

Your Ref:

Our Ref:

5036759/23/MAS

18 August 2010

Ms S Walford South Cambridgeshire District Council South Cambs Hall Cambourne Business Park Cambourne Cambridge CB3 6EA **Atkins Limited**

The Axis 10 Holliday Street Birmingham B1 1TF

Telephone +44 (0)121 483 5000 Fax +44 (0)121 483 5858

info@atkinsglobal.com www.atkinsglobal.com

Ext No: 5861

Dear Susan,

Former Bayer CropScience, Hauxton: Risk Assessment of Contaminants Not Previously Identified; Grid Cells H10, I10, J10, J11, K10 NAPL, K11, K12, K13 sand & gravel, K13 chalk, L11, L12 and L13

Further characterisation sampling and analysis have identified four contaminants not previously identified (CNPIs) requiring further assessment and derivation of Remedial Targets. These CNPIs were notified to South Cambridgeshire District Council by Harrow Estates (21.07.2010 and 22.07.2010).

The grid squares in which the CNPIs have been identified, and the treatment beds in which the materials have been placed, are summarised in Table 1. The CNPIs will be added to the contaminants of concern verification list for both the respective grid cells in which the CNPIs were identified and the corresponding treatment beds. The grid squares are shown on the enclosed Site Survey Reference Grid plan.

Table 1 – CNPIs Requiring Further Assessment and Derivation of Remedial Targets

Contaminant	Grid squares	Treatment beds				
1-methylnaphthalene, CAS 90-12-0	K10 NAPL	TB6, TB69, TB71, TB91, TB92				
2-(1-methylpropyl)-4,6-dinitro- phenol (Dinoseb), CAS 88-85-7	K10 NAPL	TB6, TB69, TB71 TB91, TB92				
	J11	TB88, TB93, TB95				
Trichloro benzenamine, Isomer not identified 2,3,4- CAS 634-67-3; or 2,3,5- CAS 18487-39-3; or 2,3,6- CAS 88963-39-7; or 2,4,5- CAS 636-30-6; or 2,4,6- CAS 634-93-5; or 3,4,5- CAS 634-91-3	J10	TB76, TB77				
2,3-Dichlorotoluene	J10	TB76, TB77				
CAS 32768-54-0	H10	TB83				
	K13 chalk	TB6, TB87, TB94, TB96				
	J11	TB88, TB93, TB95				

ATKINS

The compounds presented in Table 2 are CNPIs that have been risk assessed previously and for which Remedial Targets have already been derived. The CNPIs will be added to the list of verification sampling priority contaminants for the relevant grid cell and corresponding treatment beds.

Six further compounds were identified, however these were encountered and assessed during the site investigation and were deemed not to be priority contaminants.

Table 2 - CNPIs Risk Assessed in previous CNPI reports

Contaminant	Grid squares	Treatment beds					
2,4-Dichloro-o-cresol CAS 1570-65-6	K10 NAPL	TB6, TB69, TB71, TB91, TB92					
	J10	TB76, TB77 TB80, TB85, TB86					
	L11						
	H10	TB83					
	l10						
	L12	TB85, TB86, TB87					
	K12	TB6, TB85, TB86 TB87, TB94, TB9					
	K13 chalk	TB6, TB87, TB94, TB96					
	K11	TB6, TB80					
	J11	TB88, TB93, TB95					
1-(2-Chloroethoxy)-2-(o-Tolyloxy)-ethane	J10	TB76, TB77					
CAS 21120-80-9	K13 chalk	TB6, TB87, TB94, TB96					
Trichloro toluene	19	TB59-60					
Isomers not identified	J10	TB76, TB77					
2,3,4- CAS 30583-33-6 / 7359-72-0; or 2,3,5- CAS 56961-86-5; or	H10	TB83					
2,3,6- CAS 2077-46-5; or	l10	TB84					
2,4,5- CAS 6639-30-1; or 2,4,6- CAS 23749-65-7; or	K13 chalk	TB6, TB87, TB94, TB96					
3,4,5- CAS 21472-86-6	J11	TB88, TB93, TB95					

Toxicological assessments and human health and controlled waters risk assessments have been carried out for the four new CNPIs and, where sufficient toxicological, physical and chemical data is available, preliminary Remedial Targets have been derived for the specific compounds. The preliminary Remedial Targets will be provided to Vertase, who currently intend to use these for the CNPIs.

Where there is insufficient toxicological, physical and chemical data available for assessment and modelling, suitable surrogate compounds for which Remedial Targets have already been derived for the Hauxton site have been identified and selected based on chemical structures and toxicity data, see Table 3. Where surrogates have been adopted and identified for a particular CNPI, the actual CNPI be measured and assessed against the Remedial Target for the surrogate.

ATKINS

Table 3 - Surrogates Used

Contaminant	Suri	ogates				
	Human Health	Controlled Waters				
1-methylnaphthalene	Benzene	-				
2-(1-methylpropyl)-4,6-dinitro- phenol (Dinoseb)	-	-				
Trichloro benzenamine	Vinyl chloride					
2,3-Dichlorotoluene	Vinyl chloride	-				

The CNPIs, derived or surrogate Remedial Targets and required laboratory limits of detection (LODs) are summarised in Table 4. As for the previously identified contaminants of concern, four Remedial Targets have been derived for each CNPI: i) treated materials which will be placed within 20m of Riddy Brook (Inner Zone), ii) treated materials which will be placed at least 20m from Riddy Brook (Outer Zone), iii) treated materials which will be placed at least 1 m below final site levels, after levels have been raised to account for flood risk, (controlled waters risk driven) and iv) treated materials which will be placed within 1 m of final site levels (human health risk driven). The CNPIs and derived/surrogate Remedial Targets will be added to the list of Contaminants of Concern for the relevant grid square and treatment bed validation suites.

For some CNPIs the derived Remedial Targets may be below the lowest commercially achievable LOD. In these instances, as was done for the already established contaminant of concern, the Remedial Target will be set at the lowest commercially achievable LOD. As a result, some restrictions, such as not placing the treated soils within 1m of final site levels and/or not within 20m of Riddy Brook may be imposed.

Table 4 - Preliminary Remedial Targets

Contaminant		Remedial Tar	aets (ua/ka)		LOD
	Greater th	an 1m depth		11m depth	(µg/kg)
	Outer Zone	Inner Zone	Outer Zone	Inner Zone	
1-methylnaphthalene	1790	Do not place in Inner Zone	Do not place at <1m depth	Do not place in Inner Zone	100
2-(1-methylpropyl)-4,6- dinitro- phenol (Dinoseb)	330	Do not place in Inner Zone	Do not place at <1m depth	Do not place in Inner Zone	100
Trichloro benzenamine	200,000	Do not place in Inner Zone	Do not place at <1m depth	Do not place at <1m depth	100
2,3-Dichlorotoluene	100,000	Do not place in Inner Zone	Do not place at <1m depth	Do not place at <1m depth	100

The data collected, methods and models used in the derivation of Remedial Targets and identification of surrogates are detailed in Annex 1: Derivation of Generic Assessment Criteria for the protection of Human Health, Annex 2: Human Health Toxicological Data, Annex 3: Human Health Physical and Chemical Data, Annex 4: Human Health Modelling, and Annex 5: Derivation of Generic Assessment Criteria for the protection of Controlled Waters.

The treatability of these compounds has been reviewed by Vertase FLI and the remediation of the CNPIs will be dealt with by the existing treatment train identified in the Remediation Method Statement (Version 6) and detailed in the Environmental Permit Deployment Form for the site.

ATKINS

Yours sincerely For and on behalf of Atkins Limited

Mark Smith

Project Manager

Сс

Eileen Young – Environment Agency Nigel Blazeby - South Cambridgeshire District Council

Enc.

Annex 1: Derivation of Generic Assessment Criteria for the Protection of Human Health

Introduction

Laboratory analysis from soil characterisation at the site have identified a number of compounds not previously identified (CNPI). These compounds did not have available generic assessment criteria (GAC). The CNPIs were:

- Dinoseb (CAS No. 88-85-7)
- 1-Methylnaphthalene (CAS No. 90-12-0)
- 2,3-Dichlorotoluene (CAS No. 32768-54-0)
- Trichlorobenzenamine (CAS No. unspecified six isomers of this compound exist)

Surrogates were adopted for the evaluation of three of these compounds, as detailed in Annex 2. These compounds are 1-methylnaphthalene, 2,3-dichlorotoluene and trichlorobenzenamine. The selection of surrogates is discussed further in this Annex, and in Annex 2.

GACs were derived for the remaining CNPI, namely dinoseb.

Methodology

The derivation of any GAC involves a number of steps including a toxicological assessment and the collation of physical and chemical data for each contaminant. In the derivation of such criteria the Environment Agency has released three guidance documents, namely:

- Science Report (SR)2 Human Health toxicological assessment of contaminants in soil;
- SR3 Updated technical background to the CLEA model; and
- SR7 Compilation of Data for Priority Organic Pollutants for Derivation of Soil Guideline Values.

Following the methodology outlined in both of these documents, Atkins have carried out a toxicological search and review of physical and chemical data for the compounds identified, with each discussed in further detail below.

Toxicology

In order to evaluate the CNPI compounds appropriately, a number of steps were taken to ensure that these compounds were suitably assessed. The search was conducted as described in SR2, particularly an evaluation of the available data from all 33 sources listed, as advised. An example checklist of the toxicological sources used for this research has been included in Annex 2.

For dinoseb, sufficient toxicity information was gathered and taken forward for the derivation of a suitable health criteria value (HCV). HCVs were then derived for oral and inhalation exposures, also based on the principles for toxicological evaluation as outlined in SR2. A detailed summary of the data collated and the HCV obtained is included in Annex 2.

For 1-methylnaphthalene, data are available for the toxicological data via the oral route of exposure which has been obtained by the Environmental Industries Commission (EIC) in their *Soil Generic Assessment Criteria for Human Health Risk Assessment* report. However, there was insufficient data to agree a HCV for the inhalation route of exposure, and there is enough evidence to suggest that 1-methylnaphthalene is significantly more toxic when inhaled than when ingested. Therefore, due to the fact that the CLEA model predicts inhalation to be a significant route of exposure for this compound, route-to-route extrapolation was considered inappropriate for derivation of an inhalation HCV. The structurally similar compounds naphthalene and benzene were considered for use as surrogates. Benzene was selected since a comparison of oral toxicity shows that 1-methylnaphthalene is comparatively more toxic than naphthalene, but less so than benzene.

For both 2,3-dichlorotoluene and trimethylbenzenamine, there was insufficient information available in order to derive a suitable HCV for use in the further assessment. For these compounds a suitable surrogate was identified using the information available based on similarities in structure, toxicity and physical and chemical data, as detailed in Appendix A.

Physical and Chemical Data

In the derivation of appropriate physical and chemical data the methodology that the Environment Agency presented in SR7 was followed.

Each source was consulted and the available data collated as presented in Annex 3. Where more than one result was recorded, the selection process as presented in SR2 was followed for each parameter. A rationale for the use of each value is also presented in Annex 3.

Where a value was reported at 25°C, Atkins has retained this value. This is consistent with the approach that was carried out in the previous GACs. In addition, due to the limited available physical and chemical data available, converting the already estimated value to 10°C, using estimated values would introduce further additional uncertainty.

Modelling

Modelling was undertaken using CLEA v1.06 selecting the standard residential with the consumption of homegrown produce land use. In order to retain consistency with previous work undertaken at the site, a default sand soil type as defined in SR3 was selected. A soil organic matter of 1% was also selected.

A default soil to dust transport factor of 0.5 g/g was applied in the modelling.

The data available in relation to the compounds and their dermal toxicity was studied prior to selecting a dermal absorption factor (DAF). The DAF is used in the calculation of the assessment criteria for the dermal pathway. Limited data were available with regard to the dermal toxicity and therefore a decision was taken with regard to the DAF that would be applied. The structure and available data on dermal absorption from toxicokinetic evaluations of each compound was taken into account, along with the fact that the criteria derived are being used at the generic stage of assessment. SR3 presents a range of DAF for various compounds including common pesticides and herbicides.

For dinoseb a DAF value of 0.5 was utilised and considered as a suitably conservative value based on an experimental study on dermal absorption. These decisions are documented in the substance specific toxicological data summaries available in Annex 2.

The modelling outputs are presented in Annex 4.

Results

The results of the modelling are presented in Table 1 below.

Table 2 - Summary of Modelling Results

Compound	Oral Criteria	Inhalation Criteria	GAC
	mg/kg	mg/kg	mg/kg
Dinoseb	2.12E-01	6.16E-02	4.77E-02

Conclusion

The GAC for the CNPIs identified are presented below. Where a surrogate is suggested for a CNPI, the soil screening value (SSV) is presented below in Table 2 as the GAC. It should be noted that as benzene was not previously identified on the site, the current Atkins SSV (from 2009) is presented as a GAC for this constituent.

