	224623 WWTW Discharge	<0.2	92.00	140.00	<10	0.38	<3	7.6	<0.01	0.05	<0.01	0.05	<0.1	<0.1	0.1	15	6.5
15/2/2011	23/2/2011	228099 WWTW Discharge	<0.1	170.00	220.00	<10	0.08	<3	9.1	<0.01	<0.01	<0.01	0.00	1.1	<0.1	<0.01	<0.1	<0.1
23/2/2011	9/3/2011	229026 WWTW Discharge	1.70	200.00	250.00	<10	< 0.05	<3	8.1	<0.01	<0.01	<0.01	0.00	<0.1	0.20	<0.1	0.40	0.20
2/3/2011	15/3/2011	229789 WWTW Discharge	<0.1	220.00	290.00	<10	< 0.05	<3	8.2	<0.01	0.02	<0.01	0.02	<0.1	0.4	<0.1	0.9	0.4
7/3/2011	18/3/2011	230442 WWTW Discharge	NT	NT	NT	NT	NT	NT	8.1	NT	NT	<0.01	NT	NT	NT	0.20	0.6	0.3
23/3/2011	1/4/2011	232143 WWTW Discharge	<0.1	190.00	210.00	<10	<0.05	<3	7.9	<0.01	0.02	<0.01	0.02	<0.1	<0.1	<0.1	0.5	0.2
5/4/2011	13/4/2011	233543 WWTW Discharge	<0.1	190.00	200.00	<10	< 0.05	<3	8.0	<0.01	0.03	<0.01	0.03	<0.1	0.8	<0.1	1.1	0.5
20/4/2011	3/5/2011	235339 WWTW Discharge	<0.1	150.00	190.00	<10	< 0.05	<3	4.0	<0.01	<0.01	<0.01	0.00	<0.1	<0.1	<0.1	1.2	0.4
4/5/2011	16/5/2011	236232 WWTW Discharge	<0.2	150.00	180.00	<10	<0.01	<3	8.1	0.03	0.07	0.01	0.11	<0.1	0.8	<0.1	0.8	0.3
12/5/2011	26/5/2011	237211 WWTW Discharge	<0.1	160.00	190.00	15	0.18	<3	8.1	0.03	0.09	<0.01	0.12	<0.1	0.3	<0.1	0.5	<0.1
18/5/2011	31/5/2011	237962 WWTW Discharge	<0.1	130.00	170.00	<10	<0.05	<3	7.9	<0.01	<0.01	<0.01	0.00	<0.1	0.2	0.1	0.4	0.1
2/6/2011	14/6/2011	239421 WWTW Discharge	0.5	130.00	190.00	<10	<0.05	<3	7.8	0.05	0.07	<0.01	0.12	<0.1	3.3	0.3	10	6.7
14/6/2011	22/6/2011	240642 WWTW Discharge	<0.1	140.00	220.00	<10	<0.05	24	8.1	<0.01	<0.01	<0.01	0.00	<0.1	2.5	<0.1	31	30
29/6/2011	7/7/2011	242142 WWTW Discharge	<0.2	160.00	260.00	<10	<0.05	<3	8.2	<0.01	0.01	<0.01	0.01	<0.1	<0.1	<0.1	16	5
11/7/2011	21/7/2011	243434 WWTW Discharge	<0.1	150.00	240.00	<10	<0.05	<3	8.1	<0.01	0.03	<0.01	0.03	<0.1	3	<0.1	12	9.9
25/7/2011	1/8/2011	244979 WWTW Discharge	<0.1	150.00	240.00	<10	0.07	<3	8.2	<0.01	<0.01	<0.01	0.00	<0.1	10	0.4	19	12

Scientific Analysis Laboratories Ltd Certificate of Analysis

Hadfield House Hadfield Street Cornbrook Manchester M16 9FE

Tel: 0161 874 2400 Fax: 0161 874 2468

Scientific Analysis Laboratories is a limited company registered in England and Wales (No 2514788) whose address is at Hadfield House, Hadfield Street, Manchester M16 9FE

