

Darwin Green – Soil (Subsoil and Topsoil) Strategy

Materials Suitability Technical Briefing Note – Version 3.0

(Report reference: 26716 01R (01))

13th January 2014

RSK Environment Limited was appointed by BDW Trading Limited to act as geo-environmental and geotechnical consultants for the above project. This briefing note has been prepared, at the request of the Client, to support the Darwin Green One 'Infrastructure Package' which seeks approval for a mixture of reserved matters, planning conditions and new planning applications.

The purpose of this document is to provide technical detail with respect to geo-environmental and geotechnical aspects of the proposed soil strategy. It specifically addresses the suitability for re-use of topsoil and subsoil on site.

The soil strategy is summarised in **Section 2** and detailed in the Woods Hardwick Infrastructure LLP, Subsoil and Topsoil Strategy (Ref 16483, Rev A, December 2013) included as **Appendix A**.

It should be noted that the site, Darwin Green One (DG1), refers to approximately 50.8 hectares of land currently owned by members of the North West Cambridge Consortium, and has previously been referred to as NIAB 1.

1. DARWIN GREEN ONE 'INFRASTRUCTURE PACKAGE'

The Darwin Green One 'Infrastructure Package' seeks approval for a mixture of reserved matters, planning conditions and new planning applications in order to allow works to commence on the development. This includes construction of key roads and cycle/pedestrian links, drainage swales, surface water attenuation ponds, public open space and landscaping, including a landscaped mound to the A14 to incorporate excess spoil exclusively from the DG1 development.

The 'Infrastructure' package will consist of the following submission:

- Reserved Matters submission to Cambridge City Council for the Infrastructure elements (Roads & Open Space) of Outline Planning Consent C/07/0003/OUT;
- New Full Planning Application to Cambridge City Council for a vehicular link to the City/District boundary within the existing approved outline consented site;
- New Full Planning Application to South Cambridgeshire District Council for a temporary vehicular access & turning head for a proposed secondary school site served by a new link from the Cambridge City Council Outline consented site;
- New Full Planning Application to South Cambridgeshire District Council for resurfacing and landscaping works to a length of existing Public Right of Way 135/5 on the boundary of Cambridge City Council consented site C/07/0003/OUT;

- New Full Planning Application to South Cambridgeshire District Council for a drainage connection between the approved surface water attenuation pond in consent S/0001/07/F to an existing Award Drain AND Approval of an alternate surface water attenuation pond and its connections to the Award Drain along with necessary Haul Road access to be approved on an EITHER/OR basis in place of the existing approved pond;
- New Full Planning Application to South Cambridgeshire District Council for a landscaped mound adjacent to the A14 to be constructed exclusively from excess spoil arising from the Darwin Green One development; and
- New Full Planning Application to South Cambridgeshire District Council for provision of a Foul Pumping Station, Utility Compound and Cambridge Road Access Works.

Concurrently with the Infrastructure Package Application submissions will also be made for the discharge of conditions relating to:

- Full Planning Consent S/0001/07/F, South Cambridgeshire District Council; and
- Outline Planning Consent C/07/0003/OUT, Cambridge City Council.

2. SOIL STRATEGY

The soil (subsoil and topsoil) strategy for the infrastructure package is outlined in the Woods Hardwick Infrastructure LLP (**Appendix A**) Subsoil and Topsoil Strategy Technical Note (**Appendix B**). The purpose of this strategy is to achieve a balanced solution on the site to avoid external movements of bulk spoil and topsoil on the public highway.

The strategy consists of a:

Subsoil strategy:

In order to form the anticipated finished levels across the site based on the approved drainage model, the northern $1/3^{rd}$ of the site requires raising between 0.5 and 2.0m. The $61,273m^3$ of subsoil required for this will be obtained from a 'borrow' pit located in the Central Park.

The location of the borrow pit, which will be approximately 2.4m deep, is shown in the Woods Hardwick Borrow Pit Plan (Ref: 16483/2084).

Topsoil strategy:

The strategy indicates that construction works will generate a net surplus of topsoil of approximately 140,715m³ (87,323m³ from DG1 and 53,392m³ from DG2 and DG3). Subject to suitability, the surplus will be used to fill the borrow pit (61,295m³), excavated as part of the subsoil strategy, with the balance used to create landscape mounds (79,420m³).

The landscape mound will be formed to a maximum height of 3.05m above ground level and with a maximum slope of 1:3 (V:H). On site vehicle movements to undertake these works will be via existing farm tracks and new haul roads.

On site vehicle haul road routes to be agreed through Planning Conditions and the Site Wide Phasing Strategy/Construction Statements.

The strategy allows for all subsoil and topsoil generated by the development works to be re-used on the site.

3. SUITABILITY FOR RE-USE

The suitability of soil for reuse on site will be determined by its' geotechnical and environmental properties with respect to the intended end use. In order to assess soil properties RSK Environment Ltd (RSK) has undertaken the following geotechnical and geoenvironmental assessments and commissioned a soil resources survey (specifically in respect to the topsoil):

- Report for Main Site Investigation NIAB Phase 1, Huntingdon Road, Cambridge. RSK Environment Ltd, October 2012 (Ref: 25459-01(00))
- Supplementary Investigation NIAB1 Fields, Phase 1 Development. RSK Environment Ltd, 1st May 2013 (Ref: 25459-R02 (00)).
- Summary geo-environmental report for NIAB1 Fields, Phase 1 Development. RSK Environment Ltd, 11th October 2013 (Ref: 25459-R03 (00)).
- Soil Resources of land at Darwin Green, Cambridge. Land Research Associated, 16th October 2013 (Ref 898/1).

With respect to the soil strategy the findings of these reports are summarised in the following sections. The reports are included as **Appendix B**.

3.1 Soil properties

3.1.1 Ground model

RSK's assessment identified that the geology underlying the site comprises a variable thickness of topsoil and/or made ground overlying the River Terrace Deposits in the north/north eastern portion of the site. The Gault Clay Formation underlies these superficial deposits. Groundwater was encountered coincident with the River Terrace Gravels at a depth of between 1.3 and 3.1m below ground level (bgl).

3.1.2 Environmental/Contaminated land issues

The quantitative risk assessment (RSK, Oct 2012) compared chemical test results for the soil (topsoil and sub soils) against relevant generic assessment criteria values for the protection of human health (residential), plant growth and building materials. In the absence of any soil leachate results or groundwater results, the risk to controlled water was qualitatively assessed based on the total soil concentrations. The quantitative risk assessment identified no concentrations of any determinants to be in excess of the adopted values for the protection of human health, plant growth and building materials. In addition, the qualitative assessment identified no risk to controlled waters. The results of the ground gas monitoring recorded a negligible ground gas regime beneath the site for which no gas protection measures were considered necessary.

On this basis, the generic assessment confirmed the absence of any relevant pollutant linkages. In consultation with the regulatory authorities it was agreed that further targeted assessment works (RSK May 2013 and Oct 2013) should be undertaken to address specific points of concern. The additional

investigations did not identify any significant ground contamination, though it is recommended that a watching brief be maintained during development works.

On this basis we consider that all soils (topsoil and sub soils) are, in respect to geo-environmental issues, suitable for re-use on-site for any of the proposed end uses (Section 3.2).

3.1.3 Geotechnical issues

The topsoil was encountered as a relatively organic rich cohesive soil with variable proportions of flint chalk and organic matter. The Made Ground, where present, was similar in composition to the topsoil though with infrequent inclusions of brick, clay tilling, ceramics, clinker and charcoal. The Topsoil/Made ground strata were present to depths ranging from 0.2 to 0.6m, though typically 0.3 to 0.4m bgl.

The River Terrace Deposits was found to be present across much of the site, only absent in the western fifth of the site (west of TP7, RSK Oct 2012). The River Terrace Deposits includes both cohesive and non-cohesive (granular) horizons. The cohesive portion generally comprised firm sandy gravelly clay with variable proportions of flint, chert, quartzite and chalk. The granular horizons generally comprised a combination of medium dense to dense sandy gravels and gravelly sands, with variable clay content. The cohesive portion was found to be medium to high strength with a low to medium volume change potential.

In general, the sequence of superficial deposits encountered initially comprised a cohesive portion, underlain by granular deposits and/or a sequence of interbedded granular and cohesive layers. The distribution of significant granular horizons was discontinuous across the site, albeit with a general trend of increasing thickness and distribution to the northwest.

Gault Clay was encountered directly beneath the made ground/topsoil and/or River Terrace Deposits at depths between 0.25 and 4.0m below ground level to the full depth of investigations. This stratum can generally be described as a firm to stiff over-consolidated blue/grey clay. It was found to be medium to very high strength with a predominantly high volume change potential with some localised evidence of desiccation.

Based on the laboratory testing conducted during the site investigations, the made ground, River Terrace Deposits and Gault Clay are all considered likely to be suitable as general fill for use in permanent works and are envisaged to fall within the acceptable limits for well graded granular material, uniformly graded granular material, wet cohesive material, dry cohesive material and stoney cohesive material, as detailed within Table 6/1 of the SHW Series 600 (Ref 1). Notwithstanding the above, any desiccated soils would be unacceptable as engineered fill.

3.1.4 Topsoil resource assessment

A soil resource survey (Land Research Associated, 16th October 2013) was commissioned to characterise the texture, depth, stone content and drainage characteristics of the topsoil across the site, enabling the suitability of the topsoil for re-use on-site to be established, specifically in respect to the key spaces of the proposed landscaping strategy and their associated ecological and arboricultural requirements. The report also makes recommendations for the handling, storage, replacement, need for remedial drainage and aftercare management.

The survey identified two principal types of topsoil: heavy and loamy, with the heavy soils subdivided further into calcareous and non-calcareous types. The heavy topsoil is a poorly draining material, predominantly present in the west, overlying the Gault Clay (likely parent soil). The loamy topsoil is a freely draining type largely present in the east of the site overlying the River Terrace Gravels (likely parent soil).

The report concludes that the topsoil present on site will provide suitable material for the proposed end uses as summarised in the following table.

After use	Soil Type				
Alter use	Heavy calcareous	Heavy non-calcareous	Loamy		
Sports pitches	Poorly suited	Poorly suited	Moderately suited		
Wildflower meadow	Variably suited ¹	Variably suited ¹	Variably suited ¹		
Residential gardens	Moderately suited	Moderately suited	Well suited		
Green space	Well suited	Well suited	Well suited		
Bund Well suited		Well suited	Well suited		
Notes: Table reproduced from LRA soil resources assessment (LRA, Oct 2013), please refer to LRA report for details					

Table 1: Topsoil Suitability

The report concludes that all the topsoil present on site can be usefully reused as part of the proposed development and makes the following recommendations regarding the reuse of soils:

- Topsoil removed during the development should be separated according to type;
- Loamy topsoil should be preferentially used in residential gardens;
- Heavy topsoil should preferentially used in the landscape mounds/bunds;
- Where possible loamy topsoil should be used to surface the landscape mounds/bunds as it provides a
 preferable planting medium;
- None of the topsoil is ideally suited for sports pitches due to the present of sharp flints. Screening to
 remove these flints, if feasible, may render the material suitable. Heavy topsoil is not recommended
 for sports pitches due to its' poorly draining characteristics; and
- The nutrient status of some topsoils make it unsuitable for wildflower meadow creation. Areas of low nutrient topsoil, which will be better suited, are highlighted within the report.