Table 3 - Summary of Generic Assessment Criteria

Compound	GAC
	mg/kg
1-Methylnaphthalene	4.93E-02
Dinoseb	4.77E-02
2,3-Dichlorotoluene	5.00E-04
Trichlorobenzenamine (all isomers)	5.00 E-04

Annex 2: Toxicological Data

Chemical name: 2, 3-0 CHLOROTOUNGNE

Common name: CAS RN:

37768-84-0

Standards Agency Protection Agency Protection Agency Agency Protection Agency Protection Agency Agency And Safety Executive Appanel an Air Quality Pan Chemicals Bureau And Safety Authority SIDS SIDS Appanel Air Quality Appanel Authority Appanel	Source	Checked? (Y/N)	Type of Data found UK Sources	
Protection Agency And Safety Executive And	Food Standards Agency		Ø	
and Safety Executive And Safety Laboratory All in it de Safety Directorate Apparel an Air Quality	Health Protection Agency	\sim		
and Safety Laboratory Nking Water Inspectorate Y In In AP AP AP AP AP AP AP AP AP A	Health and Safety Executive	X		
nking Water Inspectorate Y In II de Safety Directorate Y In II AP	Health and Safety Laboratory	Y		
de Safety Directorate	UK Drinking Water Inspectorate			
AP panel an Air Quality y y y y y y y y y y y y y y y y y y	Pesticide Safety Directorate			
AP A	000)		
AP	NOO			
AP AP	COI			
panel an Air Quality irds EU Sources EU Sources FU Sources F	COMEAP			
#INDS FU Sources Fu Fu Sources Fu	Expert panel an Air Quality			
Agin Chemicals Bureau	Standards			
an Chemicals Bureau			, EU Sources	
Ban Food Safety Authority CONTRACTOR INTERNATIONAL NICHEM: NICHEM: Y NICHEM: Y NICHEM: NICHEM:	European Chemicals Bureau		CITICE SATE	
NCHEM: NOTE International NOTE IN CHARLES IN THE PROPERTY OF	European Food Safety Authority	X	QUID .	
International NCHEM: Y No Gasta Y 11 Y	ECETOC	Y		
NCHEM: Y III Y III NO GATA WO GATA NO GAT				
SIDS V NO DATA NO DATA NO DATA NO DATA	IPCS INCHEM:	Y		
SIDS V No Qata V No Qata Side Side Side Side Side Side Side Side	IARC	Y		
SIDS V No Qara V No Qara Side Service No Common to the service of the servi	PIM	7		
SIDS Y No Qarra No Carra No Carra	EHC	γ		
SIDS	HSG	y		
SIDS	PDS			
SIDS	JECFA			
SIDS / / / / / / / / / / / / / / / / / / /	JMPR	X	,	
S()	OECD SIDS			
	CICADS			
	WHO:	7	IN BETA	

						_	•	l.	<u> </u>			
יסי	-	:	>	=	\Box	AEGL	ے	_	ח		\rightarrow	0
Pubmed	TOXNET (including TERA)		ATSDR	IRIS	Health Advisories	m	US EPA:	Health Canada Tox Ref Values	RIVM MPR		Air Quality Guidelines for Europe	Guidelines for DW Quality
S	≥		53	S	므	0	П	읦	2		Ø	ō
3	Z		무		5	Γ.	Ü	5	_		Ē	<u>e</u> _
ă.	Ш		U		>		Ď	0	ַ		<u>a</u>	[∌
,					ĺΩ.			ò	ס		₹	Ģ
	\equiv			83.	 ≨.			\equiv	W		0	
	<u>ਨ</u>				S.			DE			2	0
	Œ				ž.			g)			둙	
	⊆			[-:]:	I CO		42	-			ĕ	۷
	lΞ				٧,			9			=	2
	Υ.				100		- 11	<u> </u>			ิดี	Ω
100	딞				34		Ę÷.	꺘			Ś	ū
	14		100	: :				4			ਨ	<u>a</u>
: i :	S				5.			<			Ť	Ø
	۲		93					<u>0</u>			Ш	7
			: Y.		411		ii.	S	: ·		5	
	100				÷.			Š.			유	÷.
	0.0	: :	1		. : :						ŏ	
					it.					4.33		
										: 10		
			E									0.0
14.11	100				100		17.7			1		
			11								1.	
			11	.,								
/	X		1	1	κ	√	$ \wedge $	K.			را	
1	١,				· `	`	'		`	``	~	~
							ii				i	
												ŢŦ.
											ं	40
											<u></u>	
											ļ.,	
	-				-	_			F		100	181), 1811
			7	7	rΑ							
るのシブ	70 05-1		η	20 0x12	W		5	-,			٠,	6-4
6	Q		N	_	1	Z	ó, ,	Ķ	7			(
						h	<u> </u>	Ŋ	Ö		σ	Ō
1	0		ġ,	8	\	M			.	П	336	
¥	7		>	1	K.		1	(<u>o</u>	S Park	8
M	[4]			٠,١	۳	0	Γ	g	D)	6	Y	V
	14		V	V	5	Κ.	\sim	N.	D	ō.	1	K
V	V	7	Δ	GUV.	A	X	Λ	"		3	(A)	T\
1000	P							10.00 (1)				
380		ਡ	Σ			ַו	(200	7	-	V	T)
58) 34)		he	Z		Ċ M	3	C'	n	Ø	S	V	ZO OSTID
		Other	2		t n	70 037D	C' ~	Š	50 B	Nati	V	D
		her	ないない		i F	B	C ()	ç	Ø	Natio	V	D
		her	NUXO		ر ا ا	B	ن حر) ن	C.S.	Ø	Nationa	<i>y</i>	D
		her	NUNCOT		いんかん	ß	٠ ١٦٠	S. Z	Ø	Foreign National	/	D
		her	Nww70		でなり	Ŋ	C' () ()	95.X	V	National	/	D
		her	NWCOTON		いってい	B	じって	05.X	V	National	/	D
		her	NUNCOTONIA		にからか	Ŋ	つついかん	8 3 8	y	National		D
		her	NWOTONES		いからのできる	3	つつにたる	S. 3	V	National		D
		her	NW6701461		しょうとのできるから	Ŋ	י ייין ויין אין	05.X 05	V.	National		D
		her	NWOTONACIE		المراكبة المراكبة	B	じ (アデータン	SS, X OB	V	National		D
		her	NWWOTONACUE		LE EX CONTRACT	B	0 (15.760) 03	81.2 08 2	y	National		D
		her	NUNCTONACIE		これ かく のでくろうと	3	0 (17.17/02 126/2	es, a os de	V	National		D
		her	Nunconacia		in the armount		U CITITION ISSUE	NO PATRICUS. NO DOS NO	J	National		D
		her	NWWOTONAUSE ON		ST + SU merce (BR OFFERMAN N)		Bu SU/SU CIPITHON DETAIL	es, a des de		National		D
		her	NUNCOTONAGUE ON		in the Order was NY		o Ciritron issain!	es. a des No 1)	National		P
		her	NUNCTONACIE ONT		in the armonian NY		o (inition issain)	esim pas No h)	National		P
		her ~ /	TES POR DICKLONG TOTALENE THIS		ing fest consumer NY		o (mithou iderality) or	esim pas No hi	V	National		P
		her Y	NUMBTONLESSE THIS		The feet of the constant of NY		o (minton Darakin) not	es a per No Lu	V	National		P
		her ~ ~ ~ ~ /	NUMOTONIAEUE MITTY		ing the order was NY		o ciminton issainimano	esing per No hii)	National		${f D}$
		her /	NUNCOTONACIAE MICTO		ing for Ostamong NY		o control washing.	esing cas No him)	National		D
		her Y	NUNCOTONACIAE CASEY		ing for a summing NY		U (inition issair) mano.	es. a des no les ab		National		D
		her /	NWCOTONACIE MILL		Ex Grannon NY		U (Initifor idealin) mano.	es. a des no les non		National		D
		her Y	NUNCOTONACUE MAJON		Ex Grannay NY		U (Inithou DETAIN) NAMO.	csind pos No his nowe		National		P
		her Y	NUMBER CASE		ing the Ostomony NY		U (Inition DETAIN) NOTO	csing pos No his nowe		National		P
		her Y	NUMBER CASE		we be a surround NY		U (IMITHOU IZETAIM) MANDI	cs. Me Son No Son		National		$oldsymbol{\lambda}$
		her Y	NUMOTONAEUE CASES		we to a common NY		U (Imithou identificano.	es, a pos no bu nome -		National		$oldsymbol{ ho}$
		her Y	NUMOTONAEUE MATELY		Le be of seminary NV		o (minton again) mangi	es, a pas No hi name +		National		$oldsymbol{\hat{oldsymbol{eta}}}$
		her Y	NWWOTONIEUE TATELY		Let Gramman NV		U (In. Thou Derail) has to.	es, a ser No Lu nome +		National		$oldsymbol{\hat{oldsymbol{ ho}}}$
		her /	NUNCOTOTIANSE TATELY		Le les aranna NV		U (In. in four Descriptions) markers.	es, of pas No his name + C		National		
		<u>ner </u>	NUNCOTONIACIJE MITOLI		ing for any and NV		U (Imithou issain) mara.	esine pas No his name + O,		National		
		her /	NW6701481E MILY		Le les Ottomano NY		U (Imitalion ideality) mangi	esing cas No his name + Oic		National		
		her Yes	NIWOTOMENE MICH		Le les Ottomismo NV		U (mintou isazini) marai	esing pas No by, home + Dich		National		
		her Y	NWWTONKENE MICH		Le lat atomisa NV		U (minton issaiph) marai	osine pas No his name + Diema		National		
		her	NWWOTONIES ANDY		ine lat atomismo NV		U (Imit for ideral in prava.	osing pas No Li, NAME + Diction		National		
		ner /	NW6701481E MILY		Le les aranno NY		U (mintou isazin) mara	OSING DOS NO LALL NAME & DICHASA		National		
		her	NIMOTOTACIE MICH		ing led Ordinamo NV		U (Imitation is stankin) marani.	osing cas No his name + Oschungo		National		
		ner /	NIMOTOTUSE MICH		EL OTTERMENT NY		U (mithou issaith) mana.	esing pas No his liping + Organistate		National		
		her Y	NUMOTONIAENE CASTY		we lek of which NV		U (mintou izazini) mano.	es, a pas No Ly, name + Orewater or		National		
		her	NUMOTONUESE MITH		Le let around NY		U (mithou izanit), marai.	esing pas No hii, NAME + DICHIMOTOUL		National		
		ner /	NUMOTONIACIE MICH		Le let Ostamono NV		U (Imitalor isotala) mano.	es, in sec No his has the Dichishotomic		National		
		ner /	NW670148LE CASTY		Le leverand NY		U (mintou izazini, mano.	es, is see No by, NAME & DICHARGO CHAR		National		
		her	NW67014EUE MCV		Le (St. Ostaning) NV		U (mithou issait) mano.	es, is seen to his his apple of Oschishotolingue		National		
		her /	NW67014EUE CACY		Le lar athmoonly		U (mintou istain) maros.	esing cas has been never a Dichiaraction of the second		National		
		her	NIWLOTONAEUE CHULY		Le Est Ossamman NV		U (minton i)Graiti, mano.	es, in less to by, where it ochustotowne		National		
		her	NW6701481E MILY		Le Karamman NV		U.M. Tron (2574/MAND)	esing less his hill have a Dichishotophishe		National		

Type of Data Found: This section should contain the following codes for easy classification of data found. Acronym should be separated with "," or "I"

Chemical Identification

Toxicokinetics (data on absorption, distribution, metabolism and excretion round the organism)

Ħ Acute Toxicity

SaT. Subacute Toxicity (short term repeat dose studies)
Subchronic Toxicity (longer-term studies)

Reproductive Toxicity Chronic Toxicity (long-term toxicity data)

Developmental Toxicity (specific to developmental effects in offspring)

Genotixicity

Carcinogenicity

Originated By: A Supplemental Originated By:

Date: 28.07.70

Checked By:

_ D

Date: 29/07/2010

TOXICOLOGICAL DATA SUMMARY FOR 2,3-DICHLOROTOLUENE

Chemical name:	2,3-Dichlorot	oluene			_
Common name/ syr Benzylene chloride Dichlorophenylmetha	e; Benzylidine		•	•	dichloride; nyl)benzene;
CAS RN:	32768-54-0_				

Chemical Identification:

The density, melting point and boiling point of 2,3-dichlorotoluene are reported as 1.228 g/mL at 25°C; 6°C; and 207-208°C, based on information collated from a number of literature sources within a secondary source (Lookchem, 2010).

Sources

No data are available in open literature.

Toxicokinetics

No data are available in open literature.

Acute Toxicity

There are no readily available data in open literature for 2,3-dichlorotoluene. However, data are available for 2,4-dichlorotoluene:

The LD_{50} in acute oral toxicity studies in rats were reported as >2,000 mg/kg or 2,790 mg/kg. Also, the LC_{50} in an acute inhalation toxicity study in rats was >2,669 mg/kg over 4 hours (OECD, 1994).

Repeat dose studies (Sub-acute and sub-chronic toxicity)

There are no readily available data in open literature for 2,3-dichlorotoluene. However, data are available for 2,4-dichlorotoluene and are discussed below.

Oral

There is only one key study on repeated dose toxicity of 2,4-dichlorotoluene. Male and female SD rats were orally administered (gavage) at doses of 0, 12.5, 79 and 500 mg/kg bw/day. In male rats, the administration period was two weeks prior to mating, 2 weeks of mating and 2 weeks after the completion of the mating period. In females, in addition to a maximum four weeks pre-mating and mating period, they were exposed through pregnancy until day 3 of post delivery (OECD, 1994).

Dose dependent salivation was noted immediately after administration in all treated groups. Decreases in body weight gain were noted in the females of the 500 mg/kg bw/day group at the gestation and lactation periods. In food consumption, decreases were noted in both sexes of the 500 mg/kg bw/day groups. In haematological and blood chemical examinations, decreases in platelet count, alfaglobulin fraction, triglyceride and blood urea nitrogen, and increase in cholinesterase were noted in the 500 mg/kg bw/day male group. In the 500 mg/kg bw/day group, increased relative liver weights in both sexes, and relative kidney weights in the males were noted. In autopsy, dark brown discoloration of the liver was noted in 500 mg/kg bw/day male group. In histopathological examination of the liver, centrilobular swelling of hepatocytes was noted in all males of the 500 mg/kg bw/day group and 2 males of the 79 mg/kg bw/day group. In kidneys, atrophy and regeneration of tubular epitherium, and dilation of tubules were noted in the 79 mg/kg bw/day groups and above. In addition, the number of the males with hyalin droplets and eosinophilic depositions in tubular epitherium increased progressively in the 79 mg/kg bw/day and 500 mg/kg bw/day groups. On the basis of abovedescribed effects, the no observed effect level (NOEL) for this compound was indicated to be less than 12.5 mg/kg bw/day (OECD, 1994).

Subchronic Toxicity (longer-term/medium duration studies)

No data are available in open literature.

Chronic Toxicity (long-term toxicity data)

No data are available in open literature.

Reproductive Toxicity

There are no readily available data in open literature for 2,3-dichlorotoluene. However, data are available for 2,4-dichlorotoluene.

2,4-dichlorotoluene was studied for oral toxicity in rats at doses of 0, 12.5, 79, 500 mg/kg bw/day. Although this combined study was designed to investigate reproductive capability in parental generation as well as development in F1 (first generation) offspring, parameters to evaluate developmental toxicity were limited to only body weights at day 0 and day 4 after birth, and autopsy findings at day 4 (OECD, 1994).

Regarding reproductive ability, all pairs in the 12.5 and 79 mg/kg bw/day groups achieved pregnancy. In the 500 mg/kg bw/day group, 12 pairs showed evidence of copulation with a sperm positive vaginal smear. However, only five pairs out of these achieved pregnancy. Vaginal plugs (used as an indication of successful mating) were not noted in six non-pregnant pairs in the 500 mg/kg bw/day group. Comparatively few sperm were also found following examination of this test group in the vaginal smears. The report authors state that this result suggests that the male reproductive organs and secondary reproductive organs had functional disorders. Regarding body weight changes of pups, decreases in liver and body weights were noted in the 500 mg/kg bw/day group on day 1 of lactation. No adverse effects on delivery, lactating behaviour of dams, viability or general appearance on autopsy related to exposure to 2,4-dichlorotoluene were noted. On the basis of above-described effects, the NOEL for reproductive/ developmental toxicity for both sexes was considered to be 79 mg/kg bw/day (OECD, 1994).

Developmental Toxicity

No data are available in open literature.

Genotoxicity

There are no readily available data in open literature for 2,3-dichlorotoluene. However, data are available for 2,4-dichlorotoluene.

Although the International Agency for Research on Cancer (IARC) does not provide detailed study data, it states that benzal chloride (dichlorotoluene) is a bacterial mutagen (IARC, 1999). However, it has also been reported that 2,4-dichlorotoluene showed no genotoxic effects in bacteria or in a chromosomal aberration test *in vitro* (OECD, 1994).

Carcinogenicity

There are no readily available experimental or epidemiological data in open literature sources specific to for 2,3-dichlorotoluene or 2,4-dichlorotoluene. However, benzal chloride (dichlorotoluene) is included in a review by the International Agency for Research on Cancer (IARC), as detailed below.