Report Number: Interim to 249090-1

Date of Report: 08-Sep-2011

Customer: VertaseFLI Limited

19 Napier Court
Barlborough Links
Barlborough
S43 4PZ

Customer Contact: Ms. Lucy Buckley

Customer Job Reference: 907 BRI
Customer Purchase Order: 907 BRI
Date Job Received at SAL: 01-Sep-2011
Date Analysis Started: 01-Sep-2011
Date Analysis Completed: 08-Sep-2011

The results reported relate to samples received in the laboratory

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation

This report should not be reproduced except in full without the written approval of the laboratory

Tests covered by this certificate were conducted in accordance with SAL SOPs

Report checked and authorised by : Mr Ross Walker Customer Services Manager

Mr Ross Walker Customer Services Manager

Issued by:

SAL Reference: 249090 Customer Reference: 907 BRI

Water Analysed as Water

Miscellaneous

	L Reference	249090 001	249090 002								
Customer Sample Reference WWTW Discharge WWTW Primary											
Date Sampled 30-AUG-2011 30-AUG-2011											
Determinand	Method	Test Sample	LOD	Units							
Ammoniacal nitrogen	T4	AR	50	μg/l	<50	<50					
Biochemical Oxygen Demand	T7	AR	3000	μg/l	<3000	<3000					
pH	T7	AR			8.0	8.3					

SAL Reference: 249090 Customer Reference: 907 BRI

Water Analysed as Water

Suite A

						The second second			
SAL Reference 249090 001 249090 002									
Customer Sample Reference WWTW Discharge WWTW Primary									
		ate Sampled	30-AUG-2011	30-AUG-2011					
Determinand	Method	Test Sample	LOD	Units					
Atrazine	T16	AR	0.01	μg/l	0.01	0.09			
Trietazine	T16								

SAL Reference: 249090 Customer Reference: 907 BRI

Water Analysed as Water

Suite B									
			SA	L Reference	249090 001	249090 002			
	Customer Sample Reference WWTW Discharge WWTW Primary								
			D	ate Sampled	30-AUG-2011	30-AUG-2011			
Determinand	Method	Test Sample	LOD	Units					
Benazolin	T16	AR	0.1	μg/l	<0.1	5.0			
2,3,6-TCB	T16	AR	0.1	μg/l	0.1	1.1			

SAL Reference: 249090 Customer Reference: 907 BRI

Water Analysed as Water

Suite C

		249090 001	249090 002						
		e Reference	WWTW Discharge	WWTW Primary					
		ate Sampled	30-AUG-2011	30-AUG-2011					
Determinand	Method	Test Sample							
Bromide	T253	AR	100	μg/l	300	200			
Chloride	T253	AR	200	μg/l	89000	76000			
Sulphate ion	T253	T253 AR 100 μg/l 95000 67000							
Suspended Solids (Total)	T2	AR	10000	ua/l	<10000	<10000			

SAL R	eference:	249090	249090							
Customer R	eference:	907 BRI	907 BRI							
Water		Analysed	Analysed as Water							
Suite D										
			SA	L Reference	249090 001	249090 002				
		e Reference	WWTW Discharge	WWTW Primary						
			Da	ate Sampled	30-AUG-2011	30-AUG-2011				
Determinand	Method	Test Sample	LOD	Units						
Dicamba	T16	AR	0.1	μg/l	<0.1	<0.1				
Hempa	T16	AR	0.1	μg/l	23	8.3				
Schradan	T16	AR	0.1	μg/l	8.7	8.0				
Simazine	T16	AR	0.01	μg/l	0.01	0.12				

SAL	Reference:	249090				
Customer	Reference:	907 BRI				
Water		Analysed	as Water			
Suite E						
			SA	L Reference	249090 001	249090 002
		Custon	ner Sampl	le Reference	WWTW Discharge	WWTW Primary
			D	ate Sampled	30-AUG-2011	30-AUG-2011
Determinand	Method	Test Sample	LOD	Units		
TVC at 22 C	T34	AR	10	cfu/ml	44000	24000
TVC at 37 C	T34	AR	10	cfu/ml	2600	9700

Index to symbols used in Interim to 249090-1

Value	Description							
AR	As Received							
W	Analysis was performed at another SAL laboratory							
U	Analysis is UKAS accredited							
N	Analysis is not UKAS accredited							

Notes

Interim report issued for results so far.