The report also makes the following recommendations regarding the handling of soils:

- Areas not been built over should not be trafficked, as it will render the soil impermeable.
- Stripped topsoil should be stored in separate resource bunds no more than 3m high, kept grassed and free from construction traffic.

3.2 Soil suitability for intended re-use

The strategy calls for the reuse of soils on site in the following ways:

- Reuse of topsoil and desiccated soil (subsoil and topsoil) in the landscaping bund (maximum height 3.05m, maximum slope 1 in 3);
- Reuse of topsoil for backfilling of the borrow pit (2.5m deep); and
- Reuse of sub-soil to raise ground levels by between 0.5 and 2.0m.

3.2.1 Landscape bund

Based on the results of the Soil Resources Survey (LRA, Oct 2013) and geoenvironmental assessments (RSK, Oct 2012, May 2013 & Oct 2013) all topsoil and desiccated soils should be suitable for selective re-use to construct the landscape bund. Notwithstanding the above, the following recommendations are made to minimise likely settlements and promote uniformity:

- Topsoil used within the bund shall be selected based on suitability for use; specifically bunds should be formed using heavy topsoil and subsoil near the base and loamy topsoil towards the surface. This will allow for better drainage and provision of a suitable growing medium;
- The bund should be constructed evenly over their full width and their fullest possible extent, construction plant shall be controlled and directed uniformly over them;
- The degree of compaction should be sufficient to remove any voids and to produce a coherent mass, whilst preventing over-compaction and build up of excess pore water pressure;
- If feasible topsoil intended for use in the base of the bund may be left to settle or surcharged prior to placement in the bund; and
- Slope angles should be minimised where possible to limit issues associated with stability, erosion, drainage and future maintenance.

In addition to the above, reference should be made to the Soil Resources Survey with regard to the handling, temporary storage and use of topsoil;

3.2.2 Backfilling of borrow pit

The 'borrow' pit, to be located in the north half of the Central Park, is intended to be approximately 61,295m³ and 2.4m deep. The pit is to be backfilled using surplus topsoil recovered from the site.

Shallow geology in this area consists of predominantly cohesive, and therefore relatively impermeable, River Terrace Gravel deposits and Gault Clay at shallow depths (1.3 to >4.0m bgl). Groundwater, were encountered, is present a depths varying from 2.0 to 2.6m bgl though has not been shown to form a consistent groundwater table. Due to the nature of the shallow geology groundwater in this vicinity is likely to fluctuate seasonally.

We understand that this portion of the Central Park is to be used as sports pitches. Whilst topsoil is not generally regarded as suitable for use as a general fill material, with consideration of the proposed end use, topsoil may be suitable to partially or wholly backfill the pit, assuming issues such as settlement and drainage can be appropriately managed and/or tolerated within the design. An Earthworks Specification would need to be prepared to specify testing and classification requirements for the topsoil and a subsequent method of construction and compaction to ensure the end product is suitable for its intended

use. In the event that some of the material is classified as unacceptable, consideration may be given to stabilising/modifying the topsoil, to treat the material to an acceptable general fill.

It should be noted that in the event that some of the material cannot be rendered suitable for use via modification the strategy for backfilling the borrow pit will be amended appropriately.

Notwithstanding the above, it is not intended that the borrow pit will extend below the groundwater table.

As detailed above, an Earthworks Specification will need to be prepared for this element of the soil strategy to fully detail testing and classification requirements for the fill material and specify a subsequent method of construction and compaction, however, ahead of this, the following general recommendations are made:

- The formation level and proposed fill materials are potentially susceptible to rapid wetting up and softening during earthworks. Hence good earthworks practices should be adopted such as shaping and providing cross falls to all ground surfaces and the surfaces of temporary stockpiles to facilitate run-off. Reference should be made to the Soil Resources Survey with regard to the handling, temporary storage and use of topsoil;
- The filled area should be constructed evenly over the full width and fullest possible extent, construction traffic shall be controlled and directed uniformly over the area;
- Whilst the method of compaction will be prescribed within the Earthworks Specification, as a minimum, we would recommend that the degree of compaction should be sufficient to remove any voids and to produce a coherent mass, whilst preventing over-compaction and build up of excess pore water pressure; and
- Topsoil used within the fill area shall be selected based on suitability for use, specifically the filled area should be using heavy topsoil near the base and loamy topsoil towards the surface. This will allow for better drainage and provision of a suitable growing medium.

3.2.3 Reuse of sub-soil to raise ground levels

The soil strategy (**Appendix A**) includes the sub-soil recovered from the 'borrow' pit to be re-used to raise ground levels by between 0.5 and 2.0m across the east of the site. The shallow geology in the vicinity of the 'borrow' pit consists of stratified cohesive and non-cohesive River Terrace Gravels and Gault Clay. The shallow geology, in which the identified ground raising areas, consists of River Terrace Gravels. It is understood that the raise area is to be developed with houses, roads and drainage and service infrastructure.

As previously discussed, it is considered that the soil arisings from the borrow pit will be suitable as general fill for use in permanent works and are envisaged to fall within the acceptable limits for well graded granular material, uniformly graded granular material, wet cohesive material, dry cohesive material and stoney cohesive material, as detailed within Table 6/1 of the SHW Series 600 (Ref 1).

Notwithstanding the above, the testing and classification of the soil arising from the borrow pit, and its' subsequent construction and compaction should be conducted in strict accordance to an agreed Earthworks Specification.

4. CONCLUSIONS

The geotechnical/geo-environmental assessments and soil resource survey have confirmed the general suitability for re-use of the soils (topsoil and sub soil) within the soil strategy presented by Woods Hardwick, subject to the constraints and recommendations identified within this report.

Notwithstanding the above, further earthwork testing will be need to be conducted to fully assess the soils acceptability for re-use against the criteria presented within the proposed earthworks specification. The earthworks specification will need to be prepared to confirm the actual requirements for acceptability and testing of the earthworks materials. Where unacceptable materials are encountered, consideration may be given to treating the soils to an acceptable state, alternatively these soils should be segregated from the earthworks materials.

A verification report will need to be prepared to document the implementation of the earthworks strategy. Additionally a Materials Management Plan is currently being prepared by RSK in accordance with the Development Industry Code of Practice to manage the use of soils on the site going forward. The Materials Management Plan will set out the objectives relating to the use of the materials to accompany the Subsoil and Topsoil Strategy, derived using an appropriate risk assessment. It will bring together all the relevant information to demonstrate that all four key factors (protection of human health and the environment, suitability for use, certainty for use and quantity) will be met and include a tracking system and contingency arrangements.

Reference should be made to the Soil Resource Assessment (LRA, Oct 2013) and Construction Code of Practice for the Sustainable Use of Soils on Construction Sites (Ref 2) in respect to the general practices, handling, temporary storage and use of soil during the proposed earthworks.

Author

Reviewer

Mark Burrage Senior Consultant Duncan Sharp Associate Director

Appendices

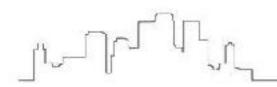
Appendix A – Soil Strategy

Subsoil and Topsoil Strategy Technical Note Rev A - Darwin Green One, Huntingdon Road, Cambridge (16483). Wood Hardwick Infrastructure LLP, December 2013.

Appendix B – Geoenvironmental assessments

Report for Main Site Investigation – NIAB Phase 1, Huntingdon Road, Cambridge. RSK Environment Ltd, October 2012 (Ref: 25459-01(00))

Supplementary Investigation - NIAB1 Fields, Phase 1 Development. RSK Environment Ltd, 1st May 2013 (Ref: 25459-R02 (00).

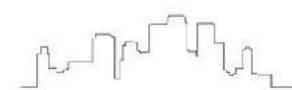

Summary geo-environmental report for NIAB1 Fields, Phase 1 Development. RSK Environment Ltd, 11th October 2013 (Ref: 25459-R03 (00).

Soil Resources of land at Darwin Green, Cambridge. Land Research Associated, 16th October 2013 (Ref 898/1).

References

- 1. Manual of Contract Documents for Highway Works, Volume 1: Specification for Highways Works. Highways Agency, March 1998.
- 2. Construction Code of Practice for the Sustainable Use of Soils on Construction Sites. DEFRA, 2009.

Appendix A – Soil Strategy


15-17 Goldington Road Badford MX40 3NH United Kingdom 1, +44 (0) 1234 253852 F, +44 (0) 1234 353034 mail@wnodshardwick.com www.woodshardwick.com

Darwin Green One, Huntingdon Road Cambridge 16483

SUBSOIL AND TOPSOIL STRATEGY TECHNICAL NOTE (Rev A)

December 2013

PRODUCED ON BEHALF OF BARRATT HOMES

CONTENTS

1.	Introduction	2
2.	Development Proposals	3
3.	Review of Subsoil Quantities	4
4.	Achieving an Onsite Subsoil Balance	6
5.	Review of Surplus Topsoil	4
6.	Reuse of Surplus Topsoil	6
7.	Summary and Conclusions	7

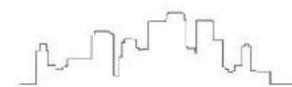
APPENDICES

- A. Ground Raising/Lowering Drawing Number 16483/2060A
- B. Approximate Location and Extent of Borrow Pit 16483/2084
- C. MRA DG1 Topsoil Analysis Sub Parcel Plan (Drawing Number 10886/SK56)
- D. MRA DG2/3 Topsoil Analysis Sub Parcel Plan (Drawing Number 11896/SK23) and RSK Exploratory Hole Location Plan
- E. Landscape Mound Details (Drawing Number 16877/2008E)

Revision A

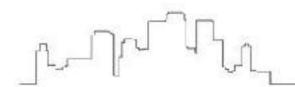
Indicated in red

Issue	Revision Date	Comments	Prepared By	Approved By
1	28/10/13	First Issue		
2	29/11//13	Revision A		


n__,

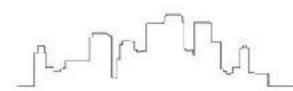
1.0 INTRODUCTION

- 1.1 This Subsoil and Topsoil Strategy Technical Note has been prepared by Woods Hardwick Infrastructure LLP in support of a Reserved Matters Application for the primary infrastructure at the Darwin Green One development between Huntington and Histon Roads, Cambridge.
- 1.2 This technical note aims to assist the reader and key consultees of the planning process and to enable them to understand the background of the strategy.
- 1.3 The objective is to achieve a balanced solution on the site to avoid external movements of bulk spoil and topsoil on the public highway.