Other Irritation and Sensitisation

There are no readily available data in open literature for 2,3-dichlorotoluene. However, data are available for 2,4-dichlorotoluene.

2,4-dichlorotoluene is reported to cause eye irritation and may cause chemical conjunctivitis and corneal damage. It also causes skin irritation and dermatitis and may cause cyanosis of the extremities. It also causes respiratory tract irritation (OECD, 1994).

Background exposure (food, drinking water, air)

No relevant data are available in open literature for 2,3-dichlorotoluene or 2,4-dichlorotoluene.

Regulatory guidelines/ advisories/ guideline values

International Agency for Research on Cancer

IARC states that 'there is limited evidence in experimental animals for the carcinogenicity of benzal chloride (dichlorotoluene). Combined exposures to alpha-chlorinated toluenes (such as 2,3-dichlorotoluene) are probably carcinogenic to humans (Group 2A)' (IARC, 1999).

Selection of Health Criteria Value (HCV)

There are no readily available data in open literature for 2,3-dichlorotoluene. There is also insufficient data for derivation of an HCV, based on data for the isomer, 2,4-dichlorotoluene. In the light of this, and the potential for carcinogenic effects, Atkins considers that the toxicity data for other compounds should be considered for use as surrogates.

Based on the chemical structure, toluene, benzene and vinyl chloride are considered to be the most suitable surrogate compounds for evaluation of 2,3-dichlorotoluene. Although the structure of this compound (2,3-dichlorotoluene) has greater similarity to the structure of benzene and toluene, there is potential for comparatively increased toxicity due to the presence of halide substituents (such as chlorine) to the basic benzene or toluene structure. Therefore, since chlorine is present in both 2,3-dichlorotoluene and vinyl chloride, vinyl chloride has also been considered for adoption as a surrogate.

The toxicity data for vinyl chloride is more conservative than that of either benzene or toluene, and is considered to be more appropriate for the evaluation of the potential toxicity of 2,3-dichlorotoluene. This is likely to provide a suitable means of assessing the presence of additional chlorine substituents, which could result in toxic properties that exceed that of benzene or toluene. Therefore, vinyl chloride is adopted as a surrogate compound for evaluation of 2,3-dichlorotoluene.

Although there is physical and chemical data for 2,3-dichlorotoluene, due to the potential for genotoxic effects and a paucity of data for other endpoints, it is suggested that the physical and chemical data for vinyl chloride should also be retained for use. This is a conservative approach which takes into account a comparatively higher degree of volatility for vinyl chloride when assessing the behaviour of 2,3-dichlorotoluene in soil.

References

Chemcas, 2010. Summary Data on 2,3-dichlorotoluene http://www.chemcas.com/material/cas/archive/32768-54-0.asp

IARC, 1999. Group evaluation for chlorinated toluenes and benzylchloride http://www.inchem.org/documents/iarc/vol71/013-chltoluenes.html

Lookchem, 2010:

http://www.lookchem.com/2-3-DICHLOROTOLUENE/#Chemistry

OECD, 1994. SIDS for 2,4-dichlorotoluene. http://www.inchem.org/documents/sids/sids/95738.pdf

Pubmed chemical database substance summary, 2010: http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?sid=88810792&loc=es_rss#Subinfo

Saint Regis Mohawk Tribe Environmental Division, Water Quality Standards, August 2007: http://www.epa.gov/waterscience/standards/wqslibrary/tribes/srmt_2_%20wqs.pdf

TOXICOLOGICAL DATA SUMMARY FOR DINOSEB

Chemical name:	2-sec-B	Butyl-4,6-dinitrophenol _		
Common name/ syn	onyms: _	_Dinoseb, DNBP,		
2-sec-Butyl-4,6-dinitro	ophenol,	2-(1-Methylpropyl)-4,6	3-dinitrophenol	2,4-Dinitro-6-(1-
methylpropyl)phenol	and 2,4-Din	itro-6-sec-butylphenol,	Chafer Dinosol,	Farmon Desicoil,
Haulmex, Haulmone,	and Super H	laulmone (other trade n	ames of formulation	ons with or without
other active ingredien	ts are also av	vailable)		
CAS RN:	88-85-7	,		_

Chemical Identification:

Pure dinoseb is a yellow or orange crystalline solid (Environment Agency, 2010). Dinoseb is combustible and explosive. Technical dinoseb has a melting point between 38 and 42°C and the pure compound is very soluble in water (52 g/L at 20°C) and in most organic solvents. Dinoseb has a vapour pressure of 10 Pa at 20°C (IPCS INCHEM, 1994).

Prior to it being withdrawn from use, it was rated by the World Health Organisation (WHO) as highly hazardous¹ (Environment Agency, 2010).

Occurrence and Use

Dinoseb was introduced as a contact herbicide in the 1950s. It has formerly been used on cereals, lucerne and peas, and as a pre-emergent herbicide (applied before the crop plants emerge from the ground) on beans, potatoes, hops, strawberries and raspberries. The Environment Agency states that dinoseb is banned in the UK and the rest of the EU and believe that it is no longer manufactured or marketed as a plant protection product. It has been banned from use in the UK since 1988 because of concerns over its toxicity (Environment Agency, 2010).

The main source of dinoseb release to the environment occurred through its former application to agricultural crops, but some may also escape during manufacture, transport or storage of the chemical. There are believed to be no natural sources of release to the environment. (Environment Agency, 2010).

Toxicokinetics

Dinoseb is absorbed through the skin, inhaled and can irritate eyes causing temporary blindness if it comes into contact with the eyes (INCHEM, 1994).

Dinoseb containing radioactively labelled carbon atoms was applied as either a solid, aqueous paste, suspension, or dissolved in the volatile vehicle ethanol. Dermal absorption of DNBP-derived radioactivity was approximately 50% of the recovered dose² after application in the four physical forms, and the major route of excretion was via the urine. Following this exposure, it is reported that twelve percent of the absorbed dose of DNBP was retained in the body 120 hrs (5 days) after exposure. The data indicate that the dinoseb can penetrate the skin as readily when applied either as a solid, aqueous paste, or suspension, as when applied in the volatile vehicle ethanol (Hughes et al, 1992)). Although data are limited, evidence in this study indicates that a significant amount of dermally exposed dinoseb is absorbed via the skin of rodents, and a conservative **dermal absorption fraction (DAF) of 0.5** would be appropriate as a conservative modelling parameter.

¹ The WHO pesticide classification scheme is based on a comparison of the acute toxicity of a substance, its form (solid, liquid or gas) as well as its concentration within the formulation that it is used in.

in.

During dermal exposure studies, the recovered dose can refer to the amount recovered via various methods of excretion, and within tissue samples. Although not explicitly satabachtimethex-exactly available data, it can be assumed that this substance was extensively absorbed based on the proportion of the recovered dose that was assumed to be absorbed.

Acute Toxicity

The acute toxicity of dinoseb is high, with oral LD_{50} s of 37 to 58 mg/kg bw for rats and 25 mg/kg bw for guinea pigs. The acute percutaneous LD_{50} is 50 mg/kg for rats, 80 to 200 mg/kg for rabbits and 500 mg/kg for guinea pigs. Mild skin and eye irritations have also been observed in rabbits (Health Canada, 1991).

In other studies, the inhalation LC50 of 35-130 mg/m³ for 4-hr exposure in rats was reported, and laboured breathing and decreased activity were observed. The dermal LD50 is 40-146 mg/kg bw in rabbits, and decreased activity, salivation, nasal discharge, increased respiratory rate and ataxia were found. The oral LD50 is reported to be 5-50 mg/kg bw in rats, and prone position, bradypnea (slow breathing), diarrheal stool and decreased motor activity were noted (SIAM, 2007).

Irritation and sensitisation

It has been reported that dinoseb is highly irritating to the eye in rabbits (SIAM, 2007). Inhalation of dusts and sprays may be irritating to the lungs and eyes, and may cause serious illness (ATSDR, 2003).

Repeat dose studies (subacute and subchronic toxicity data)

In a 90-day dog study conducted in 1967 in which dinoseb was administered in the diet at 0, 50, 100 or 200 ppm, effects on the heart (endocarditis) were noted at the highest dose level; the no-observed-adverse-effect level (NOAEL) was 100 ppm, or approximately 3.8 mg/kg bw/day (Health Canada, 1991).

In male rats given dinoseb (99% purity) at dietary concentrations of 0, 1.35, 2.7, 5.4 or 13.5 mg/kg per day in food for six months, increased liver weight was observed at 5.4 mg/kg per day, as was increased mortality at the highest dose level (Health Canada, 1991).

It has been reported that dietary levels of about 25 mg/kg/day in food caused marked food refusal and some deaths after five or more doses, although the the study duration has not been reported. Lower doses (5 to 20 mg/kg/day in food) were also reported to cause statistically significant decreases in growth (EXTOXNET, 2010)

Chronic Toxicity (long-term toxicity data)

In an unpublished report from Dow Chemical Company (1981) male and female mice were fed diets containing dinoseb at 0, 1, 3, and 10 mg/kg/day for 100 weeks. Survival was not affected by exposure to the chemical. However, body weight gain was significantly reduced in the mid- and high-dose females. At the end of the study, the body weight gain was 10 and 13% less than the controls of the mid- and the high-dose females, respectively, and no differences were found in the food consumption in the treated group against controls. (US EPA IRIS, 2003).

Reproductive Toxicity

In a three-generation (later extended to five generations) rat reproduction study, four groups (25 per sex per group) rats were exposed to dinoseb in the diet at doses of 0, 1, 3 or 10 mg/kg bw per day for 29 weeks. The study authors report a consistent, compound-related depression in parental body weight gain at the high dose in both sexes in the pre-mating period in all three generations, which persisted into later study periods. No reproductive effects were observed other than a slight non-significant reduction in the number of progeny in the F_1 (first) generation, although a statistically significant decrease in pup weight was observed 21 days post-partum at the highest dose level (US EPA IRIS, 2003).

Based this study, Health Canada determined that the no observed adverse effect level (NOAEL) for male reproductive toxicity in this study was 10 mg/kg bw per day. The NOAEL based on decreased body weight gain in parents and offspring was 3 mg/kg bw per day (Health Canada, 1991). The subsequently depressed pup weight gains during the lactation period was taken as a reproductive effect, and a reproductive lowest effect level (LEL) of 1 mg/kg/day was determined (US EPA IRIS, 2003).

In a two-generation reproduction study (continued from the three-generation study above) in rats, a reproduction lowest effect level (LEL) of 1 mg/kg bw/day was reported based on consistent decreases in gonadal weights and gonadal weights/body weight ratios in the fourth generation at all dose levels. A systemic LEL of 1 mg/kg bw/day was also reported, based on treatment-related or dose-related reductions in relative parental body weights with significant decreases at low and high doses in third generation males (US EPA IRIS, 2003).

Diets of 225 or 300 ppm dinoseb resulted in marked oligospermia (reduction in the number of spermatozoa in the semen), extensive damage to the seminiferous tissues of surviving rats and irreversible reproductive failure. In rats fed 150 ppm, decreased epididymal sperm counts, abnormal epididymal spermatozoa and histologic changes in the testes were observed; reproduction was unaffected, and the anomalies appeared to be reversible in the 16 weeks following treatment. There were no detectable effects in rats fed 75 ppm. Mating behaviour and libido appeared to be unaffected at all concentrations. The NOAEL observed for this study was 75 ppm (3.8 mg/kg bw per day). Health Canadas state that adverse effects on testes, spermatozoa and sperm motility have also been reported in other experiments on rats, at dose levels of 7.5 mg/kg bw and higher (Health Canada, 1991).

In an unpublished report from Dow Chemical Company (1981) reported above, male and female mice were fed diets containing dinoseb at 0, 1, 3, and 10 mg/kg/day for 100 weeks. In addition to other effects, reproductive organs in males and females were also affected. Adverse effects on the lining of the womb (cystic endometrial hyperplasia) and atrophy were observed in females, and hypospermatogenesis (reduction in sperm production) and degeneration were seen in the testes of all the treated males (US EPA IRIS, 2003).

A primary study has been obtained from data available in the open literature, which has not been assessed by authoritative bodies. This study reports that gavage and feeding doses of dinoseb resulted in testicular toxicity. Consecutive doses of dinoseb by gavage seemed to induce spermatotoxicity by disturbing spermiogenesis or the maturation process of sperm in the epididymis, and the most probable target cells of spermatotoxicity were thought to be testicular spermatids in rats. Prolonged exposure to dinoseb in the diet also induced testicular toxicity in rats. However, the feeding dose of dinoseb irreversibly affected the early stage of spermatogenesis and produced infertility in rats. The study authors report that further studies in laboratory animals are required for clarification of their testicular toxicity and for risk assessment in humans (Matsumoto et al. 2008a).

In another study obtained from data available in the open literature, which has not been assessed by authoritative bodies, the study authors describe a combined repeated dose toxicity study with reproduction/developmental toxicity screening test. Rats were dosed with dinoseb, by gavage at 0 (vehicle only), 0.78, 2.33, or 7.0 mg/kg bw/day. Six males per group were dosed for a total of 42 days beginning 14 days before mating. Twelve females per group were dosed for a total of 44-48 days beginning 14 days before mating to day 6 of lactation throughout the mating and gestation period. Recovery groups of six males per group and nonpregnant six females per group were dosed for 42 days followed by a 14-day recovery period (Matsumoto et al, 2008b).

No deaths were observed in males of any dose group or in females of the recovery groups. At 7.0 mg/kg bw/day, eight females died and two animals were moribund during late pregnancy, and a significant decrease in body weight gain was found in both sexes. Adverse effects to blood parameters were reported at 0.78 mg/kg bw/day and above in the main group males at the end of administration period. Reduction in extramedullary haematopoiesis (production of red blood cells) in the spleen was significant at 2.33 mg/kg bw/day in the main group females. Sperm analysis revealed a decrease in sperm motility and an increase in the rates of abnormal sperm, abnormal tail, and abnormal head at 7.0 mg/kg bw/day. A number of dams delivered their pups and the number of dams with live pups at delivery was significantly lowered in the 7.0 mg/kg bw/day group (Matsumoto et al, 2008b).

The study authors report that the lowest observed adverse effect (LOAEL) for males was 0.78 mg/kg bw/day, based on the adverse effects on blood parameters. A NOAEL could not be

established for this effect due to the absence of a lower dosing concentration in this study. The NOAEL for effects on females was 0.78 mg/kg bw/day based on a reduction in extramedullary haematopoiesis. The NOAEL for reproductive toxicity was considered to be 2.33 mg/kg bw/day based on decrease in sperm motility and an increase in the rates of abnormal sperm, as well as reduced number of total and live deliveries (Matsumoto et al, 2008b).