Method Index

Value	Description
T2	Grav
T253	IC(EID299)
T16	GC/MS
T4	Colorimetry
T7	Probe
T34	Micro

Accreditation Summary

Determinand	Method	Test Sample	LOD	Units	Symbol	SAL References
Ammoniacal nitrogen	T4	AR	50	μg/l	U	001-002
Biochemical Oxygen Demand	T7	AR	3000	μg/l	N	001-002
рН	T7	AR			U	001-002
Atrazine	T16	AR	0.01	μg/l	N	001-002
Trietazine	T16	AR	0.01	μg/l	N	001-002
Benazolin	T16	AR	0.1	μg/l	N	001-002
2,3,6-TCB	T16	AR	0.1	μg/l	N	001-002
Bromide	T253	AR	100	μg/l	WU	001-002
Chloride	T253	AR	200	μg/l	WU	001-002
Sulphate ion	T253	AR	100	μg/l	WU	001-002
Suspended Solids (Total)	T2	AR	10000	μg/l	N	001-002
Dicamba	T16	AR	0.1	μg/l	N	001-002

Determinand	Method	Test Sample	LOD	Units	Symbol	SAL References
Hempa	T16	AR	0.1	μg/l	N	001-002
Schradan	T16	AR	0.1	μg/l	N	001-002
Simazine	T16	AR	0.01	μg/l	N	001-002
TVC at 22 C	T34	AR	10	cfu/ml	WN	001-002
TVC at 37 C	T34	AR	10	cfu/ml	WN	001-002

Appendix I Soil Characterisation Results Summary

Results	Reported to	Grid square	Contaminant	Concentration	Likely use/origin
Received	SCDC			(µg/kg)	
12.04.2010	06.05.2010	K15		VOC/SVOC peal	ks detected
12.04.2010	06.05.2010	K16	Series of Aromatic Hydrocarbons circa C ₁₃ -C ₁₆	17,000	Potential herbicide degradation products. The structures are smaller and less complex than contaminants of concern and will therefore degrade more readily than the target contaminants and will be captured by the remediation process.
			2(1-methylpropyl)-phenol	10,000	Encountered and assessed during site investigation, not a priority contaminant
			2,6-bis(1-methylpropyl)-phenol	100,000	Commonly used in the manufacture of specialty surfactants used as wetting agents for agrochemicals.
15.04.2010	06.05.2010 (09.06.2010)	J16	2,6-bis(1,1-dimethylethyl)-4-(1-methylpropyl)-phenol	6,000	Commonly used as an antioxidant and stabiliser, also used in oils used in industrial applications.
			Unidentified branched aromatic alcohol, C ₁₄	240,000	Potential herbicide degradation products. The structures are smaller and less complex
			Unidentified branched aromatic alcohol, C ₁₈	290,000	than contaminants of concern and will therefore degrade more readily than the target contaminants and will be captured by
			Phenanthrene	4,100	Encountered and assessed during site
15.04.2010	06.05.2010	K14	Fluoranthene	4,800	investigation, concentration below target
			Pyrene Benzo(b/k)Fluoranthene	3,900 2,200	value
			Dodecanoic acid (Lauric acid), isooctyl ester	2,400	Lauric acid - main acid in coconut oil and palm kernel oil, is non-toxic and safe to handle, is used in many soaps, shampoos and body butters.
07.05.2010	24.05.2010	К9	Unidentified Aliphatic Hydrocarbon circa C ₃₀	2,300	Potential herbicide degradation products. The structures are smaller and less complex than contaminants of concern and will therefore degrade more readily than the target contaminants and will be captured by the remediation process.
			2,4-Dichloro-o-cresol	9,000	Potential herbicide degradation product
			Bis(2-ethylhexyl) maleate	3,800	Commonly used as an intermediate in hydrogenation or acetylation reactions, possibly used in agrochemicals manufacture
			Cyclo octaatomic sulphur	2,800	S_8 is the most common form of sulphur in the solid state, widely used in insecticide and fungicide manufacture