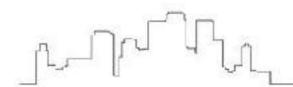
2.0 DEVELOPMENT PROPOSALS

- 2.1 The site, known previously as the NIAB 1 site, is located in the north western fringe of the City and to its north is the A14 Cambridge Northern Bypass. It comprises part of the land used by the National Institute of Agricultural Botany (NIAB) between Huntingdon Road and Histon Road. The land also includes parcels owned by the Chivers Family, Chivers Farms Ltd. and Christs, Sydney Sussex and St. Catharine's Colleges, all of whom are party to a consortium for the purpose of this development.
- 2.2 The site comprises 50.8 ha, of which 48 ha falls within the administrative boundary of Cambridge City and 2.8 ha of land within South Cambridgeshire. The land within South Cambridgeshire abuts Histon Road and will be used for vehicular access and drainage facilities.
- 2.3 The development benefits from Outline Planning Consent ref 07/0003/OUT issued by Cambridge City Council and detailed Planning Consent ref S/001/07/F issued by South Cambridgeshire District Council.
- 2.4 The Cambridge City Council consent is for a Mixed Use development comprising up to 1593 Dwellings, Primary School, Community Facilities, Retail Units (use classes A1, A2, A3, A4 & A5) and associated infrastructure including vehicular, pedestrian and cycleway accesses, open space and drainage works.
- 2.5 This document pertains to the treatment of the subsoil and topsoil generated and required on the development.



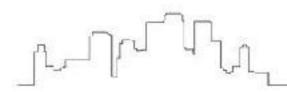
3.0 REVIEW OF SUBSOIL QUANTITIES

- 3.1 A preliminary 3 dimensional ground model has been created for the DG1 site created from the existing topographical survey and the anticipated finished levels over the entire site based upon the approved drainage model.
- 3.2 In order to ensure that all the future parcels can drain under gravity they have been assumed to be level plateaus being extensions to the adjacent drainage model levels
- 3.3 The ground raising/lowering areas are indicated on drawing number 16483/2060A given in Appendix A.
- 3.4 From the plan it should be noted that the southern 2/3rds of the site are largely at existing ground level, with the northern 1/3rd requiring to be raised. The ground raising is required to provide the minimum cover to the surface water sewers and retain water within the system during extreme storm events. As the surface water discharges via flow controls to the existing Awarded Watercourse to the north there is no scope to lower the drainage to reduce the extent and quantum of fill required.
- 3.5 The cuttings or ground lowering areas are primarily related to the attenuation ponds, swales and ditches which transport and store surface water enroute to the outfall.
- 3.6 In addition to the depressions/cuttings indicated in green there will be subsoil arisings generated from the unshaded development areas where the finished levels are within 500mm of the existing levels. This spoil being generated from the drainage, road box and foundation works.
- 3.7 In order to allow for the construction zone a bulk earthworks model has been created allowing for a 750mm construction zone under the strategic roads, 600mm on the development parcels, and 375mm on the public open spaces.
- 3.8 The 750mm zone is in line with the Cambridgeshire County Council road specification, the 600mm based on previous studies with similar development characteristics, and the 375mm being the average topsoil depth across the site.
- 3.9 In order to allow for the topsoil removal a formation ground model was created which is the existing topographic model less 375mm being the average topsoil depth across the site.
- **3.10** Comparing the bulk earthworks model with the formation model the following volumes apply:-56,141m3 Cut, 117,414m3 Fill. **Giving a net deficit of 61,273m3 of subsoil.**


4.0

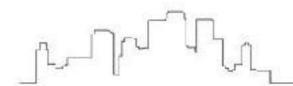
ACHIEVING AN ONSITE SUBSOIL BALANCE

- 4.1 From the approximate quantities identified in the section above it has been established that there will be a deficit of approximately 61,273m³.
- 4.2 Given that the objective of the strategy is to avoid the need for any external transport movements off the site this shortfall of subsoil will need to be sourced from within the development.
- **4.3** A borrow pit in the centre of Central park has been identified as a possible on site source of subsoil. The approximate location and extent of the borrow pit is given on drawing no. 16483/2084 given in **Appendix B**
- 4.4 The borrow pit has been located such that it does not encroach into the southern sports pitch, the swales and the northern pond such that these elements together with the footpaths within the park on the northern side can be completed prior to its backfill.
- 4.5 A borrow pit as indicated at this location at a depth of 2.4m, to avoid ground seepage as identified in the Geotechnical Report, will generate approximately 61,295m³ of subsoil.



5.0 REVIEW OF SURPLUS TOPSOIL

DARWIN GREEN ONE


- 5.1 The volume of topsoil surplus to requirements on the DG1 development has been determined using the latest geotechnical data and the development areas indicated on the Topsoil Analysis Indicative Sub Parcel Area Plan (drawing number 10886/SK56) given in **Appendix C**.
- 5.2 The calculation is based upon 60% of each residential parcel being impermeable made up of roads, drives, houses, patios etc. with 40% being soft landscape.
- 5.3 The depth of existing topsoil in each parcel is based upon the mean depth of each trial pit log located within that parcel.
- 5.4 For example Parcel 2 has a gross area of 0.9ha of which 60% (0.54ha) will be developed, with the mean depth of topsoil on the parcel being 0.35m this equates to a surplus of $(5400)(0.35)m^3 = 1890m^3$.
- 5.5 For residential/Area 1 allowance for a 1.0ha supermarket has been made for which an impermeable figure of 100% has been applied.
- 5.6 For the school site it has been assumed that 50% of the site will be impermeable and for the primary roads 100% has been applied.
- 5.7 With regard to the public open spaces, attenuation ponds and allotments these will be topsoil neutral as any topsoil removed will be reinstated.
- 5.8 The following table summarises the various parcel/areas on DG1 which in total is estimated to generate approximately 90,239m³ of surplus topsoil.

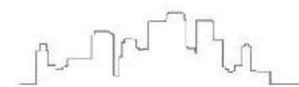
Parcel	Gross Area (ha)	Net Area (ha)	Depth of Topsoil (m)	Volume (m ²⁾	Comments/Notes
1	2.3-1.0	0.78	0.32	2,496	TP 3,6,10 and 11. Mean=0.32m
2	0.9	0.54	0.35	1,890	TP 11 and 12. Mean=0.35m
3	2.0	1.20	0.53	6,300	TP 1 and 4. Mean=0.525m
4	5.6	3.36	0.34	11,424	TP 1(1),2,3(1),5. Mean=0.34m
5	0.6	0.36	0.38	1,368	TP 7 and 9. Mean=0.38m
6	5.4	3.24	0.39	12,636	TP 10,11,13,14,19,20 and 21. Mean= 0.39m
7	4.7	2.82	0.325	9,165	TP 17,39,18,23. Mean=0.325m
8	2.1	1.26	0.53	6,678	TP 24 and 27. Mean=0.53m
9	2.6	1.56	0.366	5,710	TP 26, TP 6(1) and 25. Mean=0.366m
10	1.3	0.78	0.34	2,652	TP 7(1),30,31 and 32. Mean=0.34m
11	2.3	1.38	0.33	4,554	TP 28,8(1), 29,31 and 33. Mean=0.330m
Primary Roads	4.0	4.0	0.38	15,200	Mean of above = 0.38m
Supermarket Site	1.0	1.0	0.32	3200	As Parcel 1 above. Mean = 0.32m
School Site (25)	2.	1.15	0.35	4,050	TP 2(1),7,8 and 9. Mean=0.35m
Total: 87,323m ³					

DARWIN GREEN TWO/THREE

- 5.9 The volume of topsoil surplus to requirements in the DG2/3 development has been determined using the latest geotechnical data and the development areas indicated on the Topsoil Analysis Indicative Sub Parcel Area Plan (drawing number 11896/SK23) given in **Appendix D**.
- 5.10 The average topsoil depth over the DG2/3 site is 0.315m which has been applied to all the area references.
- 5.11 The calculation is based upon 60% of each residential parcel being impermeable, 80% for the school areas within the development boundary and 100% for the Primary Roads.
- 5.12 With regard to public open spaces, attenuation ponds, school playing fields and allotments they will be topsoil neutral in terms of surplus as any topsoil removed will be reinstated.
- 5.13 The following table summarises the various areas for DG2/3 which in total is estimated to generate approximately 53,392m³ of surplus topsoil.

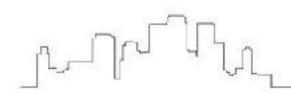
Area Ref	Gross Area (m²)	Net Developable (60%) (m)	Depth of topsoil (m)	Surplus Volume (m³)
1	32,000	19,200	0.315	6,048
2	51,000	30,600	0.315	9,639
3	59,000	35,400	0.315	11,151
4	19,000	11,400	0.315	3,591
5	18,000	10,800	0.315	3,402
6	23,000	13,800	0.315	4,347
School Sites	43,000	34,400 (80%)	0.315	10,836
Primary Roads	13,900	13,900 (100%)	0.315	4,378
			Total	53,392 m ³

DARWIN GREEN OVERALL DEVELOPMENT


5.14 The total surplus topsoil generated from the Darwin Green development is therefore estimated to be in the order of $(87,323 + 53,392)m^3 = 140,715m^3$.

6.0 REUSE OF SURPLUS TOPSOIL

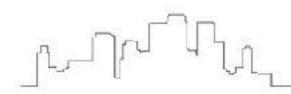
- 6.1 The surplus topsoil will be utilised to backfill the Central Park borrow pit (61,295m³) with the balance being transported via the existing farm tracks and new sections of the haul road to be utilised in the formation of the A14 landscape mounds. The haul roads will include intervisible passing bays.
- 6.2 The surplus topsoil will be distributed as follows :- 61,295m3 to the borrow pit with the balance of 79,420m3 to the landscape mounds.
- 6.3 The intention is to form mound A using the surplus topsoil from DG1 only $(87,323 61,295) = 26,028m^3$. Mounds B, C and D will be formed if and when the DG2/3 arisings are generated.
- 6.4 Details of the 4 mounds proposed are indicated on drawing number 16877/2008E given in Appendix E.
- 6.5 Mound A will accommodate 26,028m³ being 3.05m high as indicated on Sections A-A, B-B and F-F and will therefore be formed entirely from the surplus generated from DG1.
- 6.6 Mound A narrows slightly at its midpoint where an overhead pylon is located. Side slopes of 1V:3H and 1V:8H are proposed along A14 and southern boundaries respectively.
- 6.7 Temporary haul road crossings will be required over the Awarded Watercourses to transport the surplus topsoil to the locations proposed.
- 6.8 Mound C, at a height of 3.05m will accommodate 29,791m³ being formed from the topsoil surplus generated from DG2/3. Cross sections D-D and H-H indicate slopes of 1V:3H and 1V:6H to the A14 and southern boundaries respectively.
- 6.9 Mound C has been adjusted in plan to avoid the iron age fort area for which a 5m proximity zone has been applied.
- 6.10 Mound B, the central mound at a height of 1.30m will accommodate 2,300m³. This mound will also be formed entirely from the surplus topsoil generated from DG2/3. As indicated on sections C-C and G-G.
- 6.11 Mound D the western mound will use up the balance of the topsoil generated from DG2/3 (53,392 $-(29,791+2,300) = 21,301 \text{m}^3$ being 1.30m high. Cross sections E-E and J-J indicate the slopes.
- 6.12 From the above it is clear that all the surplus topsoil generated from the Darwin Green Development can be retained on site.