Developmental Toxicity

In a developmental toxicity study, four groups of 25 rats were administered dinoseb (96.1% purity) orally by gavage at levels of 0, 1, 3 or 10 mg/kg bw per day on days 6 through 15 of gestation. Food consumption and body weight gain of highest-dose females were slightly depressed during the dosing interval but were comparable to those of other groups at the end of the experiment. No other effects were observed in females. Foetuses at the highest dose showed a slight decrease in body weight, increased incidence of skeletal ossification at a number of sites and an increase in the number of supernumerary ribs and absence of thoracic vertebrae; the latter were also absent at 3 mg/kg bw per day. A NOAEL of 1 mg/kg bw per day was identified for foetal effects, based on absence of thoracic vertebrae at the next highest dose of 3 mg/kg bw per day (Health Canada, 1991).

In an oral rabbit teratology study, four groups of 16 Chinchilla rabbits were exposed by oral gavage to dinoseb (98% purity) at levels of 0, 1, 3 or 10 mg/kg bw per day on days 6 through 18 of gestation. In the highest dose group, statistically significant increases in malformations and anomalies were observed in 11 of 16 litters examined. The major developmental toxic effects were neural tube defects, and adverse effects on the skeletal system. The NOAEL for foetal effects was 3 mg/kg bw per day based on the occurrence of neural tube defects at the highest dose level of 10 mg/kg bw per day (Health Canada, 1991).

In a third study obtained from data available in the open literature, pregnant rats were given dinoseb by gavage at 0, 8.0 or 10 mg/kg bw/day on days 6-15 of gestation, or in the diet at 0, 120 or 200 ppm (0, 6.52 or 8.50 mg/kg bw/day) on days 6-16 of gestation, and litters were evaluated on day 20 of gestation. Maternal toxicity was observed as evidenced by significantly decreased body weight gain and reduced food consumption during the administration period in all the dinoseb-treated groups, and two dams died at 10 mg/kg bw/day. Significantly lower foetal weights and delayed skeletal ossification were observed in the dinoseb-treated groups except for the group fed dinoseb at 120 ppm. The teratogenic potential of the gavage dose of dinoseb was confirmed as evidenced by increased incidences of foetuses with external and skeletal malformations at 10 mg/kg bw/day. The incidence of foetuses with microphthalmia (comparatively reduced eye size) was significantly increased at this dose. On the other hand, study authors report that feeding doses of dinoseb up to 200 ppm did not induce teratogenicity in this study and that these data indicate that dinoseb is teratogenic at maternally toxic doses, but the exposure range of dinoseb at which malformations occur seems to be narrow (Matsumoto et al, 2010)

Genotoxicity

It is reported that dinoseb (2-sec-Butyl-4,6-dinitrophenol) was not mutagenic in bacteria [OECD TG 471 and 472] and did not induce chromosomal aberrations in mammalian cells in vitro [OECD TG 473] either with or without metabolic activation (SIAM, 2007). It did not induce gene mutations either in S. typhimurium TA100, TA1535, TA98 or TA1537 or in E. coli WP2 uvrA strains with or without S9 mix. Health Canada also report that based on the available studies, there is no strong evidence of the mutagenic potential of dinoseb (Health Canada, 1991).

Carcinogenicity

In an oncogenicity study conducted in CD-1 mice (50 per sex per dose) administered doses of 0, 1, 3 or 10 mg/kg bw per day in the diet for 100 weeks, a NOAEL of 1 mg/kg bw per day was observed in mice based on cataractogenesis in both sexes at 3 and 10 mg/kg bw per day (Health Canada, 1991).

In an unpublished report from Dow Chemical Company (1981) male and female CD-1 mice (70/sex/group) were fed diets containing dinoseb at 0, 1, 3, and 10 mg/kg/day for 100 weeks. Dinoseb induced statistically significant increases in liver adenomas in female mice at the 3 and 10 mg/kg/day doses. The incidence was 0/57, 4/59, 7/60, and 5/58 for control through 10 mg/kg/day doses, respectively. Only one carcinoma was observed (in a low-dose female). There were no decreases in latency period, no dose-response and no hepatocytic change commonly associated with carcinogens. The tumours were late-appearing (the first tumour appeared after 78 weeks, and the remaining ones after 100 weeks) (US EPA, 2003).

Two strains of mice were exposed to dinoseb for 18 months. The animals were first exposed via gavage at 2.15 mg/kg/day for three weeks beginning at one week of age, then they were fed a diet containing 7 ppm dinoseb (1.05 mg/kg/day) throughout the observation period of approximately 18 months. Equal numbers of mice served as controls. After 18 months of treatment, dinoseb did not cause any significant increase in tumours in mice (US EPA, 2003).

Based on research undertaken by Health Canada, there is no strong evidence of the carcinogenic potential of dinoseb. However, Health Canada considers that additional two-year chronic feeding and oncogenicity studies in rats are required to clarify its status (Health Canada, 1991).

Dinoseb induced statistically significant increases in liver adenomas in female mice at the 3 and 10 mg/kg/day doses. The incidence was 0/57, 4/59, 7/60, and 5/58 for control through 10 mg/kg/day doses, respectively. Only one carcinoma was observed (in a low-dose female). There were no decreases in latency, no dose-response and no hepatocytic change commonly associated with carcinogens. The tumors were late-appearing (the first tumor appeared after 78 weeks, and the remaining ones after 100 weeks) (US EPA IRIS, 2003).

<u>Oth</u>er

It is reported that dinoseb interferes with cellular conversion of food molecules (such as glucose) into useable energy for the body. Specifically, it disturbs the production of adenosine triphosphate (ATP) in the mitochondria of the cells, ATP being the molecule that provides energy for all cellular activities. This may account for many of the toxic effects caused by dinoseb (EXTOXNET, 2010).

Background exposure

Dinoseb was detected in 14 of 406 samples taken from municipal and private water supplies in Canada between 1978 and 1987 and the highest concentration recorded was 16.2 mg/L, However, none of the 900 samples of 115 municipal drinking water supplies in had detectable levels of dinoseb (during 1984 to 1990). In the United States, dinoseb was found in one of 79 surface water samples at a maximum concentration of 1 mg/L (Health Canada, 2003). Health Canada also reports that few data are available pertaining to residues of dinoseb in consumer food products, but crops treated with dinoseb showed no detectable residues.

There are no data on ambient air concentrations of dinoseb in readily available literature sources.

Regulatory guidelines/ advisories/ guideline values

Health Canada

Health Canada states that the principal toxic effects of dinoseb that are of concern are its teratogenic and foetotoxic effects at doses below those that cause maternal toxicity and its potential as a cataract-inducing agent. In a recent rat study in which dinoseb was administered by gavage, skeletal anomalies were observed at 3 mg/kg bw per day and higher; the NOAEL was 1 mg/kg bw per day This finding was supported by an oral teratology study in rabbits in which the NOAEL for neural tube defects was 3 mg/kg bw per day; a dermal teratology study in rabbits with a NOAEL of 1 mg/kg bw per day; and a 100-week dietary study in mice in which the NOAEL for cataract formation was 1 mg/kg bw per day. They derived an acceptable daily intake (ADI) as follows:

$$ADI = \frac{1 \text{ mg/kg bw per day}}{1000} = 0.001 \text{ mg/kg bw per day}$$

where:

1 mg/kg bw per day is the NOAEL for the rat reproduction study 1000 is the uncertainty factor (x10 for intraspecies variation; x10 for interspecies variation; and x10 for teratogenicity, considered to be a serious effect; in addition, there are limitations in the toxicity data base--i.e., other toxicological studies are needed).(Health Canada, 1991)

United States Environmental Protection Agency

The US EPA has derived an oral Reference dose of 0.001 mg/kg bw/day, based on a reproductive LEL of 1 mg/kg/day. An uncertainty factor of 1000 was applied to account for uncertainties in the extrapolation from laboratory animals to humans (factor of 100), as well as concern for the lack of a no observed effect level (NOEL) in the reproduction study (factor of 10) (US EPA IRIS, 2003).

Selection of Health Criteria Value (HCV)

Oral Health Criteria Value (HCV)

The oral RfD derived by the US EPA (US EPA IRIS, 2003) and Health Canada (2003) of 1 µg/kg bw/day (0.001 mg/kg bw/day) has been selected for use as a point of departure by Atkins. An additional safety factor of 5 has been applied to this, to account for more recent studies (Matsumoto et al, 2008b) in which a LOAEL 0.78 mg/kg/day was obtained, based on adverse effects on the blood of male rats. This effect was observed at the lowest test dose, and a NOAEL was not identified for this effect. However, a factor of 5 is considered to be appropriate to account for the effect observed in male rats, which differs in severity from the reproductive and developmental effects previously identified as the critical effect of exposure to dinoseb by the US EPA and Health Canada. Atkins considers that the resultant TDI would be protective of the critical effect for which a number of studies have been identified with effects occurring at similar levels, as well as the potential effect identified in a single study in male rats.

Therefore, the TDI_{oral} is 0.2 µg/kg bw/day (0.0002 mg/kg bw/day).

Oral Mean Daily Intake (MDI)

Food

There are no readily available data on exposure to dinoseb via food. However, as it is no longer licensed for use in food products in the UK or Europe, exposure via dietary sources is assumed to be negligible.

Drinking Water

The UK Water Quality (Water Supply) Regulations state that all other pesticides (with the exception of aldrin, dieldrin, heptachlor and heptachlor epoxide) should not exceed 0.1 μ g/L in drinking water supplied to the consumer. Assuming an adult intake of 2L per day, this is equal to a maximum conservative intake of 0.2 μ g of dinoseb per day, assuming that all 'other' pesticide is made up of dinoseb, for an adult consumer. This is equivalent to a dose of 0.00286 μ g/kg bw/day (0.00000286 μ g/kg bw/day). This is a conservative approach accounting for the fact that it may still be present in water abstracted for drinking water supply, due to previous use.

The total MDI_{oral} for 70 kg adult is therefore: (Drinking water intake) = 0.2 μ g/day

Therefore:

 MDI_{oral} for 70 kg adult = 0.2 μ g/day

= $0.00286 \mu g/kg bw/day$ = 0.00000286 mg/kg bw/day.

Therefore, the Tolerable Daily Soil Intake (TDSI) oral for an adult is:

TDI – MDI = $(0.2-0.00286) \mu g/kg bw/day$

= 0.197 μg/kg bw/day = 0.000197 mg/kg bw/day

This HCV compares favourably with the acute oral exposure value.

Inhalation Health Criteria Value

In the absence of data for long-term inhalation exposures, the data available for oral exposures will be extrapolated for use as a preliminary indicative health criteria value.

Therefore, the $TDl_{inhalation}$ is 0.2 $\mu g/kg$ bw/day (0.0002 mg/kg bw/day). Assuming the 70kg adult inhales $20m^3$ air per day, this is also equivalent to 0.0007 mg/m³ per day.

There are no readily available data on ambient air concentrations of dinoseb. However, as it is no longer approved for use in the UK, exposures to dinoseb in ambient air are assumed to be negligible. Therefore, no MDI inhalation is applied.

In the absence of other inhalation data, this HCV compares favourably with the acute inhalation exposure value.

References

Agency for Toxic Substances and Disease Registry (ATSDR), 2006. Health Consultation: Health Implications of Students (& Faculty) Exposed to Chemical Hazards at the Phillips Community College Of The University Of Arkansas (Arkansas Institute For Historic Building Trades) 415 Ohio Street Helena, Phillips County, Arkansas 72342

http://www.atsdr.cdc.gov/HAC/pha/PhillipsCommunityCollege/PhillipsCommunityCollegeHC033106.pdf

Environment Agency, 2003. Summary sheet on Dinoseb. http://www.environment-agency.gov.uk/business/topics/pollution/149.aspx

Extension Toxicology Network (EXTOXNET), 2010. Pesticide Information profiles – dinoseb. http://extoxnet.orst.edu/pips/dinoseb.htm

Health Canada, 1991.Dinoseb. Environmental and Workplace health summary. http://www.hc-sc.gc.ca/ewh-semt/pubs/water-eau/dinoseb/index-eng.php

<u>Hughes MF, Shrivastava SP, Sumler MR, Edwards BC, Goodwin JH, Shah PV, Fisher HL, Hall LL.</u>, 1992. Dermal absorption of chemicals: effect of application of chemicals as a solid, aqueous paste, suspension, or in volatile vehicle. <u>J Toxicol Environ Health.</u> 1992 Sep;37(1):57-71.

http://www.ncbi.nlm.nih.gov/pubmed/1522614

International Programme on Chemical Safety (IPCS) INCHEM, 1994. Dinoseb – summary evaluation.

http://www.inchem.org/documents/icsc/icsc/eics0149.htm

<u>Matsumoto M, Fujii S, Hirose A, Ema M.,</u> 2010. Prenatal developmental toxicity of gavage or feeding doses of 2-sec-butyl-4,6-dinitrophenol in rats. Reproductive Toxicology. Jun;29(3):292-7. Epub 2010 Feb 2. http://www.ncbi.nlm.nih.gov/pubmed/20132881

Matsumoto M, Hirose A, Ema M., 2008a: Review of testicular toxicity of dinitrophenolic compounds, 2-sec-butyl-4,6-dinitrophenol, 4,6-dinitro-o-cresol and 2,4-dinitrophenol.Reproductive Toxicology. 2008 Nov-Dec;26(3-4):185-90. Epub 2008 Oct 7. . http://www.ncbi.nlm.nih.gov/pubmed/18926899

Matsumoto M, Furuhashi T, Poncipe C, Ema M., 2008b

Combined repeated dose and reproductive/developmental toxicity screening test of the nitrophenolic herbicide dinoseb, 2-sec-butyl-4,6-dinitrophenol, in rats. Environ. Toxicol. Apr;23(2):169-83.

http://www.ncbi.nlm.nih.gov/pubmed/18214914

Organization for Economic Co-operation and Development (OECD), 2007. Screening Information dataset (SIDS) Initial Assessment Profile. SIAM 24, 17-20 April 2007, http://webnet.oecd.org/Hpv/UI/handler.axd?id=bc26a1c2-5c7d-403a-8deb-d6fa3a3dfa10

United States Environmental Protection Agency Integrated Risk Information System(IRIS) (2003), Dinoseb – summary evaluation.

http://www.epa.gov/ncea/iris/subst/0047.htm

United States Environmental Protection Agency, 2003. Basic information about dinoseb in drinking water.

http://www.epa.gov/safewater/contaminants/basicinformation/dinoseb.html

Determinand	Cas Number	Formulae	Structure	Ref No.	LD50 Rat Ora	al Units	LD50 Mouse oral	Units		Henry's law constant (Unitless)	Log Kow	Solubilities	Units	Vapour Pressure	Units	Boiling Point	Units	Melting Point Units	pKa/pKb HLC
2,4,6-Trichlorobenzenamine	634-93-5	C6H4Cl3N	NH ₂	1 3	240	00 mg/kg	1180	mg/kg	2400	0.00000134 0.000055 0.0000317	3.69 3.52	40	mg/l in water @ 25 deg C	0.000000147 0.02	mm Hg at 25 deg C hPa at 25oC	262	deg C @ 746 mm Hg	78.5 deg C	14.03 0.000001
3,4,5-Trichlorobenzenamine	634-91-3	C6H4Cl3N	NHE G		n/a	-	n/a			0.0000317 5.50E-005	3.01	n/a	-	n/a	-	n/a		n/a -	n/a n/a
2,3,4-Trichlorobenzenamine	634-67-3	C6H4Cl3N	CI CI CI NHE	2	n/a	-	n/a		398	0.0000317 5.50E-005	3.01	n/a		n/a	-	n/a	-	n/a -	n/a n/a
2,4,5-Trichlorobenzenamine	636-30-6	C6H4Cl3N	CI CI CI	3	n/a	-	n/a			0.0000317 5.50E-005	3.45 3.01	25	mg/l	0.0	1 hPa at 25oC	n/a	-	n/a -	12.91 0.000001

1 http://toxnet.nlm.nih.gov/cgi-bin/sis/search/r?dbs+hsdb:@term+@rn+@rel+634-93-5

http://www.epa.gov/hpvis/rbp/Chloroanilines_HC-HBP_September_2008.pdf

SELECTION OF HEALTH CRITERIA VALUE

There are very limited toxicity data for any of the isomers of trichlorobenzeneamine and benzene and vinylchloride are considered to be suitable for consideration as surrogate compounds. Although this compound is more similar to the structure of benzene, there is potential for comparatively increased toxicity due to the presence of halide substituents (such as chlorine) to the basic benzene structure. Therefore, since chlorine is present in both trichlorobenzeneamine and vinyl chloride, vinyl chloride has also been considered for adoption as a surrogate. Thethe toxicity data for vinyl chloride is more conservative than that of benzene, and is considered to be more appropriate for the evaluation of the potential toxicity of trichlorobenzeamine. This is a conservative approach which takes into account a comparatively higher degree of volatility when assessing the behaviour of trichlorobenzeamines in soil. This is likely to provide an assessment criteria conservative enough to account for the fact that the additional chlorine substituents (when compared to benzene) could result in toxic properties that exceed that of benzene. Although there is physical and chemical data for 2,3dichlorotoluene, due the paucity of data for other endpoints, it is suggested that the physical and chemical data for vinyl chloride should also be retained for use. Therefore, vinyl chloride is adopted as a surrogate compound for evaluation of the listed trichlorobenzeneamine isomers.