07.05.2010	24.05.2010 (09.06.2010)	L8	Dodecanoic acid (Lauric acid), isooctyl ester	7,400	Lauric acid - main acid in coconut oil and palm kernel oil, is non-toxic and safe to handle, is used in many soaps, shampoos and body butters.
			Unidentified aromatic hydrocarbon containing O and Cl circa C ₇	8,400	Potential herbicide degradation products. The structures are smaller and less complex than contaminants of concern and will therefore degrade more readily than the target contaminants and will be captured by the remediation process.
07.05.2010	24.05.2010	L9	Unidentified Aliphatic Hydrocarbon circa C ₃₀	2,300	Potential herbicide degradation products. The structures are smaller and less complex than contaminants of concern and will therefore degrade more readily than the target contaminants and will be captured by the remediation process.
13.05.2010	24.05.2010	H8	No VOC/SVOC peaks detected		
			1,2-bis(2,4,6- trichlorophenoxy)ethane	6,900	Potential Prochloraz degradation product
			Prochloraz	9,100	Fungicide
	04.05.0040		Unidentified aromatic	9,400	Potential herbicide degradation products.
13.05.2010	24.05.2010 (09.06.2010)	H9	hydrocarbon containing CI circa C ₈		The structures are smaller and less complex than contaminants of concern and will
			Unidentified aromatic amine containing CI circa C ₁₁	2,100	therefore degrade more readily than the target contaminants and will be captured by the remediation process.
13.05.2010	24.05.2010	17	No SVOC peaks detected		
			2,4-Dichloro-o-cresol	29,000	
			2,3,6-Trichlorotoluene	47,000	Potential herbicide degradation product
			1-(2-Chloroethoxy)-2-(o-Tolyloxy) ethane	20,000	Potential herbicide degradation product
13.05.2010	24.05.2010 (09.06.2010)	19	Unidentified aromatic alcohol containing CI circa C ₇	25,000	Potential herbicide degradation products. The structures are smaller and less complex than contaminants of concern and will
			Unidentified aromatic hydrocarbon containing O circa C_{16-18}	12,000	therefore degrade more readily than the target contaminants and will be captured by the remediation process.
13.05.2010	24.05.2010	J7	No VOC/SVOC peaks detected		
20.05.2010	24.05.2010	J8	No VOC/SVOC peaks detected		
26.05.2010		J9	No VOC/SVOC peaks detected		
04.06.2010	16.06.2010 (09.06.2010)	H7	Dichloromethyl phenol	2,100	Same as 2,4-Dichloro-o-cresol (I9)
05.05.2010	16.06.2010 (09.06.2010)	K7	1,2-bis(2,4,6- trichlorophenoxy)ethane	2400.0	As for H9
05.05.2010	16.06.2010	K8	No VOC/SVOC peaks detected		

10.06.2010	20.06.2040	10	2-methyl phenol	5,500	Encountered and assessed during site investigation, not a priority contaminant
18.06.2010	29.06.2010	18	1,2-dichlorobenzene	3,600	Contaminant of concern, already included in the standard validation suite
17.06.2010	29.06.2010 (09.06.2010)	K10	2,4-Dichloro-o-cresol	550,000	As for I9 and H7
22.06.2010		L10	Cyclo octaatomic sulphur	16,000	As for L8 - Sulphur
			Dichloromethyl phenol	1,800,000	As for 2,4-Dichloro-o-cresol (I9, H7, K10)
			Naphthalene	4,600,000	Encountered and assessed during site
			2-methylnaphthalene	3,900,000	investigation, not a priority contaminant
20.07.2010	21.07.2010	K10 NAPL	1-methylnaphthalene CAS 90-12-0	2,400,000	More toxic than 2-methylnaphthalene, must be assessed separately
			Dinoseb		2-(1-methylpropyl)-4,6-dinitro- phenol -
			CAS 88-85-7	68,000,000	herbicide and insecticide. Yellow crystalline solid.
			Dichloromethyl phenol	24,000	As for 2,4-Dichloro-o-cresol (I9, H7, K10)
			1-(2-Chloroethoxy)-2-(o-Tolyloxy) ethane CAS 21120- 80-9	13,000	Same as I9
			1,2,4-Trichlorobenzene	28,000	Encountered and assessed during site
21.07.2010	22.07.2010	110 J10	Trichlorobenzene	32,000	investigation, not a priority contaminant
			2-Chlorotoluene	60,000	Investigation, not a phonty contaminant
			Trichloro toluene isomer	48,000	Same as I9
			Trichloro benzenamine isomer	11,000	
			2,3-Dichlorotoluene CAS 32768-54-0	290,000	Potential herbicide degradation product
21.07.2010	22.07.2010	L11	Dichloromethyl phenol	5,000	As for 2,4-Dichloro-o-cresol (I9, H7, K10, J10)
			2,4-Dichloro-o-cresol CAS 1570-65-6	10,000	As for I9, H7, K10, J10, L11
28.07.2010	02.08.2010	H10	Trichloro toluene isomers	58,000	Same as I9, J10
20.07.2010	02.00.2010	1110	Dichlorotoluene isomer	52,000	6 possible isomers, but very little data, using surrogate.
			2-Chlorotoluene	39,000	Encountered and assessed during site
			Trichlorobenzene	350,000	investigation, not a priority contaminant
28 07 2010	02.09.2010	140	2,4-Dichloro-o-cresol CAS 1570-65-6	5,000	As for I9, H7, K10, J10, L11, H10
28.07.2010	02.08.2010	l10	Trichloro toluene isomers	24,000	Same as I9, J10, H10
03.08.2010	04.08.2010	L12	2,4-Dichloro-o-cresol CAS 1570-65-6	7,000	As for I9, H7, K10, J10, L11, H10, I10
03.08.2010	04.08.2010	L13	No VOC/SVOC peaks detected		·
03.08.2010	04.08.2010	K12	2,4-Dichloro-o-cresol CAS 1570-65-6	7,000	As for I9, H7, K10, J10, L11, H10, I10, L12