Woods Hardwick

Civil Engineering Consultants

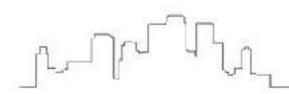
7.0 SUMMARY AND CONCLUSIONS

- 7.1 This Technical Note establishes a good estimate of the likely subsoil and topsoil quantities created and required on the Darwin Green development.
- 7.2 The ground raising is required to provide the necessary cover to the drainage which cannot be lowered due to the existing ditch outfalls governed by the A14 culverts together with the need to attenuate large volumes of water below ground during extreme storm events.
- 7.3 Based upon the assumptions used in the Note it has been established that there will be a shortfall of approximately 61,273m³ of subsoil on DG1. This will be sourced from a borrow located in the centre of Central Park.
- 7.4 The Central Park borrow pit when completed will be backfilled with surplus topsoil arisings generated exclusively from DG1.
- 7.5 The total volume of surplus topsoil from DG1 and DG2/3 is likely to be in the order of 140,715m³ which can be accommodated in the DG1 borrow pit and the proposed landscape mounds along the A14 frontage. The proposed mounds avoid the iron age fort area.
- 7.6 With the proposed Central Park subsoil borrow pit external subsoil and topsoil haulage trips on the public highway will be kept to a minimum.
- 7.7 With the surplus topsoil being used to create the A14 landscape mounds there will be significant environmental enhancements particularly when the proposed A14 widening works are implemented by the Highway Agency.
- 7.8 With the objective of minimising external off site subsoil or topsoil vehicular trips being achieved this strategy should be fully supported by both Cambridge City and South Cambridgeshire District Councils.



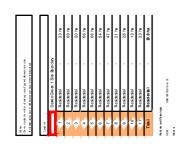
APPENDIX A

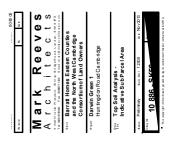
Ground Raising/Lowering (Drawing Number 16483/2060A)

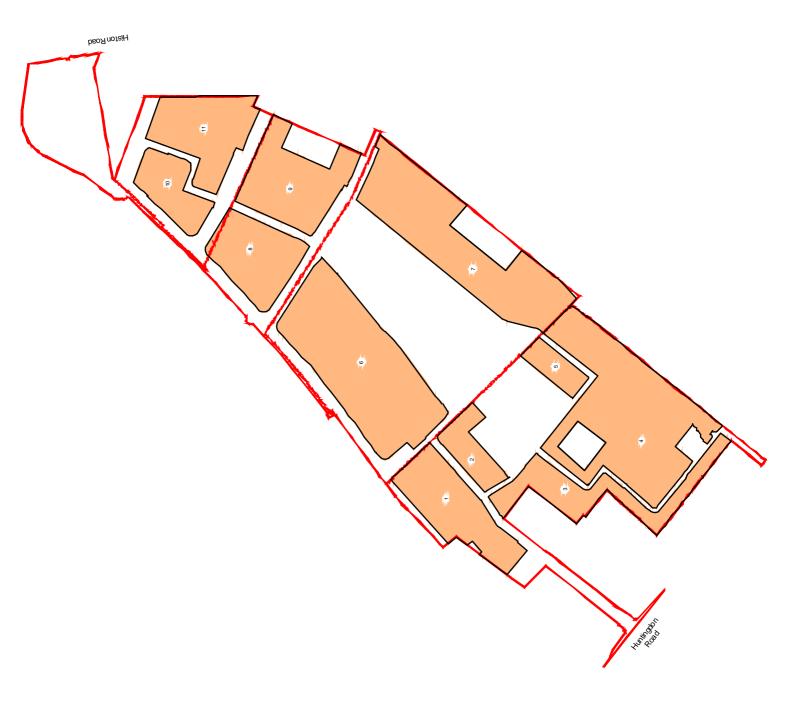


<u>Appendix B</u>

Approximate Extent and Location of Borrow Pit (Drawing number 16483/2084)

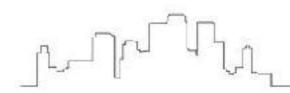






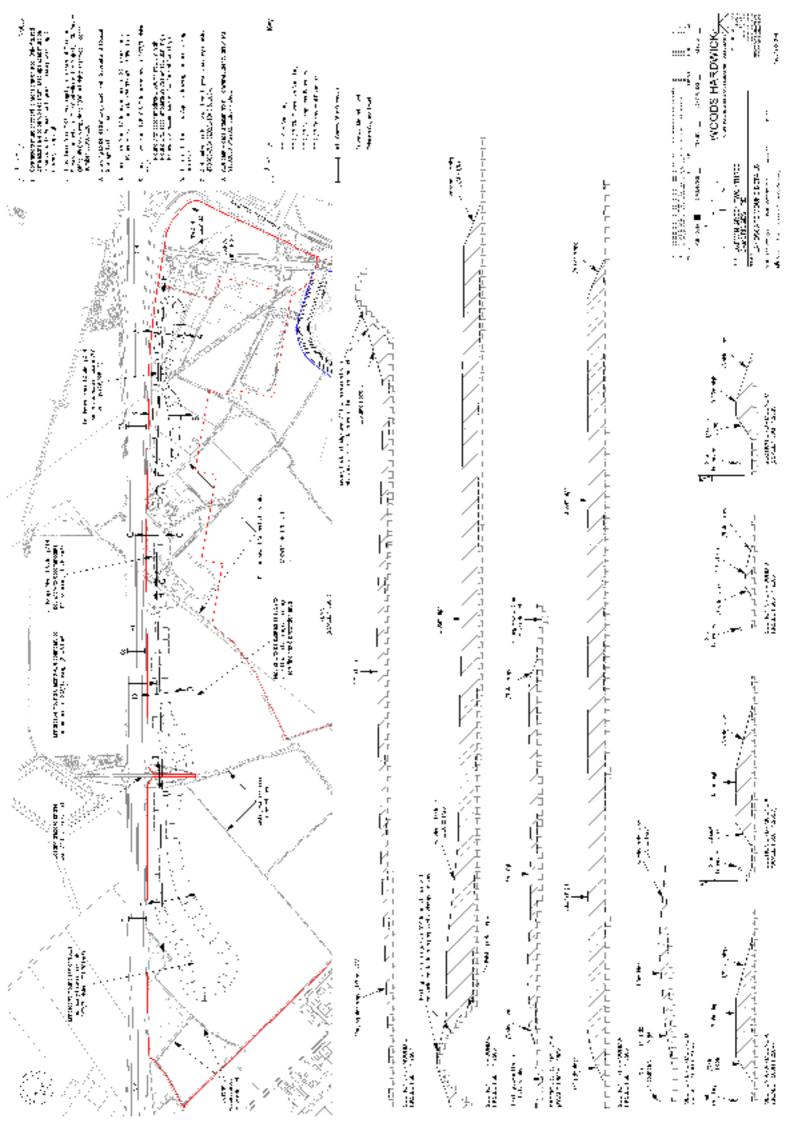
APPENDIX C

MRA TOPSOIL ANALYSIS – INDICATIVE SUB PARCEL AREAS PLAN (DRAWING NUMBER 10886/SK56)



APPENDIX D

 MRA TOPSOIL ANALYSIS – INDICATIVE SUB PARCEL PLAN (DRAWING NUMBER 11896/SK23)
 RSK EXPLORATORY HOLE LOCATIONS PLAN



<u>APPENDIX E</u>

LANDSCAPE MOUND DETAILS (DRAWING NUMBER 16877/2008E)

Appendix B – Geoenvironmental assessments

SOIL RESOURCES OF LAND AT DARWIN GREEN, CAMBRIDGE

Report 898/2

23 ^a October, 2013

SOIL RESOURCES OF LAND AT DARWIN GREEN,

CAMBRIDGE

M W Palmer, MSc, PhD

Report 898/2

Land Research Associates Ltd Lockington Hall, Lockington, Derby DE74 2RH

23ª October, 2013

SUMMARY

This report evaluates the suitability of soil resources for the proposed after-uses at the Darwin Green 2 site. The assessment involved a semi-detailed survey of soils to a depth of 1 metre, and the sampling of topsoils within different areas of the site for nutrient analysis.

The results show the soils in the west to be principally heavy poorly draining types formed in mudstone, and in the east koamy freely draining types formed in river terrace drift. A band of heavy soils passes through the proposed development area. Soils in the southern area of the site have been extensively disturbed by previous archaeological excavations, resulting in exposure of the kower subsoil. The removed overburden is present as separate stockpiles of topsoil and upper subsoil.

Good soil resources exist on site for re-use in residential gardens, greenspace areas and the formation of the proposed landscape mound south of the A14. It is recommended that the loamy soils are reused preferentially for residential gardens. The loamy soils are also moderately suited for use as sports pitches, but require treatment to remove the risk of sharp stones occurring at the surface.

Landscape mound formation where possible should make use of any residual loamy soils as a surface layer, and the heavy soils as a base and core.

The suitability of the soils for wildflower meadow creation varies according to topsoil available phosphorus concentration. It is confirmed that soils exist on site which are well suited to meadow creation. The nature of the advised seed mix also varies according to the topsoil calcium carbonate content.

- 1.1 This report provides information on the soils within a 127 haarea north of Darwin Green, Cambridge. The purposes of this assessment were to map and characterise the soils which occur at the site, and to provide an evaluation of their suitability for different post-development uses within the site. The principal uses against which soil suitability is considered are:
 - Parkland/woodland/green corridors/ public open space
 - Wildflower meadow
 - School playing fields/sports pitches
 - Residential gardens
 - Landscape mound formation
- 1.2 The report is based on a soil desk study and a site survey in October 2013.

SITE ENVIRONMENT

1.3 The site is situated on level terrain at an average elevation of 15 m AOD. The majority of the site is under cultivated agriculture, comprising winter cereals at the time of survey. An area of land used as horse paddocks is located in the north east corner. Large areas of the southern section have been stripped of topsoil and upper subsoil during previous archaeological excavations, and these materials are identified as separate stockpiles (see Map 1). These areas are currently in weedy fallow. An area in the north-west is in scrubby fallow. The site also includes small areas of woodland, hard standings and buildings which were not included in the soil survey.

PUBLISHED IN FORMATION

- 1.4 BGS 1:50,000 geological mapping records the site to be underlain by Cretaceous mudstone of the Gault Formation. In the east of the site this is recorded as overlain by river terrace sands and gravels.
- 1.5 A soil map¹, published at a scale of 1:63,360 records Wicken Association in the north-west, comprising calcareous soils with drainage restrictions formed in

¹ Hodge, C.A.H.and Seale R.S. Soils of the district around Cambridge (Sheet 188). Soil Survey of England and Wales.

Land Research Associates

Jurassic/ Cretaceous clay and thin overlying drift. The rest of the site is recorded as Milton Association, comprising loa my soils formed in river terrace or Head deposits.