Annex 3: Physical and Chemical Data

											<u> </u>				<u> </u>							
Physchem Parameters Id	lantified for:	DINOSI	ER																			
Filyschem Farameters it		DINOSI		_																		
	A			В		С			D			E			F			G			Н	
Physchem Parameters	HOWARD, 19	90		LIDE, 2008		MACKAY et al,	2006	N	1ERCK, 200	06		MONTGOM	ERY, 1997	0	ECD, 2000 (INC	НЕМ)		OECD, 2000 (HI	PV)		OECD, 2000 (HS	DB)
	Value Units	Temp if present	Value	Units Tem	ivaille	Units	Temp if present	Value	Units	Temp if present	Value	Units	Temp if present	Value	Units	Temp if present	Value	Units	Temp if present	Value	Units	Temp if present
Relative Molecular Mass	240.20	present	240.		240.2	1	present	240.2	2	present	240.2	2	present	240.2	0	present			present			present
Henry's Law Constant (HLC)	5.04 x 10 ⁻⁴ atm-m ³ /mole	20°C	240.	21		1 Pa-m³/mol	20°C	240.2				4 atm-m ³ /m	ole 20°C	240.2			4.43 x 10	o ⁻⁶ atm-m ³ /mole	20°C	5.04 x 10 ⁻⁴	atm-m ³ /mol	
					50	g/m ³ or mg/L	25°C													0.0052	g/100g water g/100g ethano	
Solubility (S) 10 oC where possible. (Use					52 50	g/m3 or mg/L g/m3 or mg/L														48 27	g/100g ethano g/100g N-Hept	ane ane
unit converter if source provides differen					52	g/m3 or mg/L	25°C													Miscible in		
units)					100 52	g/m3 or mg/L g/m3 or mg/L														ethyl ether toluene an		
	52 mg/L	25°C			52	g/m3 or mg/L					5	52 mg/L	20°C	<0.1	g/100ml	20°C	34.	.5 mg/L	20°C	xylene		
Chemical Boiling Point (ambient pressure)				26	2 °C											>300	°C				
Chemical Melting Point (ambient					30	2 0											>300					
pressure)	38-42 °C			40 °C		0 °C		38-42	°C		38-42	°C		38-42	°C		40	.6 °C		38-42	°C	
					3.59 3.69																	
					3.69																	
Log Octanol - Water Coefficient (Kow)					4.10 3.14																	
Log Octanor - Water Coemicient (Kow)					3.0(pH 7)																	
					3.57(pH 2) 3.69																	
	3.69				3.56						2.2	29										
Molar Volume (Le Bas method)					21	8 cm ³ /mol																
Enthalpy of Vaporisation at normal boiling point (EVNBP)																						
Chemical Critical Point temperature																						
(ambient pressure)							+													-		+
Critical Pressure																						
Diffusion Coefficient in Air																						
Diffusion Coefficient in Water					0.05																	
					2.85 2.09																	
					2.71																	
					3.82 2.68																	
					2.70																	
					2.09 1.80,2.04,	,																
Log (organic carbon-water partition					08	·	Soil lit values	S			2.09											
coefficient)(Koc)	124 (unlogged)				1.48		20-25°C				2.70									1:	24 (unlogged)	
					130 133		151.5°C 151.1°C															
					0.0008		supercooled															
					0.0067 0.0067	Pa	liquid 25°C															
					0.0023	ا	30°C															
	8.5 x 10 ⁻² mm Hg	20°C			10 0.183		20°C 60°C															
Vapour Pressure	7.5 x 10 ⁻² mm Hg	20°C			0.0067		20-25°C					1 mm Hg	151° c	0.00	7 Pa	20°C	9.77 x10	³ Pa	25°C		1 mm Hg	151.1°C
Air-water partition coefficient (Kaw)																						
Doncity			1.0	65 g cm ⁻³		5 g cm ³	45°C				4.004	17	45/4°C		21/1/040= 4	2000				4.00	47	4500
Density Critical Temp	+ +	1	1.2	00 9 0111	1.26	Ja om	40 C			+	1.264	**	45/4 0	1.	3 Water=1	30°C	+	1		1.26	71	45°C
Reference List	Handbook of Environmenta	 al Fate and Ev	Dosure Data for t	Organic Chemical	ls. Philip H. Howard	Lewis Puhlisher	S.															
. · В	Handbook of Chemistry an	d Physics-88th	h Edition 2007-20	008, David R. Lide	e.																	
C	Handbook of Physical-Che The Merck Index, Twelfth I	mical Propertion	es and Environm	nental Fate for Org	ganic Chemicals, Ma	cKay et al, 2006																
E	Agrochemicals Desk Refer	ence Environr																				
F	Organisation for Economic	Co-operation	and Developmer	nt, Chemical Sum	mary from the Intern	ational Program	me on Chemica	al Safety - http://ww	vw.inchem	n.org/document	ts/icsc/icsc	eics0149.ht	M 200 040 406-4	202dfo10								
H	Organisation for Economic Organisation for Economic	Co-operation	and Developmen	nt, Hazardous Sub	bstances Data Bank.	וטו חופוו או היי ויטו ונטע nigri Pro http://toxnet.nl	m.nih.gov/cgi-t	oin/sis/search/f?./te	₅cu.org/∺ρ emp/~ZlpX	/Nu:2	Auriu=DCZ(0a102-90/0-	+voa-oueb-dbia	Dabula IU								
	-		' '			*			<u> </u>		•	•		•	*		•		•	•	•	

Decision Making for Physchem Parameters for Dinoseb

Physchem Properties	Unit														Min	Max	Mean	Median	Chosen Value	Justification
Relative Molecular Mass		240.20	240.21	240.21	240.22	240.22	240.20								240.20	240.22	240.21	240.21	240.21	The value is from a consistent range.
Henry's Law Constant (HLC)	atm-m ³ /mole	5.04E-04	5.04E-04	5.04E-04	4.43E-06	5.04E-04									4.43E-06	5.04E-04	4.04E-04	5.04E-04	5.04E-04	The most common value has been selected from a consistent range.
Solubility (S) 10 oC where possible. (Use unit converter if source provides different units)	mg/l at 20- 25oC	52	50	52	50	52	52	52	52		34.5	52			34.50	52.00	4.99E+01	5.20E+01	5.20E+01	The most common value has been selected from a consistent range.
Chemical Boiling Point (ambient pressure)	оС	362													362.00	362.00	3.62E+02	3.62E+02	3.62E+02	Only one value identified.
Chemical Melting Point (ambient pressure)	оС	38	42	40	40	38	42	38	42	38	42	40.6	38	42	38.00	42.00	4.00E+01	4.00E+01	4.00E+01	The central value was taken from a consistent range.
Log Octanol - Water Coefficient (Kow)	unitless	3.69	3.59	3.69	4.1	3.14	3	3.69	3.56	2.29					2.29	4.10	3.42E+00	3.59E+00	3.59E+00	The values range from 2.29 - 4.10, the majority lay above 3.57 therefore the central value is selected.
Molar Volume (Le Bas method)	cm ³ /mol	218													218.00	218.00	2.18E+02	2.18E+02	2.18E+02	Only one value was identified for this determinand.
Vapour Pressure	Pa	11.33	9.99	0.0067	0.0023	10	0.0067	0.007	9.77E-03						2.30E-03	11.33	3.92E+00	8.39E-03	1.00E+01	There were two ranges of values identified. Therefore, the vapour pressure was correlated to the Henry's Law Constant, molecular weight and solubility using equations within Environment Agency report P5-079/TR1. The higher range correlated best with the Henry's Law Constant. As such, the mid point from the higher range has been selected.
Density	g cm ⁻³	1.265	1.265	1.2647	1.3	1.2647									1.26	1.30	1.27E+00	1.27E+00	1.265E+00	The most common value has been selected from a consistent range.

Physchem Parameters Ic	lentifie	d for:		Trichlor	omethy	lbenzen	e														
		A B				С			D			Е			F			G			
Dhuasham Dayamataya		10111100	1000						2005		14500V 2006			0505 111011514							
Physchem Parameters	<u> </u>	HOWARD, T			LIDE, 2008	<u></u>		MACKAY et al			MERCK, 2006			OECD INCHEM			OECD HSD		OECD ES	T T	<u> </u>
	Value	Units	Temp if present	Value	Units	Temp if present	Value	Units	Temp if present	Value	Units	Temp if present	Value	Units	Temp if present	Value	Units	Temp if present	Value	Units	Temp if present
Relative Molecular Mass	195.48			195.474			195.474			195.47						195.48					
Henry's Law Constant (HLC)																2.6 x 10 ⁻⁴	atm-cu m/mole		2.81 x 10	⁴ atm-cu m	/mole
Solubility (S) 10 oC where possible. (Use unit converter if source provides different units)	Hydrolyze s rapidly in water	,					5.3	g/m ³ or mg/L	25°C				0.1	g/l	20°C	53	mg/L	5°C	0.1	g/I	20°C
Chemical Boiling Point (ambient	in water						0.0	g/ og/.2	200	220.8 129	@760mmHg @60mmHg			9,1	20 0	220.8	@760 mm Hg			9,.	
pressure)	220.8	°C	760 mm Hg	221	°C		221	°C		105 89	@25mmHg @10mmHg	°C	220.7	°C		129 105	@60 mm Hg @25 mm Hg	°C	219-223 220.7	°C	
Chemical Melting Point (ambient pressure)	-5	°C		-4.42	°C		-4.42	°C		_	°C		-4.8	°C		-5	°C		-7.5 -5 -4.8 -4.6	°C	
Log Octanol - Water Coefficient (Kow)	-5			-4.42			-4.42			-5			-4.0			-5			-4.0		
	2.92						2.92		-			-	2.92			2.92	log kow				+
Molar Volume (Le Bas method)							180.9	cm ³ /mol	20°C							0.142809	m ³ /kmol	(not Le Bas)			
Enthalpy of Vaporisation at normal boiling point (EVNBP)																12168 6	Gcal/Gmole				
Chemical Critical Point temperature																12100.0	Ocal/Officie				+
(ambient pressure)									-			-									+
Critical Pressure																					
Diffusion Coefficient in Air																					
Diffusion Coefficient in Water																					+
Log (organic carbon-water partition coefficient)(Koc)																1200					
Vapour Pressure Air-water partition coefficient (Kaw)	0.23	mm Hg	20°C				133.3 666.6 1333 2666 5333 7999 13332 26664 53329 101325	Ра	45.8°C 73.7°C 87.6°C 102.7°C 119.8°C 130.0°C 144.3°C 165.6°C 189.2°C 213.5°C				0.2	hPa	20°C	0.4137 1.35	mm Hg	25°C 50°C 75°C	0.16 0.2 0.3 0.49 1.46 1.8	hPa	20°C 20°C 20°C 30°C 50°C
, water partition coemicient (naw)			 									<u> </u>	<u> </u>						1.38	 	+
Density				1.3723	g/cm ⁻³		1.3723	g/cm ³	20°C	1.3756	d ₄ ²⁰		1.37	g/cm ³	20°C	1.3756		20°C/ 4°C	1.373 1.3723 1.394	g/cm ³	15.5°C 20°C
Critical Temp																					
A B C D E	Handbook Handbook The Mercl Organisat Organisat	of Chemic of Physic k Index, Tion for Eco	istry and Physical-Chemical P welfth Edition. onomic Co-ope onomic Co-ope	eration and De eration and De	n 2007-2008, Environmenta velopment, Cl velopment, So	David R. Lide I Fate for Org hemical Sumn creening Infor	anic Chemic anic Chemic nary from the mation Data	cals, MacKay of the International Set (SIDS) for	et al, 2006. Il Programme or High Produ		p://toxnet.nlm.nil	h.gov/cgi-bin/s	sis/search/r?dbs+	s/98077.pdf -hsdb:@term+@na	+BENZOTRICH	HLORIDE					
G										uropa.eu/esis/ind											

Decision Making for Physchem Parameters for Dinoseb

Physchem Properties	Unit											Min	Max	Mean	Median	Mode	Chosen Value	Justification
Relative Molecular Mass		195.48	195.474	195.474	195.47	195.48						195.47	195.48	195.48	195.47	195.48	195.47	The values are consistent therefore the most common was chosen.
Henry's Law Constant (HLC)	atm-m ³ /mole	2.60E-04	2.81E-04									2.60E-04	2.81E-04	2.71E-04	2.71E-04	#N/A	2.81E-04	There were only two values identified. The highest value was selected as a conservative measure for inhalation pathways.
Solubility (S) 10 oC where possible. (Use unit converter if source provides different units)	mg/L @ 20- 25oC	5.3	100	100								5.30	100.00	6.84E+01	1.00E+02	100	1.00E+02	The most common value was chosen.
Chemical Boiling Point (ambient pressure)	оС	220.8	221	221	220.8	220.7	220.8	220.7				220.70	221.00	2.21E+02	2.21E+02	220.8	2.21E+02	The central value was taken from a consistent range.
Chemical Melting Point (ambient pressure)	оС	-5	-4.42	-4.42	-5	-4.8	-5	-7.5	-5	-4.8	-4.6	-7.50	-4.42	-5.05E+00	-4.90E+00	-5	-4.90E+00	The central value was selected.
Log Octanol - Water Coefficient (Kow)	unitless	2.92	2.92	2.92	2.92							2.92	2.92	2.92E+00	2.92E+00	2.92	2.92E+00	All values are the same.
Molar Volume (Le Bas method)	cm ³ /mol	180.9										180.90	180.90	180.9	180.9		180.9	Only one value from the calculated Las Bas method
Enthalpy of Vaporisation at normal boiling point (EVNBP)	Gcal/Gmole	12168.6										12168.60	12168.60	1.22E+04	1.22E+04		1.22E+04	Only one value.
Vapour Pressure	Pa	30.66	20	55.2	16	20	30					16.00	55.20	2.86E+01	2.50E+01	20	2.00E+01	The most common value was chosen.
Density	g/cm ⁻³	1.3723	1.3723	1.3756	1.37	1.3756	1.373					1.37	1.38	1.37E+00	1.37E+00	1.3723	1.37E+00	All of the values identified are the same within 3 significant figures.