03.08.2010	04.08.2010	K13 sand	Cyclo octaatomic sulphur	68,000	As for L8, L10 - Sulphur
		& gravel			
05.08.2010	N/A	K13 chalk	2,4-Dichloro-o-cresol	650,000	As for I9, H7, K10, J10, L11, H10, I10, L12,
			CAS 1570-65-6		K12
			Trichloro toluene isomers	1,140,000	Same as I9, J10, H10, I10
			1-(2-Chloroethoxy)-2-(o-Tolyloxy)	140,000	Same as I9 and J10
			ethane CAS 21120-		
			80-9		
			Dichlorotoluene isomer	99,000	Same as J10, H10
			2-Chlorotoluene	12,000	Encountered and assessed during site
25 22 22 12		1777			investigation, not a priority contaminant
05.08.2010	N/A	K11	2,4-Dichloro-o-cresol	22,000	As for I9, H7, K10, J10, L11, H10, I10, L12,
			CAS 1570-65-6		K12, K13
05.08.2010	N/A	J11	2,4-Dichloro-o-cresol	220,000	As for I9, H7, K10, J10, L11, H10, I10, L12,
			CAS 1570-65-6		K12, K13
			Trichloro toluene isomers	376,000	Same as I9, J10, H10, I10, K13
			Dinoseb	90,000	Same as K10
			CAS 88-85-7		
			Diable retalisens isomer	18,000	Sama as III0 K12
			Dichlorotoluene isomer 2-Chlorotoluene	13,000	Same as H10, K13 Encountered and assessed during site
			2-Chiorotoldene	13,000	investigation, not a priority contaminant
12.08.2010	17.08.2010	J12	2-chloro Benzenemethanol	620	Potential agrochemical synthesis ingredient -
12.06.2010	17.00.2010	312	CAS 17849-38-6	020	further investigation is required
			2-Chlorobenzalazine	5,900	Truttilet investigation is required
			CAS 5328-80-3	3,300	
			2,4-Dichloro-o-cresol	2,000	As for I9, H7, K10, J10, L11, H10, I10, L12,
			CAS 1570-65-6	2,000	K12, K13, J11
			2(1-methylpropyl)-phenol	610	Encountered and assessed during site
			(2, 3, 1, 2, 1, 3, 7, 1, 2, 2, 1, 2,		investigation, not a priority contaminant
12.08.2010	N/A	J13	2,4-Dichloro-o-cresol	3,400	As for I9, H7, K10, J10, L11, H10, I10, L12,
			CAS 1570-65-6	,	K12, K13, J11, J12
24.08.2010	25.08.2010	J14	Total Petroleum	43,000	Encountered and assessed during site
			Hydrocarbons (C5-C12)	,	investigation, not a priority contaminant
			1,3,5-Trimethylbenzene	1,600	Encountered and assessed during site
			CAS 108-67-8		investigation, not a priority contaminant
			1,2,4-Trimethylbenzene	600	7
			CAS 95-63-6		
			1,2,3-Trimethylbenzene	700	Isomers encountered and assessed during
			CAS 526-73-8		site investigation, quantitative risk
					assessment not required
			1-Ethyl-2-Methylbenzene	500	Potential agrochemical synthesis ingredient -
			CAS 611-14-3		further investigation is required
25.08.2010	N/A	l13	1-methylnaphthalene	100	Same as K10NAPL
			CAS 90-12-0		