- 2.1 A detailed soil resource survey was carried out in October 2013. It was based on alternate observations at intersections of an offset 100 m grid, giving a sampling density of one observation per two hectares. During the survey, soils were examined in auger borings to a maximum depth of 1 m. Generalised soil types are shown in Map 1. A log of the sampling points and a map (Map 2) showing their location is in an appendix to this report.
- 2.2 Once soils had been mapped, representative topsoil samples of each type were obtained from a depth of 0-15 cm, taken from different fields across the site. A total of 10 samples were collected, each comprising a minimum of 15 subsample points taken across each of the areas depicted on Map 1.
- 2.3 In the southern area, where soil had been removed to an approximate depth of 50 cm during previous archaeological excavations and stockpiled, in-situ sampling of the subsoil to 50 cm depth was conducted. This was combined with investigation of topsoil mounds, involving an assessment of the topsoil at a depth of 30 cm at the geographic centre of each stockpile. Selected topsoil stockpiles were sampled at a depth of 0-15 cm (those labelled 2, 5, 6 and 7 in Map 1).
- 2.4 Soil samples were submitted for laboratory chemical analysis in order to determine their post-use capability, particularly with regard to habitat creation.
- 2.5 The soils were found to vary between heavy soils formed in mudstone and loamy soils formed in river terrace deposits.

Heavy soils

2.6 These soils dominate in the west of the site (NIAB land) where river terrace deposits are absent or superficial. These soils are sub-divided according to the calcium carbonate status of the topsoil:

<u>Heavy calcareous soils</u>

2.7 Soils in the west of the site mainly comprise clay or heavy clay loam topsoil over clay subsoil. The subsoil is poorly structured and slowly permeable to shallow depth. These soils have moderately high calcium carbonate content in

the topsoil which increases with depth.

Heavy slightly calcareous soils

- 2.8 These soils occur in a band running roughly south-west to north-east (see Map 1). As with the soils previously described, the lower subsoil is highly calcareous. The topsoil however, is non-calcareous or only slightly calcareous, which affects their potential after use (as described in following sections).
- 2.9 A representative profile at sample point 37 (see Map 2) is described below:

0-36cm	Dart greyish brown (10YR 3/2) clay; slightly stony weatly developed coarse sub-angular blocky structure (compacted); very firm; slightly calcareous; abrupt smooth boundary to:
36-61 cm	Light brawnish grey [2.5YR 6/2] clay with many distinct strang brawn [7.5YR 5/6] mattles; staneless; weakly developed coarse prismatic structure; very firm; maderately calcareaus; gradual smaath baundary ta:
61-100 on+	Light brownish grey [2.5YR 6/2] clay with many distinct strong brown [7.5YR 5/6] and grey [10YR 6/1] mottles; stoneless; massive [structureless]; very calcareous [containing secondary carbonates].

Loamy soils

- 2.10 These soils occur dominantly in the east of the site, where coarser textured river terrace deposits overlie the calca reous clay which forms the heavier soils. These soils are non-calcareous or only slightly calcareous in both the topsoil and upper subsoil. They can be subdivided into a shallow phase, where flinty very calcareous gravel forms the lower subsoil (50-100 cm) and the more commonly occurring deep phase, where the subsoil is only slightly or moderately story.
- 2.11 Descriptions of a representative profile of each phase are provided below, but they are not mapped separately due to the complexity of distribution within the site.
- 2.12 A deep phase profile at sample point 8 (see Map 2) is described below:

0-29cm	Dark greyish brawn (10YR 3/2) medium olay laam; slightly stany; well developed medium sub-angular blocky structure; friable; nan-calcareaus; clear smaath baundary ta:
29-48 cm	Pale brawn (10YR 6/3) medium clay loam with commonistrong brawn (7.5YR 5/8) and greyish brawn (10YR 5/2) mottles; staneless; mode rately developed medium sub-angular blocky structure; non-calcareous; clear smooth boundary to:
49-71 cm	Light yellowish brown (10YR 6/4) medium clay loam with many strong brown [7:5YR 5/8] mottles; slightly stony; well developed medium sub-angular blocky structure; slightly calcareous; gradual smooth boundary to:
71-100 om+	Light grey [10Y R 7/2] medium clay loam with many strong brown [7.5Y R 5/8] mattles; no hard stones [abundant weathered soft chalk]; extremely calcareous.

Land Research Associates

2.13 A shallow phase profile at sample point 23 (see Map 2) is described below:

0-36cm	Dark greyish brawn (10YR 4/2) medium olay laam ar sandy olay laam; slightly stany (small angular flint); well developed medium granular structure; slightly calcareaus; olear smooth boundary to:
29-48 cm	Olive brown (2.5YR 4/4) sandy clay loam with faint olive yellow (2.5YR 6/6) mottles; slightly stony; mode rately developed medium sub-angular blocky structure; mode rately calcareous; gradual smooth boundary to:
49-90 cm+	Light a live brawn (2.5YR 5/4) slightly mattled sandy clay laam; very stany; very calcareaus.

Excavated areas

2.14 The exposed lower subsoil was mainly found to comprise medium to coarse loamy material, often with high stone content. At one sample point (52, see Map 1) and in one excavation area in the west of the site (not described in sampling points) this material consisted of waterlogged grey clay.

Stock piled topsoils

Topsoil stockpiles 1-7 were found to comprise sandy clay loam or medium clay loam material. With the exception of stockpile 5 they were all found to be non-calcareous or only slightly calcareous (Table 1). Stockpile 8 comprised heavy slightly calcareous topsoil, consistent with the underlying soil type of this area.

Stockpile ID (Map 1)	Texture	Calcium carbonate content	Stone % [>10mm)
1	Sandy clay loam	Slightly cakareous	10
2	Medium clay bam	Non calcareous	5-10
3	Medium clay bam	Slightly calcareous	5-10
4	Sandy clay loam	Non calcareous	5-10
5	Medium clay loam	Moderately calcareous	5
6	Sandy clay loam	Non calcareous	5-10
7	Sandy clay loam	Slightly calcareous	15
8	Heavy sifty clay loam	Slightly calcareous	<5

3.1 In this section soil types are considered against the after-uses described in paragraph 1.1. It is anticipated that all topsoils will be retained for reuse on site, and that in addition a small volume of subsoil will be removed during excavations on developed areas of the site, which may be usefully reused.

School playing fields/sports pitches

3.2 The most important requirements of playing fields and sports pitches are effective drainage to ensure they are playable throughout the year and minimal content of sharp stones in the surface layer in order to avoid risk of injury.

Wildflower meadows

3.3 Species-rich flower meadows generally require topsoils with low concentrations of plant available nutrients. In particular, high levels of available phosphate in the soil can lead to dominance of grasses and or agricultural weeds at the expense of less vigorous flowering plants. High nutrient levels commonly result from inputs of commercial agricultural fertiliser or organic wastes such as manure and slurry.

Residential gardens

3.4 The soils have already been demonstrated to be free from contamination and therefore chemically suitable for reuse in residential gardens. The garden use requirements for natural topsoils are generally not demanding, but coarse and medium loamy textures with low to moderate stone contents are preferable for ease of cultivation.

Parkland/woodland/green corridors/public open space

3.5 These uses are non-demanding, although high initial concentrations of available nutrients can lead to problems with growth of periodous weeds. Uncompacted subsoil is essential for successful establishment of planted woodland.

Landscape mound formation

3.6 All soil types are suitable, other than those with very high organic matter status (not present on this site) which may lead to problems arising from

decomposition leading to wastage and generation of ammonia and methane. Non-cohesive soil types (sands) may be less suitable due to the potential for erosion and mass slippage. 4.1 In this section the suitability of the generalised soil types for the range of afteruses outlined in section 3 is described and explained

Heavy soils

- 4.2 These soils have clay or heavy clay loam topsoil, which makes them difficult to handle and prone to compaction when handled or trafficked in a wet state. This makes them less than ideally suited for use in residential gardens, or for planting schemes following excavation.
- 4.3 The combination of the high topsoil clay content and poorly draining subsoil mean sports and playing fields located on these soils are unlikely to be playable in winter, and prone to turf damage when used in wet weather at other times of year. The topsoils also contain sharp small and medium flints which are unsuitable for sports use.
- 4.4 The strongly calcareous soils in are not suited to species intolerant of alkaline conditions, and if wildflower meadow is to be located in this area, a calcareous seed mix is recommended. The less calcareous soils are suitable for a neutral species mix.
- 4.5 These soils are best used for less demanding uses, such as use in bund formation and green spaces where the soil is not disturbed.

Loamy soils

- 4.6 The topsoils are medium textured and only slightly stony, which makes them a good quality soil for residential gardens.
- 4.7 These soils are freely draining with a ppropriate drainage systems installed and are therefore better suited for use as sports pitches then the heavier soils. However, the flint content of the topsoil is slightly higher, which means they are unsuitable for sports use without amendment.
- 4.8 The suitability for wildflower meadow is dependent on the nutrient status of the topsoil (see paragraph 4.11). All soils of this type are non-calcareous or only slightly calcareous and therefore suitable for standard neutral planting and seed mixtures.

- 4.9 These soils are equally well suited to the less demanding uses as the heavy soils.
- 4.10 Soil suitability is summarised in Table 1

_		Soll Type	
After-use	Heavy calcareous	Heavy non-calcareous	Loa my
Sports pltches	Poorly suited	Poorly suited	Moderately suited
Wildflower meadow	Variably suited ¹	Variably suited ¹	$Variablysuited^1$
Residential gardens	Moderately suited	Moderately suited	Wellsaited
Green space	Wellsaited	Wellsaited	Wellsaited
Bund	Wellsuited	Wellsuited	Wellsaited

See commerns below

Suitability for wildflower meadow

4.11 The suitability of topsoils for meadow planting varies according to management history of different areas. Topsoil analysis (see appendix) shows marked differences in available phosphorus concentrations in particular, which has been shown to have a significant effect on species distribution. Areas with a P index of 1 (samples 1, 5, 6, 7 and 10 of Map 1) are well suited, being only slightly elevated. Those in index 2 (samples 2 and 8) are moderately suited, although some difficulties with excess weed growth is anticipated. Those above index 2 (samples 3, 4 and 9) are poorly suited and their use as meadow is likely to result in an undesirable species mix with excess grass and agricultural weed growth at the expense of wildflowers.

- 5.1 Suitable topsoil resources exist at the site to achieve the proposed after-uses, and all topsoils can be usefully re-used on site.
- 5.2 The soils removed from the development area should be separated according to the soil types mapped (Map 1). The loamy soils should be used preferentially in residential gardens, with the heavy soils from this area reserved for landscape mound formation.
- 5.3 All of the topsoils (and subsoils) on the site are suitable for mound formation. However, it is recommended that the mounds be based with the heavier soils, and any subsoil generated by excavations be placed in the core. Excess loamy topsoil removed from the development area would be a preferable planting medium for the mound surface (since it is better structured and easier to handle) and should therefore be reserved for the surface layer if possible.
- 5.4 None of the soils are ideally suited for sports pitches due to their content of sharp flints. It may not be feasible to screen these effectively, so import of material to form the playing surface may be necessary. The location of sports pitches on the heavier soils is not recommended due to wetness restrictions.
- 5.5 As the site has been under intensive arable use, nutrient status of some topsoils is too high to be well suited to wildflower meadow creation. Some areas of the site have been less intensively managed, and therefore be better suited. Details of the suitable areas are provided in Map 1.