Diffusion Coefficient in Air

Dinoseb				
Based on SR7 S	ection 2.4			
	Answer	Units	Calcs	Parameter
Eqn 2-13	0.038681491	mol g-1	0.038681491	Mr
Eqn2.15	0.002071662	Unitless	0.002071662	B'
Eqn 2.17	1.181729893	Unitless	1.181729893	T*
eqn 2.16	1.33057165	Unitless	1.33057165	Ω
eqn 2.14	4.99163E-06	m2 s-1	4.99E-06	Da
eqn 2.18	5.406392376	Å	5.406392376	δΑΒ
	218	cm ³ mol ⁻¹	218	Vb

Trichloromethylbenzene								
Eqn 2-13	Answer 0.039634342	Units mol g-1	Calcs 0.039634342	Parameter Mr				
Eqn2.15	0.002070458	Unitless	0.002070458	B'				
Eqn 2.17	1.339759894	Unitless	1.339759894	T*				
eqn 2.16	1.257937918	Unitless	1.257937918	Ω				
eqn 2.14	5.79091E-06	m2 s-1	5.79E-06	Da				
eqn 2.18	5.192310427	Å	5.192310427	δΑΒ				
	180.9	cm ³ mol ⁻¹	180.9	Vb				

Pa	ra	m	0	ba	rc

	Units		
Mole Weight	g mol-1	240.21	
Boiling point	Kelvin	635.15	362 oC
Density	g cm3	1.27	
tamb	Kelvin	283.15	10 oC
Molcular weight of air	g mol-1	28.97	
Vb	cm3 mol-1	218	

Parameters

Mole Weight	g mol-1	195.47	
Boiling point	Kelvin	494.15	221
Density	g cm3	1.37 g/m3	
tamb	Kelvin	283.15	
Molcular weight of air	g mol-1	28.97	
Vh	cm3 mol-1	180.9	

D_Air Page 1 of 4

Koc Value Calculated from Kow Value

			Phenols, anilines,	
		Predominantly	benzonitriles,	
	Pesticides	Hydrophobics	nitrobenzenes	
	Eqn. 4	Eqn. 1	Eqn.3	
Compound	log Koc	log Koc	log Koc	log Kow
Dinoseb	2.7773		3.1617	3.59
Trichloromethylbenzene		2.4652		2.92

 SR7

 From Table 2.12
 Logkoc=0.81*logkow+0.10

 Eqn. 3
 logkoc=0.63*logkow+0.90

 Eqn. 4
 logkoc=0.47*logkow+1.09

Page 2 of 4 koc

Diffusion Coefficient in Water

Based on equation in SR7 Section 2.5 EQN 2.20

Eqn 2.20

Dinoseb 4.10E-10

Trichloromethylbenzene 4.57E-10

Henry's Law Constant

Contaminant	H' (H'=H/RT)	Н	Н	
	(dimensionless)	(Pa m3 mol-1)	(atm m3 mol-1)	
Dinoseb	2.08E-02	5.11E+01	5.04E-04	
Trichloromethylbenzene	1.16E-02	2.85E+01	2.81E-04	

R (gas constant) = 8.3144 Pa m3 mol-1 K-1

Temp of HLC (K) 295 1atm= 101325 Pa

Annex 4: Modelling

CLEA Software Version 1.06 Page 1 of 5

Report generated 03/08/2010

Report title Hauxton Criteria for Pesticides

Created by Zara Rostance at Atkins

BASIC SETTINGS

Land Use Residential with homegrown produce

Building Small terraced house

Receptor Female (res) Start age class 1 End age class 6 Exposure Duration 6 years

Soil Sand

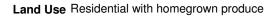
Exposure Pathways Direct soil and dust ingestion

Consumption of homegrown produce

Soil attached to homegrown produce

Dermal contact with indoor dust

Dermal contact with soil


Inhalation of indoor dust Inhalation of soil dust

Inhalation of indoor vapour ✓
Inhalation of outdoor vapour ✓

CLEA Software Version 1.06

Report generated 3-Aug-10

Page 2 of 5

	Exposure Frequencies (days yr ⁻¹)								
Age Class	Direct soil ingestion	Consumption of homegrown produce	Dermal contact with indoor dust	Dermal contact with soil	Inhalation of dust and vapour, indoor	Inhalation of dust and vapour, outdoor			
1	180	180	180	180	365	365			
2	365	365	365	365	365	365			
3	365	365	365	365	365	365			
4	365	365	365	365	365	365			
5	365	365	365	365	365	365			
6	365	365	365	365	365	365			
7	0	0	0	0	0	0			
8	0	0	0	0	0	0			
9	0	0	0	0	0	0			
10	0	0	0	0	0	0			
11	0	0	0	0	0	0			
12	0	0	0	0	0	0			
13	0	0	0	0	0	0			
14	0	0	0	0	0	0			
15	0	0	0	0	0	0			
16	0	0	0	0	0	0			
17	0	0	0	0	0	0			
18	0	0	0	0	0	0			

Occupation P	eriods (hr dav ⁻¹)	Soil to skin factors (stion rate	
Indoors	Outdoors	Indoor	Outdoor	Direct soil ingestion rate (g day¹)
23.0	1.0	0.06	1.00	0.10
23.0	1.0	0.06	1.00	0.10
23.0	1.0	0.06	1.00	0.10
23.0	1.0	0.06	1.00	0.10
19.0	1.0	0.06	1.00	0.10
19.0	1.0	0.06	1.00	0.10
0.0	0.0	0.00	0.00	0.00
0.0	0.0	0.00	0.00	0.00
0.0	0.0	0.00	0.00	0.00
0.0	0.0	0.00	0.00	0.00
0.0	0.0	0.00	0.00	0.00
0.0	0.0	0.00	0.00	0.00
0.0	0.0	0.00	0.00	0.00
0.0	0.0	0.00	0.00	0.00
0.0	0.0	0.00	0.00	0.00
0.0	0.0	0.00	0.00	0.00
0.0	0.0	0.00	0.00	0.00
0.0	0.0	0.00	0.00	0.00

CLEA Software Version 1.06

Report generated 3-Aug-10

Page 3 of 5

Receptor Female (res)

				Max expose	d skin factor		Consumption rates (g FW kg ⁻¹ BW day ⁻¹)					
Age Class	Body weight (kg)	Body height (m)	Inhalation rate (m³ day⁻¹)	Indoor (m² m ⁻²)	Outdoor (m² m²)	Total skin area (m²)	Green vegetables	Root vegetables	Tuber vegetables	Herbaceous fruit	Shrub fruit	Tree fruit
1	5.60	0.7	8.5	0.32	0.26	3.43E-01	7.12	10.69	16.03	1.83	2.23	3.82
2	9.80	8.0	13.3	0.33	0.26	4.84E-01	6.85	3.30	5.46	3.96	0.54	11.96
3	12.70	0.9	12.7	0.32	0.25	5.82E-01	6.85	3.30	5.46	3.96	0.54	11.96
4	15.10	0.9	12.2	0.35	0.28	6.36E-01	6.85	3.30	5.46	3.96	0.54	11.96
5	16.90	1.0	12.2	0.35	0.28	7.04E-01	3.74	1.77	3.38	1.85	0.16	4.26
6	19.70	1.1	12.2	0.33	0.26	7.94E-01	3.74	1.77	3.38	1.85	0.16	4.26
7	22.10	1.2	12.4	0.22	0.15	8.73E-01	3.74	1.77	3.38	1.85	0.16	4.26
8	25.30	1.2	12.4	0.22	0.15	9.36E-01	3.74	1.77	3.38	1.85	0.16	4.26
9	27.50	1.3	12.4	0.22	0.15	1.01E+00	3.74	1.77	3.38	1.85	0.16	4.26
10	31.40	1.3	12.4	0.22	0.15	1.08E+00	3.74	1.77	3.38	1.85	0.16	4.26
11	35.70	1.4	12.4	0.22	0.14	1.19E+00	3.74	1.77	3.38	1.85	0.16	4.26
12	41.30	1.4	13.4	0.22	0.14	1.29E+00	3.74	1.77	3.38	1.85	0.16	4.26
13	47.20	1.5	13.4	0.22	0.14	1.42E+00	3.74	1.77	3.38	1.85	0.16	4.26
14	51.20	1.6	13.4	0.22	0.14	1.52E+00	3.74	1.77	3.38	1.85	0.16	4.26
15	56.70	1.6	13.4	0.21	0.14	1.60E+00	3.74	1.77	3.38	1.85	0.16	4.26
16	59.00	1.6	13.4	0.21	0.14	1.63E+00	3.74	1.77	3.38	1.85	0.16	4.26
17	70.00	1.6	14.8	0.33	0.27	1.78E+00	2.94	1.40	1.79	1.61	0.22	2.97
18	70.90	1.6	12.0	0.33	0.27	1.80E+00	2.94	1.40	1.79	1.61	0.22	2.97

Report generated 3-Aug-10

Page 4 of 5

Building Small terraced house

Building footprint (m ²)	2.80E+01
Living space air exchange rate (hr ⁻¹)	5.00E-01
Living space height (above ground, m)	4.80E+00
Living space height (below ground, m)	0.00E+00
Pressure difference (soil to enclosed space, Pa)	3.10E+00
Foundation thickness (m)	1.50E-01
Floor crack area (cm²)	4.23E+02
Dust loading factor (µg m ⁻³)	5.00E+01

Soil Sand

Porosity, Total (cm ³ cm ⁻³)	5.40E-01
Porosity, Air-Filled (cm ³ cm ⁻³)	3.00E-01
Porosity, Water-Filled (cm ³ cm ⁻³)	2.40E-01
Residual soil water content (cm ³ cm ⁻³)	7.00E-02
Saturated hydraulic conductivity (cm s ⁻¹)	7.36E-03
van Genuchten shape parameter m (dimensionless)	3.51E-01
Bulk density (g cm ⁻³)	1.18E+00
Threshold value of wind speed at 10m (m s ⁻¹)	7.20E+00
Empirical function (F _x) for dust model (dimensionless)	1.22E+00
Ambient soil temperature (K)	2.83E+02
Soil pH	7.00E+00
Soil Organic Matter content (%)	1.00E+00
Fraction of organic carbon (g g ⁻¹)	5.80E-03
Effective total fluid saturation (unitless)	3.62E-01
Intrinsic soil permeability (cm²)	9.83E-08
Relative soil air permeability (unitless)	7.68E-01
Effective air permeability (cm²)	7.54E-08

Report generated 3-Aug-10

Page 5 of 5

Soil - Vapour Model

Air Dispersion Model

Depth to top of source (no building) (cm)	0
Depth to top of source (beneath building) (cm)	65
Default soil gas ingress rate?	No
Soil gas ingress rate (cm ³ s ⁻¹)	3.54E+01
Building ventilation rate (cm ³ s ⁻¹)	1.87E+04
Averaging time surface emissions (yr)	6
Finite vapour source model?	No
Thickness of contaminated layer (cm)	200

Mean annual windspeed at 10m (m s ⁻¹)	5.00
Air dispersion factor at height of 0.8m *	2400.00
Air dispersion factor at height of 1.6m *	0.00
Fraction of site cover (m ² m ⁻²)	0.75

^{*} Air dispersion factor in g m⁻² s⁻¹ per kg m⁻³

Dry weight conversion

Soil - Plant Model	factor	Homegrov Average	vn fraction High	Soil loading factor	Preparation correction factor
	g DW g ⁻¹ FW	dimens	ionless	g g ⁻¹ DW	dimensionless
Green vegetables	0.096	0.05	0.33	1.00E-03	2.00E-01
Root vegetables	0.103	0.06	0.40	1.00E-03	1.00E+00
Tuber vegetables	0.210	0.02	0.13	1.00E-03	1.00E+00
Herbaceous fruit	0.058	0.06	0.40	1.00E-03	6.00E-01
Shrub fruit	0.166	0.09	0.60	1.00E-03	6.00E-01
Tree fruit	0.157	0.04	0.27	1.00E-03	6.00E-01

Gardener type Average

Environment Agency

CLEA Software Version 1.06 Page 1 of 11

Report generated 03-Aug-10

Report title Hauxton Criteria for Pesticides

Created by Zara Rostance at Atkins

RESULTS

Report generated 3-Aug-10

Page 2 of 11

		Assessm	nent Criterion	(mg kg ⁻¹)	Ratio	o of ADE to	HCV		50%	rule?
		oral	inhalation	combined	oral	inhalation	combined	Saturation Limit (mg kg ⁻¹)	Oral	Inhal
1	Dinoseb	2.12E-01	6.16E-02	4.77E-02	0.23	0.77	1.00	1.82E+02 (vap)	No	No
2	Trichloromethylbenzene	6.41E-04	2.07E-04	1.57E-04	0.24	0.76	1.00	1.92E+02 (sol)	No	No
3		! !								
4		<u> </u>								
5		ļ]			
6		ļ				i !				
7										
8		-				† 				
9]								
10										
11		1			<u> </u>					
12		<u> </u>								
13		<u> </u>				i I				
14		<u> </u>					<u> </u>			
15							<u> </u>	<u></u>		
16						!	<u> </u>			
17		<u> </u>								
18		-					ļ		<u> </u>	
19		<u> </u>								
20		j			ij	į	j j	į į	į	į

Report generated 3-Aug-10

Page 3 of 11

	Assessn	nent Criterion	(mg kg ⁻¹)	Ratio	o of ADE to	HCV	0	50%	rule?
	oral	inhalation	combined	oral	inhalation	combined	Saturation Limit (mg kg ⁻¹)	Oral	Inhal
21									
22									
23									
24									
25						ļ ļ		į	İ
26									
27									
28						j j	į į	į	
29									
30									