	ĺ		Phenanthrene	200	Encountered and assessed during site
			Fluoranthene	300	investigation, not a priority contaminant
			Pyrene	300	
			Benzo(b/k)Fluoranthene	200	
01.09.2010	N/A	l14	Trichloro methyl benzene	400	Same as I9, J10, H10, I10, K13, J11
			(trichloro toluene)		
01.09.2010	N/A	l15	Dichlorocresol	2600	As for I9, H7, K10, J10, L11, H10, I10, L12, K12, K13, J11, J12
			Dichlorophenoxybutyric acid	6300	Herbicide encountered and assessed during site investigation, similar to MCPA and Mecoprop which are higher risk substances therefore not a priority contaminant
01.09.2010	N/A	H14	No VOC/SVOC peaks detected		
01.09.2010	N/A	H15	No VOC/SVOC peaks detected		
03.09.2010	N/A	I11	Dichlorocresol	3,300	As for I9, H7, K10, J10, L11, H10, I10, L12, K12, K13, J11, J12, I15
			Trichloro methyl benzene (trichloro toluene)	1,000	Same as I9, J10, H10, I10, K13, J11, I14
			Prochloraz CAS 67747-09-5	800	Same as H9
03.09.2010	N/A	l12	1-methylnaphthalene CAS 90-12-0	40,000	Same as K10NAPL, I13
			Dibenzofuran	24,000	Encountered and assessed during site
			Phenanthrene	60,000	investigation, not a priority contaminant
			Fluoranthene	29,000	
			Acenaphthene	31,000	
24.09.2010	N/A	J15	Methylpropyl phenol	340	Encountered and assessed during site investigation, not a priority contaminant
24.09.2010	28.09.2010	H13	Oxathiane 4,4-dioxide CAS 107-61-9	220	
	N/A		Trichloro methyl benzene (trichloro toluene)	230	Same as I9, J10, H10, I10, K13, J11, I14,
			Dichloromethylphenol	2100	As for I9, H7, K10, J10, L11, H10, I10, L12, K12, K13, J11, J12, I15, I11
			1-(2-Chloroethoxy)-2-(o-Tolyloxy) ethane CAS 21120- 80-9	470	Same as I9, J10, K13
01.10.2010	N/A	H11	No VOC/SVOC peaks detected		
01.10.2010	05.10.2010	H12	Indane CAS 496-11-7	3700000	2-ring hydrocarbon
	N/A		Ethyltoluene (ethyl methyl benzene) isomer	4500000	As J14
			Bis methylpropyl phenol isomer	980000	As J16
			1,3,5-Trimethylbenzene	3900000	Encountered and assessed during site
	· · · · · · · · · · · · · · · · · · ·				