Soil Handling

- 5.6 Areas not being built over (e.g. environmental buffers and landscape areas) should not be trafficked by construction vehicles as this will render the soils impermeable, preventing percolation of rainfall beyond the base of the topsoil, which will quickly become saturated.
- 5.7 Stripped topsoil should be stored in separate resource bunds no more than 3 m high, and kept grassed and free from construction traffic until required for re-use. The Construction Code of Practice for Sustainable Use of Soils on Construction Sites (Defra 2009) provides guidance on good practice in soil handling.

APPENDIX

MAPS, DETAILS OF OBSERVATIONS AND SOIL CHEMICAL ANALYSIS

Ħ
ē
-
똳
문
E
Ý
듭
Ŧ.
믭
ių.
2
Þ
Ξ.
ž
Ψ
招
Þ
÷
ň
1
Ē
占
-
듭
μ
5
Ě
5
₽.
ő
t -
ņ
7
Ē
÷
¢
¢,
ž
Ξ
~
Ē
TQ.
류
ž
č
ņ
Ë
펀
Ξ
·۲
₽
~

sqo	Topsoil			Upper subsoil			Lower subsoil	oil		Slope	Weines	Agricultural quality	quality
٩N	Depth (cm)	Texture	Stones (%)	Depth (cm)	Texture	Mottling etc	Depth (cm)	Texture	Enil hoM	E	Ches	Grade	Main Iimitation
÷	ж.Ф	30.	16	97-70	3C-	0	46-62 62-621	כ פכי		Ð	=		
2	77-0	10P.	5	77-77	10N		1001-02 77-28	-DN 128	***	0	П		
c	90 0	90 T M	10	09-50	-DS		00-01 01-100 i	100		Ð	=		
4	0:00	U	15	00-801	U					0	II		
10	<i>4</i> 00	30.	10	70-07	201		(1~시스)	25		ŋ	=		
å	0-02	AC.	5	07-72	AC.		72-1001	30.		Q	=		
r	0-03	MC No.	2	03-59	40°-		39-1001	30.		0	=		
9	929	AC.	45	25.77	AC.		774001	Chuky def		Q	-		
6	0.00	Cou	16	00-40	U.	~	<u>40</u> -601	U	202	0			
10	0.00	Cou	5	00-71	U.	222	71-1001	U		0	III		
11	0-02	CS 61	16	32-57	U		57-821	0		0	III		
12	0.00	30.	16		30.	•	51-801	12 3C.	•	0	_		
10	0-07	5.	16	07-721	10.	222				0	=		
1	0.04	ICUC 6	4.5 1		u	~	d1-100 i	Б.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Q	III		
15	0.00	Circa	16		U	222	74-451	$\sim c_{\rm C}$	202	Q			
151	0-05	401	16	05-57	AC.	111	57-1001	23.	111	0			
18	えも	ומיקטן	2	04-52	101		<u>52-92</u> 92-1001	יא 35. כ	***	Ū	II		
<u>.</u>	0-01	ZCV- VI	52	01-1001	JZ	1111				0			
1.0	0-02	Ces ut	5	32-57	U	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	57-751	J		0	III		
19	0-00	- 21 /P	16	00-49	10.1		±9-85i	- 240 ev		0	=		
20	0.03	U	iç.	03-52	C)	111	52-100+	U.	1111	0	III		
21	0-05	10 T DR	2	05-59	וכ"		<u>39-74</u> 74-100 i	Graka. AC_		ŋ	=		
22	0:00	low-or	15	72-00	-51	1111	74-1001	10P.	~	0	III		
20	0.03	140 - AU	16	03-54	30.	•	54-001	10 M.	•	0	_		
24	0.00	ZCs/mor	ίς.	_	JZ	1111				0			
25	0.00	30.	5	39-62	30.	a	42-100 i	3C-8Z-	0	0			
28													
27	0-00	401	16	00.54	40-	a	544001	NC.	a	0	=		
2.0	44	10 T OP	5-10	27-70	4C1		7-601	- 350 PM		0	=		
59	6.6	NZC Z G	6.5	19 -68	30.		60-100 i	30.		e	=		
99	939 9	5	16	00-70	AC.	0	70-051	25 MC.		0	_		
31	0-05	02-00	52	05-50	u		<u>50-100 i</u>	U		0	=		
20	909	d L	16	00-57	u.	2	57-301	0 %	2	0	=		
50	0-01	80 m 0	ie i	UP-57	8C.		57-1001	30		0			
55	999 200	MCLAND 0	ic ¹	828 828	4C-		39-1001	35	2	0	_=		T
612	UERI	5920	ę,	CEPTORI -	a U	1111				D	=		

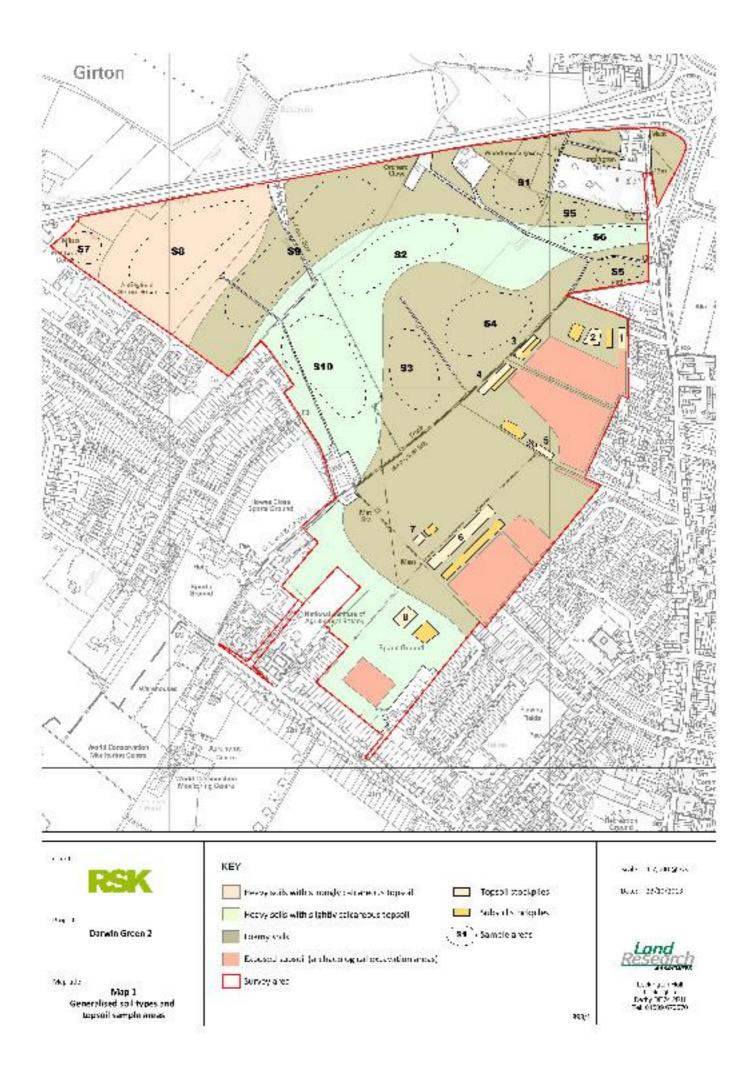
obs	Topsoil			Upper subsoil			Lower subsoil	bil		Slope	Weiness	Agricultural quality	quality
٥N	Depth	Texture	Stone	Depth	Texture	Motting	Depth	Texture	Mottling	E	C bese	Grade	Nain Nain
	(cm)		(%a)	(cm)		etc _	(cm)		•				limitation
90	7C-0	10P.	5	05-20	10P.	~		onikut. Not	~	0			
20	0.02	U	5-10	10-01	U		-	J		0			
3.8	0-03	- DP.	.5		-DN		55-1001	-99- 192		0	_		
60				0-05	-DN		02-201	-99°		0			
70	0-02	5.	5	70-20	NC.		02-1001	"Z\$N		0	_		
<u>1</u> 1	<i>1</i> 0-00	10P.	5		-DN		(0)-1001	10P.		0			
-2				0-05	-DN	100	02-201	.43. M.3.	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0			
C2	0-07	30-	20	25-20	30.		57-1001	501		0			
77	0-03	10P.	5	09-99	- DP.		03-1001	10P.		0			
5	0-01	- DP.	5	27-72	-3P	0	72-1001	- DN		0			
10	0-09	30.	15		30.	0	00-001	Chuky de 1		0	_		
<u>1</u> 7	0-05	301	10		.45Z.		201	Tools ony		0			
62	90-0	- DP,	10	_	-DN	0				0			
67	20-0	J	5.5	10-20	5		108-10	5		0	Ш		
20	90-0	301	10		30.	0	1015-15	799, 72		0			
51	902	- DR	2		-DN		102-50	100 MC		0			
52					- 2P		12-501	5		0			
20	902	"DZI	4.J	05-051	JZ					0			
25	000	301	2	59-63	-725P)	0	122-00	799, 72		0			
22				0.20	No. 101		102	Toos ory		0			
50	9.04	- 2ZI	5.5		ZC		27-401	ZC		0			
57	0-05	IZC UNA	5.5		ZC		Ø-1001	ZC	1111	0			
5.0	0.03	$ ZC \ge c_1$	55	03-50	JZ		50-821	JZ	****	Q	III		