CLEA Software Version 1.06

Report generated 3-Aug-10

Page 4 of 11

Environment Agency	S	Soil Dist	tributio	n							Medi	a Concentra	ations					
	Sorbed	Dissolved	Vapour	Total	Soil	Soil gas	Indoor Dust	Outdoor dust at 0.8m	Outdoor dust at 1.6m	Indoor Vapour	Outdoor vapour at 0.8m	Outdoor vapour at 1.6m	Green vegetables	Root vegetables	Tuber vegetables	Herbaceous fruit	Shrub fruit	Tree fruit
	%	%	%	%	mg kg ⁻¹	mg m ⁻³	mg kg ⁻¹	mg m ⁻³	mg m ⁻³	mg m ⁻³	mg m ⁻³	mg m ⁻³	mg kg ⁻¹ FW	mg kg⁻¹ FW	mg kg ⁻¹ FW			
1 Dinoseb	94.4	5.5	0.1	100.0	4.77E-02	2.68E-01	2.38E-02	2.03E-11	0.00E+00	1.68E-04	7.40E-08	0.00E+00	6.28E-02	8.88E-02	2.02E-02	0.00E+00	0.00E+00	1.96E-02
2 Trichloromethylbenzene	89.2	10.6	5.5 0.1 100.0 4.77E-02 2.68E-01 2.38E-02 2.03E-11 0.00E+00 1.68E-04 7.40E-08 0.00E+00 6.28E-02 8.88E-02 2.02E-02 0.00E+00 0.00E+00	1.84E-04														
3	<u> </u>																	
4	į į				į į													
5			!								!	!			! !	!		
6												ļ						
7																		
8												<u>i</u>				<u> </u>		
9	1 1		i															i i
10	į į																	
11																		
12 13 14 15			ĺ								Ì	Ì			Ì			
13	!!!		!								ļ							
14			į															
15	! !											!						
16			!									ļ				i !		
17			!								! ! !	ļ			! !	<u> </u>		<u> </u>
18	[[ĺ									į			! !	ļ]
18 19	1																	
20	j j																	

CLEA Software Vers	ion 1.0	6				Repo	ort generated			3-Aug-10							Page 5 of 1	1
Environment Agency		Soil Dis	stributio	n	 						Media	Concentra	tions					
	Sorbed	Dissolved	Vapour	Total	Soil	Soil gas	Indoor Dust	Outdoor dust at 0.8m	Outdoor dust at 1.6m	Indoor Vapour	Outdoor vapour at 0.8m	Outdoor vapour at 1.6m	Green vegetables	Root vegetables	Tuber vegetables	Herbaceous fruit	Shrub fruit	Tree fruit
	%	%	%	%	mg kg⁻¹	mg m ⁻³	mg kg ⁻¹	mg m ⁻³	mg m ⁻³	mg m ⁻³	mg m ⁻³			!		!	mg kg ⁻¹ FW	!
21						! !												i !
22		į	į	į	į	į						į	į					į
23	ł	ļ	ļ	ļ	ļ							ļ	1			! ! !	! !	<u> </u>
24		į	į	į	į							į						İ
25		ļ	į	ļ	ļ	İ	ļ	ļ	ļ	ļ	ļ		ļ		İ		į	İ
26	İ	ļ		ļ		!						ļ			<u> </u>			!
27	į	ļ		ļ		<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	İ		 		 	<u> </u>	<u> </u>
28		į																
		1	Ť T	i —	1	i e	i	i	i	i	i	i .	1	ì	i –	ì	i	ř

\sim 1	$\Box \Delta$	Soft	ware	Var	eion	1	೧೯
\cup_{L}	ᆮᄶ	SOIL	waie	ven	SIULL	Ι.	υu

Report generated 3-Aug-10

Page 6 of 11

Environment Agency		A.,	ge Daily Ex	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	م بریط ¹ میرا	رات رما				Diet	ibution by	, Dathwa	v (0/)		
		Avera	ge Dally Ex	cposure (m	g kg bw c	iay)				Disti	ibution by	/ I alliwa	y (70)		
	Direct soil ingestion	Consumption of homegrown produce and attached soil	Dermal contact with soil and dust	Inhalation of dust	Inhalation of vapour	Background (oral)	Background (inhalation)	Direct soil ingestion	Consumption of homegrown produce and attached soil	Dermal contact with soil and dust	Inhalation of dust	Inhalation of vapour (indoor)	Inhalation of vapour (outdoor)	Background (oral)	Background (inhalation)
1 Dinoseb	3.54E-07	4.13E-05	9.08E-07	1.12E-09	1.55E-04	1.13E-05	0.00E+00	0.17	19.77	0.44	0.00	74.23	0.00	5.39	0.00
2 Trichloromethylbenzene	1.16E-09	1.93E-07	1.49E-09	3.69E-12	6.05E-07	0.00E+00	0.00E+00	0.15	24.09	0.19	0.00	75.57	0.00	0.00	0.00
3				<u> </u>					 		} !	<u> </u>	<u> </u>	} !	<u> </u>
4				i !								i		 	
5				! !										<u> </u>	
6															<u> </u>
7															
8												į	į		
9 10 11															
10															
				ļ											
12				i !								i !	i !		
13				! !					! !		! !	<u> </u>	<u> </u>	!	
14				<u> </u>								<u> </u>	į	<u> </u>	
15				! !								!	ļ		
16				<u> </u>					<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>
17				<u> </u>							<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>
18				<u> </u>								<u> </u>			<u> </u>
19				<u>į </u>							ļ	<u>į </u>	ļ	ļ	
20				<u> </u>					<u> </u>		!	!	!	!	<u> </u>

CLEA Software Version 1.06	n 1.06				Rep	Report generated 3-Aug-10	3-Aug-10					Page 7 of 11	of 11		
Environment Agency		Avera	Average Daily Exposure (mg kg ⁻¹ bw day ⁻¹	posure (mo	g kg ⁻¹ bw o	day ⁻¹)				Dist	Distribution by Pathway (%)	/ Pathwa	ıy (%)		
		•							•					_	
	rect soil ingestion	onsumption of megrown produce d attached soil	ermal contact with il and dust	nalation of dust	nalation of vapour	ckground (oral)	ckground halation)	rect soil ingestion	onsumption of megrown produce	ermal contact with il and dust	nalation of dust	nalation of vapour door)	nalation of vapour utdoor)	ckground (oral)	ckground halation)
21															
22															
23															
24															
25															
26															
27															
28															
29															
30															

20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	ω	2 Trichloromethylbenzene	1 Dinoseb	Environment Agency	CLEA Software Version 1.06
\																		ē	<u>I</u>		on 1.
																		0.0008	0.2	Oral Health Criteria Value (µg kg ⁻¹ BW day ⁻¹)	6
																		ō	TDI	Inhalation Health Criteria Value	
																		0.0008	0.2	(µg kg ⁻¹ BW day ⁻¹)	
									\ 									NR.	0.2	Oral Mean Daily Intake (µg day ⁻¹)	Rep
)																		NR	0	Inhalation Mean Daily Intake (μg day ⁻¹)	Report generated 3-Aug-10
)																		1.16E-02	2.08E-02	Air-water partition coefficient (K _{aw}) (cm ³ cm ⁻³)	3-Aug-10
																		5.79E-06	4.99E-06		
																		4.57E-10	4.10E-10	Coefficient of Diffusion in Water (m ² s ⁻¹)	
																		2.47	2.78	log K _{oc} (cm ³ g ⁻¹)	
																		2.92	3.59		
																		0.25	0.5	Dermal Absorption Fraction (dimensionless)	
																		0.5	0.5	Soil-to-dust transport factor (g g ⁻¹ DW)	
													+	+	+				_	Sub-surface soil to indoor air correction factor (dimensionless)	
			+		+										+	ļ			_	Relative bioavailability via soil ingestion (unitless)	Page 8 of 11
																		-	-	Relative bioavailability via dust inhalation (unitless)	of 11

CLEA Software Version 1.06	on 1.06		Repo	Report generated 3-Aug-10	3-Aug-10								Page 9 of 11	_
Environment Agency		llue		·	t	r (m²	ater				(g	r	oil	
		ealth Criteria Va day ⁻¹)	aily Intake	ean Daily Intake	rtition coefficient	f Diffusion in Air	f Diffusion in Wa	g ⁻¹)	ensionless)	orption Fraction ess)	ransport factor		availability via so	
	Oral Health Ci (µg kg ⁻¹ BW d	Inhalation Hea (µg kg ⁻¹ BW d	Oral Mean Da	(µg day ⁻¹)	Air-water parti (K _{aw}) (cm ³ cm	Coefficient of s ⁻¹)	Coefficient of (m ² s ⁻¹)	log K _∞ (cm³ g	log K _{ow} (dimer	Dermal Absor (dimensionles	Soil-to-dust tra	Sub-surface s correction fact (dimensionles	Relative bioav	
21														<u> </u>
22														L. I
23														_
24														
25														
26														_
27														_
28														
29														
30													1	

Report generated 3-Aug-10

Page 10 of 11

20	19	18	17	16	15	14	13	12	1	10	9	8	7	6	ហ	4	ы	2 Trichloromethylbenzene	1 Dinoseb	Agency
																		1.71E+00	3.49E+00	Soil-to-water partition coefficient (cm³ g⁻¹)
																		2.00E+01	1.00E+01	Vapour pressure (Pa)
																		1.00E+02	5.20E+01	Water solubility (mg L ⁻¹)
																		model	model	Soil-to-plant concentration factor for green vegetables (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)
																		model	model	Soil-to-plant concentration factor for root vegetables (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)
																		model	model	Soil-to-plant concentration factor for tuber vegetables (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)
																		model	model	Soil-to-plant concentration factor for herbaceous fruit (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)
																		model	model	Soil-to-plant concentration factor for shrub fruit (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)
																		model	model	Soil-to-plant concentration factor for tree fruit (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)

Vapour pressure (Pa) Water solubility (mg L ⁻¹) Soil-to-plant concentration factor for green vegetables (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil) Soil-to-plant concentration factor for root vegetables (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil) Soil-to-plant concentration factor for tuber vegetables (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)	Water solubility (mg L ⁻¹) Soil-to-plant concentration factor for green vegetables (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil) Soil-to-plant concentration factor for root vegetables (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil) Soil-to-plant concentration factor for tuber vegetables (mg g ⁻¹ plant DW or FW basis over mg	Water solubility (mg L ⁻¹) Soil-to-plant concentration factor for green vegetables (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil) Soil-to-plant concentration factor for root vegetables (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil) Soil-to-plant concentration factor for tuber vegetables (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil) Soil-to-plant concentration factor for herbaceous fruit (mg g ⁻¹ plant DW or FW basis over mg	Water solubility (mg L ⁻¹) Soil-to-plant concentration factor for green vegetables (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil) Soil-to-plant concentration factor for root vegetables (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil) Soil-to-plant concentration factor for tuber vegetables (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil) Soil-to-plant concentration factor for herbaceous fruit (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil) Soil-to-plant concentration factor for herbaceous fruit (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)	CLEA Software Version 1.06	Agency Agency Soil-to-water partition coefficient (cm ³ g ⁻¹)	21	22	23	24	25	 26	26 27	26 27 28	26 27 28 29
Soil-to-plant concentration factor for green vegetables (mg g - 1 plant DW or FW basis over mg g - 1 DW soil) Soil-to-plant concentration factor for root vegetables (mg g - 1 plant DW or FW basis over mg g - 1 DW soil) Soil-to-plant concentration factor for tuber vegetables (mg g - 1 plant DW or FW basis over mg g - 1 plant DW or FW basis over mg	Soil-to-plant concentration factor for green vegetables (mg g¹¹ plant DW or FW basis over mg g¹¹ DW soil) Soil-to-plant concentration factor for root vegetables (mg g¹¹ plant DW or FW basis over mg g¹¹ DW soil) Soil-to-plant concentration factor for tuber vegetables (mg g¹¹ plant DW or FW basis over mg g¹¹ DW soil) Soil-to-plant concentration factor for tuber vegetables (mg g¹¹ plant DW or FW basis over mg g¹¹ DW soil) Soil-to-plant concentration factor for herbaceous fruit (mg g¹¹ plant DW or FW basis over mg	Soil-to-plant concentration factor for green vegetables (mg g¹ plant DW or FW basis over mg g¹¹ DW soil) Soil-to-plant concentration factor for root vegetables (mg g¹¹ plant DW or FW basis over mg g¹¹ DW soil) Soil-to-plant concentration factor for tuber vegetables (mg g¹¹ plant DW or FW basis over mg g¹¹ DW soil) Soil-to-plant concentration factor for herbaceous fruit (mg g¹¹ plant DW or FW basis over mg g¹¹ DW soil) Soil-to-plant concentration factor for herbaceous fruit (mg g¹¹ plant DW or FW basis over mg g¹¹ DW soil) Soil-to-plant concentration factor for shrub fruit (mg g¹¹ plant DW or FW basis over mg g¹¹ DW soil)	Soil-to-plant concentration factor for green vegetables (mg g ¹¹ plant DW or FW basis over mg g ¹¹ DW soil) Soil-to-plant concentration factor for root vegetables (mg g ¹¹ plant DW or FW basis over mg g ¹¹ DW soil) Soil-to-plant concentration factor for tuber vegetables (mg g ¹¹ plant DW or FW basis over mg g ¹¹ DW soil) Soil-to-plant concentration factor for herbaceous fruit (mg g ¹¹ plant DW or FW basis over mg g ¹¹ DW soil) Soil-to-plant concentration factor for herbaceous fruit (mg g ¹¹ plant DW or FW basis over mg g ¹¹ DW soil)		Vapour pressure (Pa)						 			
g ⁻¹ DW soil) Soil-to-plant concentration factor for tuber vegetables (mg g ⁻¹ plant DW or FW basis over mg	g ⁻¹ DW soil) Soil-to-plant concentration factor for tuber vegetables (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil) Soil-to-plant concentration factor for herbaceous fruit (mg g ⁻¹ plant DW or FW basis over mg	g¹ DW soil) Soil-to-plant concentration factor for tuber vegetables (mg g¹¹ plant DW or FW basis over mg g¹¹ DW soil) Soil-to-plant concentration factor for herbaceous fruit (mg g¹¹ plant DW or FW basis over mg g¹ DW soil) Soil-to-plant concentration factor for shrub fruit (mg g¹¹ plant DW or FW basis over mg g¹ DW soil)	g¹ DW soil) Soil-to-plant concentration factor for tuber vegetables (mg g¹ plant DW or FW basis over mg g¹ DW soil) Soil-to-plant concentration factor for herbaceous fruit (mg g¹¹ plant DW or FW basis over mg g¹ DW soil) Soil-to-plant concentration factor		Water solubility (mg L ⁻¹)						 			
g ⁻¹ DW soil) Soil-to-plant concentration factor for tuber vegetables (mg g ⁻¹ plant DW or FW basis over mg	g ⁻¹ DW soil) Soil-to-plant concentration factor for tuber vegetables (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil) Soil-to-plant concentration factor for herbaceous fruit (mg g ⁻¹ plant DW or FW basis over mg	g ⁻¹ DW soil) Soil-to-plant concentration factor for tuber vegetables (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil) Soil-to-plant concentration factor for herbaceous fruit (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil) Soil-to-plant concentration factor for shrub fruit (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)	g¹ DW soil) Soil-to-plant concentration factor for tuber vegetables (mg g¹ plant DW or FW basis over mg g¹ DW soil) Soil-to-plant concentration factor for herbaceous fruit (mg g¹¹ plant DW or FW basis over mg g¹ DW soil) Soil-to-plant concentration factor	Report generated	for green vegetables (mg g ⁻¹ plant DW or FW basis over mg									-
for tuber vegetables (mg g ⁻¹ plant DW or FW basis over mg	for tuber vegetables (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil) Soil-to-plant concentration factor for herbaceous fruit (mg g ⁻¹ plant DW or FW basis over mg	for tuber vegetables (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil) Soil-to-plant concentration factor for herbaceous fruit (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil) Soil-to-plant concentration factor for shrub fruit (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)	for tuber vegetables (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil) Soil-to-plant concentration factor for herbaceous fruit (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil) Soil-to-plant concentration factor	3-Aug-10	for root vegetables (mg g ⁻¹ plant DW or FW basis over mg									-
	for herbaceous fruit (mg g ⁻¹ plant DW or FW basis over mg	for herbaceous fruit (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil) Soil-to-plant concentration factor for shrub fruit (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)	for herbaceous fruit (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil) Soil-to-plant concentration factor		for tuber vegetables (mg g ⁻¹ plant DW or FW basis over mg					.===				

Annex 5: Derivation of Generic Assessment Criteria the Protection of Controlled Waters

This annex provides an initial assessment of the substances detected at the Former Agrochemical works, Main Site at Hauxton, near Cambridge with respect to risk to controlled waters receptors.