	1		1,2,4-Trimethylbenzene	10000000	investigation, not a priority contaminant
			1,2,3-Trimethylbenzene	3100000	
22.10.2010	25.10.2010	G12	Nicotine	6400	Natural insecticide
(216017)	N/A		Dichloromethyl phenol	2900	As for I9, H7, K10, J10, L11, H10, I10, L12, K12, K13, J11, J12, I15, I11, H13
			Methylpropyl phenol	9400	Encountered and assessed during site investigation, not a priority contaminant
			Schradan	1200	Contaminant of concern, already included in the standard validation suite
22.10.2010 (216017)	N/A	G13	1-methylnaphthalene CAS 90-12-0	170	Same as K10NAPL, I13, I12
			Isophorone CAS 78-59-1	530	Encountered and assessed during site investigation, not a priority contaminant
			Naphthalene	690	
			2-methylnaphthalene	270	
Ì			Phenanthrene	410	
			Fluoranthene	380	
			Pyrene	310	
22.10.2010 (216017)	N/A	G14	No VOC/SVOC peaks detected		
29.10.2010 (216821)	N/A	H17	No VOC/SVOC peaks detected		
29.10.2010 (216821)	N/A	G17	No VOC/SVOC peaks detected		
01.11.2010 (216817)	30.11.2010	G10	Dibromochloromethane CAS 124-48-1	300	Risk Assessment
	N/A		Dichloromethyl phenol	1300	As for I9, H7, K10, J10, L11, H10, I10, L12, K12, K13, J11, J12, I15, I11, H13, G12
			Isophorone	7100	Encountered and assessed during site
			Benzyl Chloride (1-chloro-2-methylbenzene CAS 95-49-8)	200	investigation, not a priority contaminant
			Methylpropyl phenol	7100	-
			3,3,5- trimethyl cyclohexanone	700	_
01.11.2010 (216817)	N/A	N/A G11	Dichloromethyl phenol	2300	As for I9, H7, K10, J10, L11, H10, I10, L12, K12, K13, J11, J12, I15, I11, H13, G12, G10
			Trichloro methyl benzene (trichloro toluene)	2400	Same as I9, J10, H10, I10, K13, J11, I14, I11, H13
				760	
			(trichloro toluene)		l11, H13

		2-Methylnaphthalene	1500	
		2 4 F Trichlaraphanal	260	
		2,4,5-Trichlorophenol	360	_
		Chloroform	500	_
		1,2-dibromoethane	700	
0.11.2010	G15		18000	Risk Assessment
			59000	Risk Assessment
N/A		Dichloromethyl phenol	2400	As for I9, H7, K10, J10, L11, H10, I10, L12, K12, K13, J11, J12, I15, I11, H13, G12, G10, G11
		1-Methyl naphthalene	26000	Same as K10NAPL, I13, I12, G13
		1-ethyl-3-	600	As J14, H12
		methyl benzene (ethyl toluene)		·
		Ethyltoluene	300	
			37000	Encountered and assessed during site
				investigation, not a priority contaminant
N/A	M7	No VOC/SVOC peaks detected	100	
N/A	M8	2-methyl phenol	11,000	Encountered and assessed during site
				investigation, not a priority contaminant
N/A	M6	No VOC/SVOC peaks detected		
N/A	N6	No VOC/SVOC peaks detected		
14//	140	140 VOO/6 VOO peaks delected		
NI/Δ	15	No VOC/SVOC pooks detected		
IN/A	LJ	No voc/svoc peaks detected		
NI/A	N 4 4	N 100/01/00		
N/A	IVI4	No VOC/SVOC peaks detected		
N/A	M5	No VOC/SVOC peaks detected		
N/A	N4	No VOC/SVOC peaks detected		
N/A	N5	No VOC/SVOC peaks detected		
		· ·		
N/A	M9	No VOC/SVOC peaks detected		
	-	The state of the s		
	N/A N/A N/A N/A N/A N/A N/A N/A	N/A M7 N/A M8 N/A M6 N/A N6 N/A N6 N/A M4 N/A M5 N/A M5 N/A N4 N/A N5	Dimethyl naphthalene Dichloromethyl phenol 1-Methyl naphthalene 1-ethyl-3- methyl benzene (ethyl toluene) Ethyltoluene Isophorone Naphthalene Methylpropyl phenol 2-Methylnaphthalene Phenanthrene Fluoranthene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,3-Trimethylbenzene N/A M7 No VOC/SVOC peaks detected N/A M8 2-methyl phenol N/A M6 No VOC/SVOC peaks detected N/A N6 No VOC/SVOC peaks detected N/A M7 No VOC/SVOC peaks detected N/A M8 No VOC/SVOC peaks detected N/A NO VOC/SVOC peaks detected	1,4-Dichlorobenzene 700 1,2,3-Trichlorobenzene 2000 1,2,3-Trichlorobenzene 2000 1,2,3-Trichlorobenzene 2000 1,2,3-Trichlorobenzene 2000 1,2,3-Trichlorobenzene 59000 1,2,4-Trichloromethyl phenol 2400 1-Methyl naphthalene 59000 1-ethyl-3-