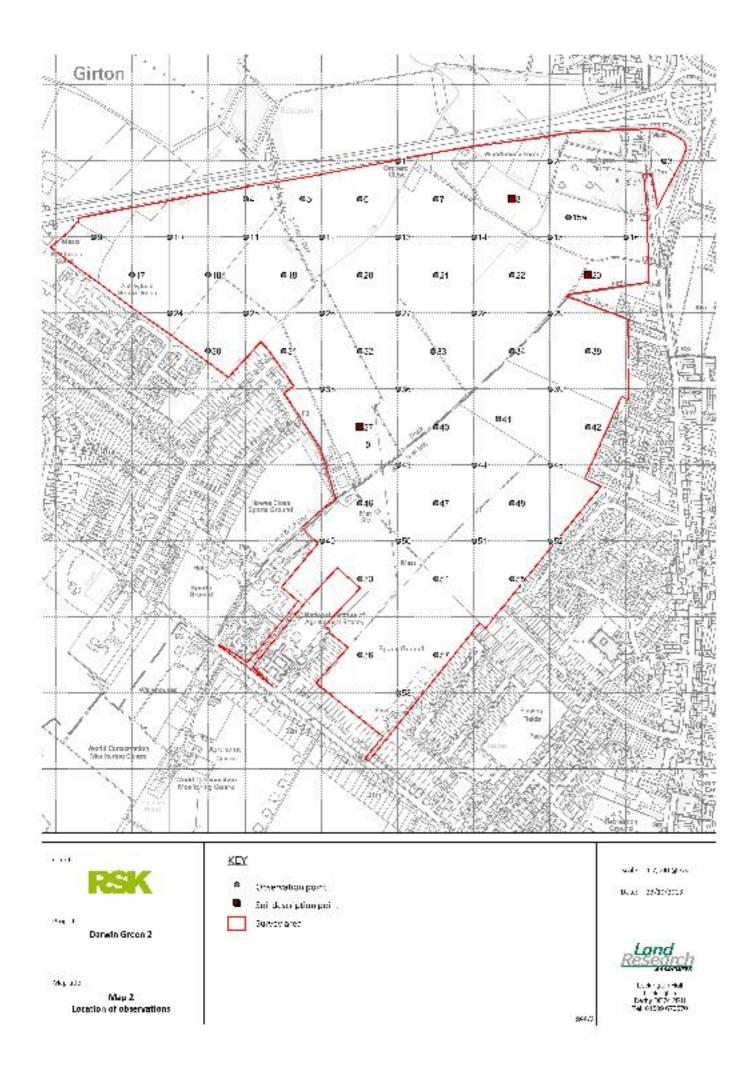
Key to table

Anno naoange

- urmo od ÷
- is a community for the problem is the set of the set of ς.
 - on a low demonstration on building
- written onlighteness no examine a starte laws . 11
- ມູ່ມ⊽ບບານໃຊ້ຜູ້ຜູ້ຊາຍເຫດຍາຍ ແລະ 3 ຜູ້ຜູ້ມາຍ. ຈີນ ທີ່ມະນາ ການຜູ້ຊາຍ ການກາຍ ແລະ 3 ຜູ້ຜູ້ນາຍ ເຫດ

u depriunder hed Ra<u>u 30</u>1 militares helapañ a sens permeutre uren Dude edunder helini ares helapañ a grechender helapañ spermeutre)


C- cut ZC- s Y cut TIMUTU


Wir werkestwickubling read uffinite of

É NAVEDRACE.

- De dep 1
- а ыстаны а ысра — солга Т срадириули стаго с

gr – green sright – gelea sothean, tri – veldsothean 1 – reddsog Nis – (vergi slongeds - sund-ene dis - dis uttedsor jugerpinds – mudslene JuB 5.5 Slow, Volto, spectroaro ro-ro are in record and the more than the streaments in Bund (m) Towner suffices & professe.

/ 8	aparatories
	la para

Report Number				ANALYIIC							
Date Received Date Reported Project Reference	14855-13 15-OCT-2013 18-OCT-2013 SOILS DARWIN GREEN			MR MALCOLM REEVE LAND RESEARCH ASS LOCKINGTON HALL LOCKINGTON DERBY	MR MALCOLM REEVE LAND RESEARCH ASSOCIATES LOCKING TON HALL LOCKING TON DERBY	លួ	Client DARWIN GREEN	A GREEN			_
Laboratory Reference		SOIL242786	SOIL242787	SOIL242788	SOIL242789	SOIL242790	SOIL242791	SOIL242792	SOIL242793	SOIL242794	SO IL 242 795
Sample Reference		S1	82	s3	S4	SS	8 S	S7	8	ß	S10
Determinand	Unit	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
Hd		6.8	7.3	7.2	7.3	7.9	7.9	8.1	7.9	7.0	7.1
Available Phosphorus (Index)	// Buu	12 (1)	23 (2)	71 (5)	29 (3)	13 (1)	11 (1)	12(1)	24 (2)	39 (3)	14(1)
Available Potassium (Index)	l/bm	80 (1)	1 19 (1)	297 (3)	153 (2-)	72 (1)	63 (1)	374 (3)	332 (3)	165 (2-)	164 (2-)
Available Magnesium (Index)	//du	96 (2)	94 (2)	89 (2)	87 (2)	40 (1)	48 (1)	118 (3)	133 (3)	91 (2)	134 (3)
Total Nitrogen	M/M %	0.34	0.20	0.16	0.15	0.17	0.18	0.22	0.21	0.15	0.15
Organic Matter LOI	/// m/w	7.4	4.6	4.0	3.8	4.1	4.2	5.7	5.6	3.8	4.1
Neutralising Value as CaCO3 eq.	M/M %	2.8	2.5	2.0	2.3	3.1	2.2	4.6	5.0	2.0	2.4
Neutralising Value as CaO eq.	W/W %	1.6	1.4	1.1	1.3	1.8	1.2	2.5	2.8	1.1	1.4
Notes											
Analysis Notes	The sample submitted was of adequate size to complete all	ed was of adequé	ate size to compli	ete all analysis requested.	e que sted .						
	The results as reported relate only to the item(s) submitted for testing.	rted relate only to	the item(s) subn	nitted for testing.							
Document Control	The results are presented on a dry matter basis unless otherwise stipulated. This test report shall not be reproduced, except in full, without the written approval of the laboratory.	sented on a dry m all not be reprod	latter basis unles luced, except in	s otherwise stiput full, without the	ulated. e written approv	val of the labor	atory.				
Reported by	O Dαvis Natural Resource Management Ltd. Coopers Bridge, Braziers Lane, Bracknell, Berkshire, RG42 Tel: 01344 886338 Fax: 01344 890972 email: Jenquiries@nrm.uk.com	lana ge me nt L td. aziers Lane, Bracl m. uk.com	knell, Berkshire,	RG42 GNS							

18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9R T UK

Telephone: +44 (0)1442 437500 Fax: +44 (0)1442 437550 www.rsk.co.uk

Our ref: 25459-R03 (00)

11th October 2013

BDW Trading Limited Barratt House 7 Springfield Lyons Approach Chelmsford Essex CM2 5E7

For the attention of: Danny Clark

Dear Danny

RE: Summary geo-environmental report for NIAB1 Fields, Phase 1 Development

Planning reference 07/0003/OUT & S/07/0001/F

Further to recent correspondence with Cambridge City Council we are pleased to provide the results of our recent targeted phase of supplementary ground investigation at the above site within this summary letter report.

1. LIMITATIONS

The comments given in this report, and the opinions expressed, are based on the ground conditions encountered during the site work and on the results of tests made in the field. However, there may be conditions pertaining to the site that have not been disclosed by the investigation and therefore could not be taken into account. In particular, groundwater levels may vary from those reported due to seasonal, or other effects.

This report is subject to the RSK's service constraints attached to this letter.

The following iterative phases of ground investigation have been conducted at the site to support the planning applications 07/0003/OUT and S/07/0001/F:

- Phase 1 Environmental Risk Assessment Report reference 5593/04/CM/03-06/1213, Millard Consulting Engineers, March 2006;
- Phase 2 Environmental and Geotechnical Site Investigation Report reference 5593/14/RT/09-06/1371, Millard Consulting Engineers, September 2006;
- Main Site Investigation Report reference 25459-01(00), RSK Environment Limited, dated 25th October 2012; and
- Supplementary Investigation Report reference 25459-02R(00), RSK Environment Limited, dated 1st May 2013.

It is noted that the planning applications span the boundary between the districts administered by South Cambridgeshire District Council (SCDC) and Cambridge City Council (CCC), both authorities have therefore been consulted during the course of the project.

1.1 Phase 1 Environmental Risk Assessment Report, Millard Consulting Engineers, March 2006

The preliminary risk assessment contained within the Phase 1 Environmental Risk Assessment Report prepared by Millard Consulting Engineers identified the following risks associated with the site:

- Residential end-users a moderate risk was identified from potentially contaminated soils (principally associated with the former above ground bulk storage of diesel and the storage and use of agrochemicals) and a low to moderate risk associated with asbestos containing materials from the former buildings;
- Construction workers a moderate risk was identified from potentially contaminated soils and asbestos containing materials, and a low to moderate risk associated with the former above ground storage of hydrocarbons and an electricity sub-station; and
- A low risk was identified to flora and fauna, groundwater, surface water, building structures and services.

Due to the potentially complete pollutant linkages detailed above, the report recommended the completion of a preliminary Phase 2 land quality assessment to refine the initial conceptual site model.

1.2 Phase 2 Environmental and Geotechnical Site Investigation Report, Millard Consulting Engineers, September 2006

The investigation comprised the excavation of sixteen exploratory holes within the current study area. The scope of works included a programme of laboratory analyses on a limited number of soil and groundwater samples.

The investigation confirmed the ground model beneath the site to comprise a variable thickness of topsoil and/or made ground, locally overlying River Terrace Deposits. These superficial deposits were underlain by the Gault Clay Formation. A shallow groundwater table was recorded within the River Terrace Deposits (where present).

The laboratory analyses identified no significant contamination issues across the site, however, points sources of heavy metals (arsenic and cadmium) and petroleum hydrocarbons were recorded within the shallow made ground soils, the concentrations recorded exceeded the (now superseded) generic assessment criteria values adopted for the protection of human health assuming a residential land-use.

Analyses of groundwater demonstrated that the shallow groundwater within the River Terrace Deposits (which is designated as a Secondary A Aquifer) was not impacted with contamination. In addition, a single sample of groundwater recovered from an abstraction well on the NIAB premises indicated *"no measurable impact on the underlying Greensand Aquifer"*.

Notwithstanding the above, further investigation was recommended to investigate the extent of the point source of petroleum hydrocarbon contamination recorded within the soil. Additional sampling

was also recommended to quantify the potential for pesticide/herbicide residues to be present within the shallow soils of previously inaccessible agricultural areas of the site.

1.3 Main Site Investigation Report, RSK Environment Limited, October 2012

The investigation used information contained within the previous phases of work to compile an initial conceptual site model (CSM). The CSM identified the following potential pollutant linkages with a risk of moderate or above:

- Risk posed to human health from contaminants contained within the shallow made ground, including herbicides and pesticides and locally hydrocarbons via direct contact, ingestion and root uptake pathways;
- Risk posed to vegetation by contaminants contained within the shallow made ground via root uptake;
- Risk posed to building materials and infrastructure, principally potable water supplies from contaminants contained within the made ground via chemical attack;
- Risk posed to human health from ground gases generated by the degradation of organic material within the made ground soils via inhalation; and
- Risk posed to the shallow aquifer from the vertical migration of herbicides and pesticides.

Intrusive investigation comprising the excavation of 86 exploratory hole locations was conducted to investigate the potential pollutant linkages identified by the CSM. The intrusive works included the installation of seven shallow ground gas and groundwater monitoring wells. Soil samples were recovered and laboratory analyses conducted to characterise the topsoil, made ground and natural strata at shallow depths (typically within the top 1m). The laboratory analyses comprised a site specific suite of contaminants, including: heavy metals, asbestos, pesticides, herbicides, polycyclic aromatic hydrocarbons and petroleum hydrocarbons.

The fieldwork typically confirmed the ground model encountered during the previous phase of investigation, comprising a variable thickness of topsoil and/or made ground overlying the River Terrace Deposits in the north/north eastern portion of the site. These superficial deposits were underlain by the Gault Clay Formation.

An initial quantitative risk assessment compared the soil results against relevant generic assessment criteria values for the protection of human health (residential), plant growth and/ or building materials. In the absence of any soil leachate results or groundwater results, the risk to controlled water was qualitatively assessed based on the total soil concentrations.