The CNPIs are listed in the following table:

Chemical Name	CAS Number	Chemical Formula
Dinoseb	88-85-7	C ₁₀ H ₁₂ N ₂ O ₅
1-methylnaphthalene	90-12-0	C ₁₁ H ₁₀
2,3,4- Trichloro benzenamine, or	634-67-3	
2,3,5- Trichloro benzenamine, or	18487-39-3	
2,3,6- Trichloro benzenamine, or	88963-39-7	
2,4,5- Trichloro benzenamine, or	636-30-6	
2,4,6- Trichloro benzenamine., or	634-93-5	
3,4,5- Trichloro benzenamine, or	634-91-3	C ₆ H ₄ NCl ₃
2,3-Dichlorotoluene	32768-54-0	C ₇ H ₆ Cl ₂

This annex provides a summary of the physical and chemical properties of each of these substances.

For each substance either a surrogate substance is selected from amongst the existing priority contaminants for controlled waters, and the remedial targets for this surrogate are applied to the CNPI; or a specific remedial target for the substance has been calculated using the methodology developed in 2007 (Ref 1).

Dinoseb

Chemical Name: 2-sec-butyl-4,6-dinitrophenol

Dinoseb was detected in NAPL from grid square K10 at the Main Site, Hauxton at a concentration of 68,000 mg/kg.

This substance is a phenol molecule with two nitrous groups (NO₂) and a branched alkane group attached. Dinoseb is an herbicide/insecticide organic substance.

The physical and chemical properties of Dinoseb pertaining to contaminant transport in groundwater, from literature sources, are as follows:

Properties	Units	Values	Reference
Henry's Law	Pa m³/mol	51.1	Suntio, L.R., Shiu, W.Y., Mackay, D., Seiber, J.N., Glotfelty, D. (1988) Critical review of Henry's law constants. Rev. Environ.
Koc	1-	65 - 708	Mackay D., Shiu W.Y., Lee S.C. & Ma K. Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, Second Edition Aug 2006 (CD-ROM)
Half (Anaerobic)	Life days	4 – 246	Howard, P.H., Editor (1991) Handbook of Environmental Fate and Exposure Data for Organic Chemicals. Volume III. Pesticides. Lewis Publishers, Chelsea, Michigan.

This substance was not previously identified at Hauxton Main Site and was not known from available records to have been manufactured at Hauxton however a very wide range of substances were synthesised at the site over its history.

The parameters available for Dinoseb and their wide ranges for Koc and half lives make it desirable to calculate a specific remedial target rather than rely on a surrogate. However Dinoseb is superficially similar in structure and arrangement of groups around the benzene ring to 4,6-dinitro-o-cresol which was a priority contaminant taken forward from the risk screening in 2007 (Ref 1) for derivation of remedial targets.

As there are sufficient published data on the properties of Dinoseb, and it appears to have properties which might make it mobile in groundwater (a low K_{OC} value), a remedial target has been calculated for it using a conservative compliance concentration at the receptor of $0.1\mu g/l$, as has been considered for all pesticide/herbicide substances at Hauxton. The methodology used to calculate the target was the same as used in the 2007 risk assessment (Ref 1).

1-methylnaphthalene

1-Methylnaphthalene was detected in NAPL from grid square K10 at the Main Site, Hauxton at a concentration of 2,400 mg/kg.

This substance is similar to 2-methylnaphthalene which was detected at the Hauxton Main Site historically. However 2-methylnaphthalene was only detected in relatively low concentrations in groundwater (up to 290µg/l). 2-methylnaphthalene was found to be of low risk in the risk screening carried out in 2007 (Ref 1) and therefore was not selected as a priority contaminant.

1-Methylnaphthalene was detected in a sample of NAPL from square K10 at a concentration of 2.4 g/kg.

The physical and chemical properties of 1-methylnaphthalene are as follows:

Properties	Units	Values	Reference
Henry's Law	Pa m³/mol	26.3	Mackay, D., Shiu, W.Y., Bobra, A., Billington, J., Chau, E., Yeun, A., Ng, C., Szeto, F. (1982) Volatilization of Organic Pollutants
K _{oc}	-	915 – 6764.7	Stauffer, T.B., MacIntyre, W.G., Wickman, D.C. (1989) Sorption of nonpolar organic chemicals on low-carbon-content aquifer materials. Environ. Toxicol. Chem. 8, 845–852.
Half Life (Anaerobic)	days	1611	Aronson, D. and Howard, P. H. (1997) Anaerobic Biodegradation of Organic Chemicals in Groundwater: American Petroleum Institute

The properties of 1-methylnaphthalene include relatively large K_{OC} values therefore transport of this substance in groundwater is likely to be slow. This has to be weighed against the relatively low half life for this substance. There is no obvious surrogate for this substance amongst the existing priority contaminants for controlled waters. PAHs were not found in highly elevated concentrations at Hauxton compared to other more highly mobile organic contaminants, and therefore were not considered to be priority contaminants.

It was considered necessary to calculate remedial targets for 1-methylnaphthalene using the parameters summarised above as a screening value for remedial validation purposes. The methodology used to calculate the target was the same as used in the 2007 risk assessment (Ref 1).

Trichloro benzenamine isomer

Synonyms: Trichloroaniline

Trichloro benzamine was detected in grid square J10 at a concentration of 11 mg/kg.

These substances are very similar and have identical molecular mass. They consist of a benzene ring with three chloride groups attached and a single amine/aniline group (NH $_2$). A couple of contaminants with amine/aniline groups were detected at Hauxton previously including analine (C $_6$ H $_7$ N) and 4-chloroaniline (C $_6$ H $_6$ NCl). The risk screening carried out in 2007 (Ref 1) to select the priority contaminants for controlled waters assessed analine and 4-chloroaniline as being of low risk.

The following properties on the 2,4,6 trichloroaniline were sourced from literature, principally toxnet references.

Properties	Units	Values	Reference
Henry's Law	Atm m³/mol	1.34x10 ⁻⁶	Meylan WM, Howard PH; Environ Toxicol Chem 10: 1283-93 (1991)
K _{oc}	-	2,400	Swann RL et al; Res Rev 85: 17-28 (1983) Meylan WM et al; Environ Sci Technol 26: 1560-67 (1992)
Half Life (Anaerobic)	days	143	Peijnenburg WJGM et al; Environ Toxicol Chem 11: 289-300 (1992)
Solubility	mg/l	40	Chem Inspect Test Inst; Biodegradation and Bioaccumulation Data of Existing Chemicals Based on the CSCL Japan; Published by Japan Chemical Industry Ecology-Toxicology & Information Centre. ISBN 4-89074-101-1 p. 3-34 (1992)

The contaminant transport properties of 2,3,4 trichloroaniline were researched however very little information appears to be available on this form of the molecule. Some reference to it biodegrading under anaerobic conditions were sourced from Elmar et. al. 1990 (Ref 2). However no indication of the rate of biodegradation that could be expected for 2,3,4 trichloroaniline after the incubation period was available.

In the absence of parameters to risk assess the 2,3,4 trichloroaniline version of trichloroanaline, it is considered that 2,4,6 trichloroaniline should have a remediation target calculated and that this remedial target should apply to both forms of the molecule. Should the laboratory find it

possible to differentiate then by laboratory techniques in subsequent analyses then the remedial target for 2,3,4 trichloroaniline should be applicable to both substances. The methodology used to calculate the target was the same as used in the 2007 risk assessment (Ref 1).

2,3-Dichlorotoluene

2,3-Dichlorotoluene has been detected in grid square J10 on the Hauxton Main Site at a concentration of 290 mg/kg.

The 2,3-dichlorotoluene molecule consists of a benzene ring with a methyl group attached and then two chloride attached to the next two carbons in the benzene ring. There are a wide variety of forms that dichlorotoluene could take depending on the locations of the chloride ions on the benzene ring. No information on the contaminant transport properties of 2,3-dichlorotoluene have been found in literature surveys carried out for this assessment.

Other chlorinated toluene type contaminants have been detected at the Hauxton Main Site in the past, including 2-chlorotoluene and 4-chlorotoluene which were assessed in the 2007 risk screening (Ref 1), and 2,3,6-trichlorotoluene which was detected in grid square I9 (July 2010) during the remediation.

The contaminant transport properties of these substances and two forms of dichlorotoluene, which do have published literature on their environmental fate and transport, are listed in the tables below.

Koc

Substances	Koc	Reference
2-chlorotoluene	346 - 397	Bannerjee, P., Piwoni, M.D. & Ebeid, K., (1985). Sorption of Organic Contaminants to a low Carbon Subsurface Core. Chemosphere 14, 1057 - 1067.
4-chlorotoluene	327 - 512	OECD SIDS Initial Assessment Report for SIAM 20. Paris, France 19th-22nd April 2005. p-CHLOROTOLUENE UNEP PUBLICATIONS
2,4-dichlorotoluene	4786.3	Howard, P.H., Ed. (1997) Handbook of Fate and Exposure Data for Organic Chemicals. Vol. V, Solvents 3. Lewis Publishers, Inc., Chelsea, Michigan.
2,6-dichlorotoluene	5128.6	Howard, P.H., Ed. (1997) Handbook of Fate and Exposure Data for Organic Chemicals. Vol. V, Solvents 3. Lewis Publishers, Inc., Chelsea, Michigan.

Henry's Law

Substances	Henry's Law	Units	Reference
2-chlorotoluene	295	Pa m³/mole	Staudinger, J., Roberts, P.V. (1996) A critical review of Henry's law constants for environmental applications. Crit. Rev. Environ. Sci. Technol. 25, 205–297.
			Staudinger, J., Roberts, P.V. (2001) A critical compilation of Henry's law constant temperature dependence relations for organic compounds in dilute aqueous solutions. Chemosphere 44, 561–576.
4-chlorotoluene	412.4	Pa m³/mole	Howard, P.H., Ed. (1993) Handbook of Fate and Exposure Data for Organic Chemicals. Vol. IV, Solvents 2. Lewis Publishers, Inc., Chelsea, Michigan.
2,4- dichlorotoluene	350.6	Pa m³/mole	Hine, J., Mookerjee, P.K. (1975) The intrinsic hydrophilic character of organic compounds. Correlations in terms of structural contributions. J. Org. Chem. 40, 292–298.
2,6- dichlorotoluene	350.6	Pa m³/mole	Hine, J., Mookerjee, P.K. (1975) The intrinsic hydrophilic character of organic compounds. Correlations in terms of structural contributions. J. Org. Chem. 40, 292–298.

Biodegradation Rates (Anaerobic)

Substances	Half Life (days)	Reference
2-chlorotoluene	70*	Chemicals Inspection and Testing Institute; Japan Chemical Industry Ecology-Toxicology and Information Center. ISBN 4-89074-101-1. (1992)
4-chlorotoluene	70*	Kawasaki M; Ecotox Environ Safet 4: 444-54 (1980)
2,4-dichlorotoluene	90	Ramanand K et al; Appl Environ Microbiol 59: 3266-3272 (1993)
2,6-dichlorotoluene	230**	Ramanand K et al; Appl Environ Microbiol 59: 3266-3272 (1993)

^{*} calculated from 30% reduction after 14 days

It has been assumed that 2,3-dichlorotoluene will have similar environmental fate properties to the other dichlorotoluene species and therefore could be conservatively risk assessed using the most conservative parameter values obtained for either 2,4-dichlorotoluene or 2,6-dichlorotoluene.

^{**} calculated from 30-35% reduction after 150 days

The assumed parameters for the derivation of a remedial target for 2,3-dichlorotoluene would therefore be as follows.

Properties	Units	Values	Reference
Henry's Law	Pa m ³ /mole	350.6	Hine, J., Mookerjee, P.K. (1975) The intrinsic hydrophilic character of organic compounds. Correlations in terms of structural contributions. J. Org. Chem. 40, 292–298.
K _{oc}	-	4786.3	Howard, P.H., Ed. (1997) Handbook of Fate and Exposure Data for Organic Chemicals. Vol. V, Solvents 3. Lewis Publishers, Inc., Chelsea, Michigan.
Half Life (Anaerobic)	days	230	Ramanand K et al; Appl Environ Microbiol 59: 3266-3272 (1993)

The remedial target calculated for 2,3-dichlorotoluene should also be applicable as a conservative surrogate target for the unspecified species of dichlorotoluene identified during the remediation. The solubility of dichlorotoluene molecules are described as insoluble in the literature (Ref. 2).

Summary

In summary the following recommendations are made as a result of screening the potential risks associated to controlled waters with regard to the substances detected by TIC GCMS screening at the Hauxton Main Site.

Sufficient data on the contaminant transport properties of Dinoseb, 1-methylnaphthalene and Trichloro benzenamine were available for species specific remedial targets to be derived. The methodology used to calculate the targets was the same as used in the 2007 risk assessment (Ref 1).

For the case of 2,3-dichlorotoluene it was possible to select conservative parameters for two other dichlorotoluene species which could then be used to derive a conservative dichlorotoluene remedial target that could be applied to 2,3-dichlorotoluene.

The table below lists the CNPIs calculated remedial targets.

Substances	Priority Contaminant Surrogates	Target Concentration (µg/kg)	
		Inner Zone	Outer Zone
Dinoseb	-	0.16	330
1-methylnaphthalene	-	1.71	1790
Trichloro benzenamine	-	14.3	>100,000*
2,3-dichlorotoluene	-	39.6	>100,000**

 ^{*} Calculated Target Concentration 8.75 x10⁹. Number based on solubility.

^{**} Calculated Target Concentration 1.15x10¹¹. No Solubility data on substance, conservative value assumed based on an insoluble substance (Ref. 2)

References

- Atkins Ltd; Groundwater Modelling Report; Remediation of Former Bayer Site, Hauxton; February 2007
- Ashford, R.D. Ashford's Dictionary of Industrial Chemicals. London, England: Wavelength Publications Ltd., 1994., p. 290