18.11.2010	N/A	16	No VOC/SVOC peaks detected		
(218834)					
23.11.2010 (219458)	N/A	L4	No VOC/SVOC peaks detected		
23.11.2010 (219456)	N/A	N3	No VOC/SVOC peaks detected		
20.01.2011 (224432)	N/A	F11	No VOC/SVOC peaks detected		
20.01.2011 (224432)	N/A	F12	No VOC/SVOC peaks detected		
20.01.2011 (224432)	24.01.2011	F13	Total Petroleum Hydrocarbons (C8-C14)	16000	Controlled Waters risk assessment required, Human Health risk assessment previously actioned
20.01.2011 (224432)	24.01.2011	E12	Total Petroleum Hydrocarbons (C8-C14)	28000	Controlled Waters risk assessment required, Human Health risk assessment previously actioned
	N/A		1-Ethyl-2-Methylbenzene (o-ethyl toluene) CAS 611-14-3	300	As J14, H12, G15
			1,2,4-Trimethylbenzene	700	Encountered and assessed during site investigation, not a priority contaminant
20.01.2011	24.01.2011	E13	DDD	4100	Pesticide Risk Assessment Required.
(224432)	N/A		m/p ethyl toluene	1200	Encountered and assessed during site
			m-ethyl toluene:1-ethyl-3- methylbenzene, CAS 620-14-4		investigation, not a priority contaminants
			p-ethyl toluene: 1-ethyl-4- methylbenzene, CAS 622-96-8		
	24.01.2011		Total Petroleum Hydrocarbons (C8-C13)	73000	Controlled Waters risk assessment required, Human Health risk assessment previously actioned
	N/A		2,6-bis(1-methylpropyl)-phenol	5000	As J16, H12
			DDT	3200	Encountered and assessed during site investigation, not a priority contaminant
			4-(1-methylpropyl)phenol	2700	
			2(1-methylpropyl)-phenol	12000	
			1,2,3-trimethylbenzene	600	7
			1,3,5-trimethylbenzene	1700	
			1,2,4-trimethylbenzene	3000	
			p-Isopropyltoluene	400	
24.01.2011 (224621)	25.01.2011	F15A	No VOC/SVOC peaks detected		
24.01.2011 (224621)	25.01.2011	F15B	No VOC/SVOC peaks detected		

09.02.2011 (226719)	10.02.2011	H6	No VOC/SVOC peaks detected				
09.02.2011 (226719)	10.02.2011	J5	No VOC/SVOC peaks detected				
09.02.2011 (226719)	10.02.2011	J6	No VOC/SVOC peaks detected				
17.03.2011 (230436)	21.03.2011	K5	Bis(2-ethylhexyl) maleate CAS 142-16-5	1,800	As L8		
21.03.2011 (230436)	22.03.2011	K6	2,3-Dichlorotoluene CAS 32768-54-0	300	As J10, J11, H10, K13		
			Bis(2-ethylhexyl) maleate CAS 142-16-5	2,000	As L8, K5		
			Squalene CAS 7683-64-9	2,000	Natural organic compound found in the human body. Used in cosmetics, vaccines and steroid synthesis. Risk assessment not required.		
			Glycerol tricaprylate CAS 538-28-8	4,700	Cosmetic ingredient. RisK Assessment notrequired.		
28.03.2011 (231689)	29.03.2011	M10	No VOC/SVOC peaks detected				
30.03.2011 (232134)	01.04.2011	L14	No VOC/SVOC peaks detected				
31.03.2011	24.05.2011	TB100 (J13,	Dimethyl nitroaniline isomer	5,400	Risk Assesment Required		
(232138)		K12, K13)	Chlorazine, CAS 580-48-3	2,400	listed as antipsychotic drug, very similar in structure to the herbicide simazine. Risk Assessment required.		
	N/A		Dinoseb	57,000	As J11, K10, Already actioned		
			DDD	9,300	As E13, Already actioned.		
			Trietazine	8,600	Encountered and assessed during site investigation, not a priority contaminant		
13.06.2011 (239403)	N/A	G16	No VOC/SVOC peaks detected				
13.06.2011 (239403)	N/A	H16	No VOC/SVOC peaks detected				
13.06.2011 (239578)	N/A	L6	No VOC/SVOC peaks detected				
13.06.2011 (239578)	N/A	L7	No VOC/SVOC peaks detected				