The quantitative risk assessment identified no concentrations of any determinants to be in excess of the adopted values for the protection of human health, plant growth and building materials. In addition, the qualitative assessment identified no risk to controlled waters.

The results of the ground gas monitoring recorded a negligible ground gas regime beneath the site for which no gas protection measures were considered necessary.

The report concluded that the generic assessment confirmed the absence of any relevant pollutant linkages.

Notwithstanding the above, recommendation was made for additional sampling to establish the potential risk associated with the point source of residual hydrocarbon contamination identified during the previous phase of investigation.

1.4 Regulatory Liaison, December 2012

The RSK report was submitted to SCDC and CCC for review. A joint response was received in memorandum reference wk/201258067, dated 12th December 2012. The response concluded with the following recommendations for further assessment:

- Further chemical testing for pesticides and herbicides is required across the site;
- Delineation of the contamination identified around WS6 and WS8 is required;
- A minimum of three further ground gas monitoring visits are required to adequately characterise the gassing regime on the site;

1.5 Supplementary Investigation Report, RSK Environment Limited, May 2013

Based on the comments received in May 2013, a scope of supplementary, targeted investigation and chemical analyses was subsequently proposed by RSK in January 2013, which comprised the following:

- Three additional rounds of ground gas monitoring;
- Additional investigation targeted to the location of an above ground fuel storage tank, formerly located adjacent to the farm yard, comprising the excavation of two shallow trial pits (HP1 and HP2) and testing a minimum of two soil samples for a suite of analyses including polycyclic aromatic hydrocarbons (PAH) (EPA16) and petroleum hydrocarbons (TPH-CWG);
- Additional investigation targeted to the location of a former waste storage area, comprising the
 excavation of five shallow trial pits (HP3 to HP7) and testing a minimum of five soil samples for a
 suite of analyses including PAH (EPA16), nine commonly occurring metals, a screen for asbestos
 containing materials (ACMs), Triazine herbicides, Phenoxy acid herbicides and petroleum
 hydrocarbons (TPH-total);
- Additional investigation targeted to the location of a former storage shed, comprising the excavation of three shallow trial pits (HP8 to HP10) and testing a minimum of three soil samples for a suite of analyses including PAH (EPA16), nine commonly occurring metals, a screen for asbestos containing materials (ACMs), Triazine herbicides, Phenoxy acid herbicides and petroleum hydrocarbons (TPH-total); and
- Additional investigation targeted to the location of an above ground fuel storage tank, formerly located adjacent to the sports pavilion, comprising the excavation of two shallow trial pits (HP12 and HP13) and testing a minimum of two soil samples for a suite of analyses including polycyclic aromatic hydrocarbons (PAH) (EPA16) and petroleum hydrocarbons (TPH-CWG).

The chemical test results were directly compared against the RSK Generic Assessment Criteria (GAC) values derived using CLEA version 1.06 for the protection of human health in residential sites with pathways for plant uptake.

No elevated concentrations of any determinants were identified during the comparison. Whilst no GACs were derived for the assessment of herbicides, pesticides or ACM's, no concentrations of any of these contaminants were recorded above the relevant laboratory limits of detection.

The results of the supplementary ground gas monitoring events were combined with the previous three rounds of monitoring. The Gas Screening Values calculated from the full programme of gas monitoring events confirmed a negligible gas regime for which gas protection measures are not considered necessary.

1.6 Regulatory Liaison – July 2013

The supplementary RSK report was submitted to SCDC and CCC for review. A joint response was received in memorandum reference wk/201353398, dated 29th July 2012. The response concluded that the following issues remained outstanding:

- Further investigation for TPH and pesticides is still required on site; and
- A revised report and a remediation method statement should be submitted following the completion of the additional investigation.

1.7 Supplementary Investigation, RSK Environment Limited, October 2013

Based on the comments received in July 2013, a scope of supplementary, targeted investigation and chemical analyses was subsequently agreed between RSK and CCC. The supplementary investigation is summarised in the following sections.

Two trial pits, designated HP14 to HP15, were excavated by hand within the area of the former farmer's offices and three drive-in sampler boreholes, designated WS101 and WS103, within the immediate vicinity of the former above ground fuel storage tank on 15th August 2013. The investigation and the soil descriptions were carried out in general accordance with 'BS 5930:1999. Code of Practice for Site Investigations' (BSI, 1999) and 'BS10175:2011 Investigation of Potentially Contaminated Sites – Code of Practice' (BSI, 2011). Copies of the exploratory hole records are appended to this letter for reference.

The investigation points were located by rigorous surveying techniques as shown in Figure 1, which provides a composite exploratory hole location plan, detailing all phases of investigation conducted by RSK.

The soils samples were collected in containers appropriate to the anticipated testing suite required. The containers were filled to capacity and placed in a cool box to minimise volatilisation. Samples were transported directly to RSK's testing laboratory (Envirolab) under chain of custody documentation. The samples taken from below the former farmer's offices and above ground fuel storage tank were tested for a suite of organochlorine pesticides and petroleum hydrocarbons, respectively. Copies of the chemical test results are appended to this letter for reference.

2. GROUND CONDITIONS

The supplementary, targeted investigation confirmed the shallow ground conditions at the specified locations to comprise a generally uniform veneer of made ground overlying the Gault Formation. The made ground soils typically comprised a silty sandy locally gravelly clay with rare pockets of ash and

brick. No obvious signs of any significant contamination were observed during the course of the investigation. No groundwater was encountered during the course of the shallow investigation.

3. CHEMICAL TEST RESULTS AND ASSESSMENT

The chemical test results were directly compared against the RSK Generic Assessment Criteria (GAC) values derived using CLEA version 1.06 for the protection of human health in residential sites with pathways for plant uptake. The GAC values and details of their derivation are appended to this letter for reference. It is noted that due to the use of the organochloine pesticide DDT having been banned in the UK in 1984, no guideline values have recently been derived for the protection of human health. In the absence of any current available guidance from the UK or USA, reference is made to the New Dutch Intervention values and Target Values and New Zealand Soil Guideline Values of 4mg/kg (Action level) and 28mg/kg (Residential), respectively. These values are quoted in respect to the sum of all the DDT metabolites (DDE and DDD).

No elevated concentrations of any determinants were identified during the comparison.

4. CONCLUSIONS

The results of the agreed scope of supplementary targeted investigation have not identified any significant ground contamination at the targeted locations. The supplementary investigation has therefore provided a greater level of confidence that the soils across the site are suitable for use within all areas of the proposed mixed-use development.

Notwithstanding the above, a single significant concentration of petroleum hydrocarbons was recorded during the ground investigation conducted by Millard Consulting Engineers in 2006, the presence of which should not be overlooked. The further testing has demonstrated that any residual contamination associated with that previously detected must be very localised and unlikely to pose a significant contamination issue to the proposed development. However, it is obviously essential that the ground conditions with all areas of the site are suitable for their proposed use, it is therefore recommended that a watching brief be kept during the removal of the hardstanding and buildings within the immediate vicinity of the location of the former borehole designated WS8. Should any visual or olfactory evidence of any residual contamination be identified during these works, then the impacted soils should be tested to confirm suitability for use/re-use and/or disposal (as appropriate). It is noted that the point source of contamination was not recorded within any topsoil and should not therefore impact the suitability of the topsoil encountered across the site for future re-use within the development.

No further investigation or remediation is therefore recommended prior to redevelopment.

We trust the information supplied is sufficient to negate the requirement for any contaminated land conditions pertaining to the investigation of the site, should however, you have any queries or require any further information please do not hesitate to give me a call.

Yours sincerely

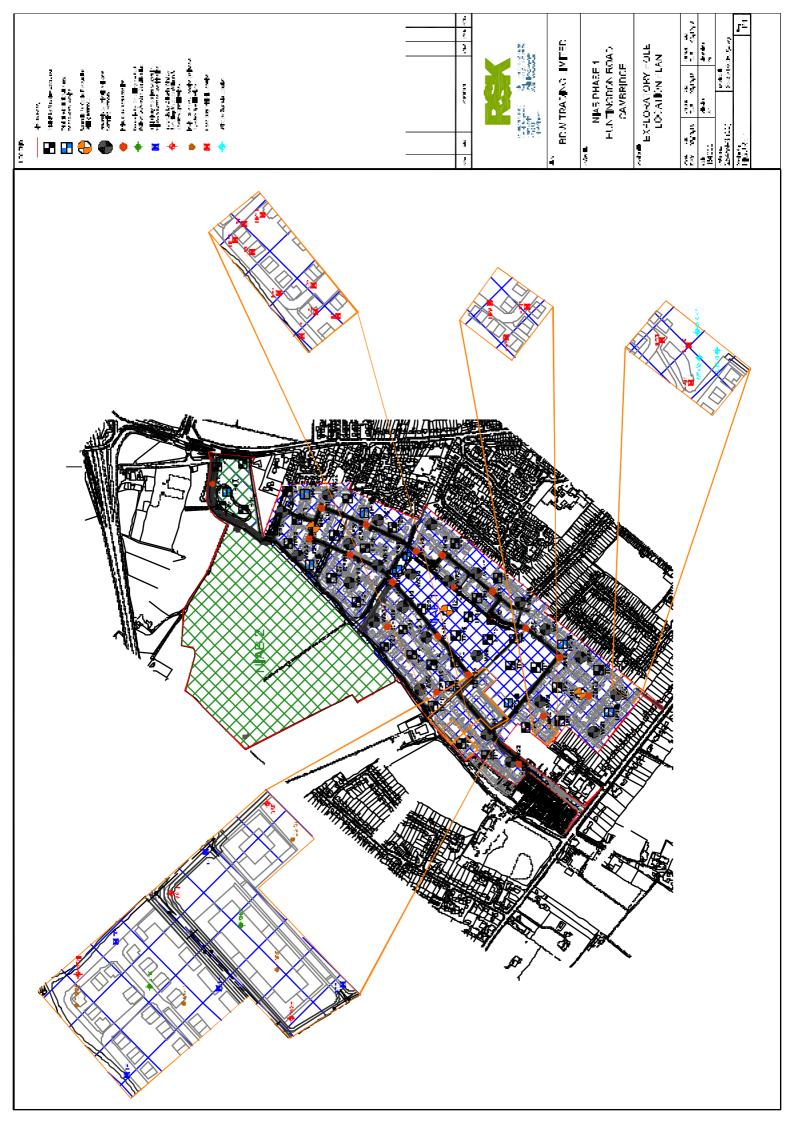
For RSK Environment Ltd

Duncan Sharp Associate Director RSK Environment - Geosciences

Encl.

Service constraints Figure 1 Exploratory hole location plan Exploratory hole records Chemical test results RSK GAC values for residential sites with pathways for plant uptake

Cc. Guy Kaddish - SCDC



RSK SERVICE CONSTRAINTS

- 1. This report and the site investigation carried out in connection with the report (together the "Services") were compiled and carried out by RSK for Sainsbury's Supermarket Limited (the "client") in accordance with the terms of a contract between RSK and the "client". The Services were performed by RSK with the skill and care ordinarily exercised by a reasonable environmental consultant at the time the Services were performed. Further, and in particular, the Services were performed by RSK taking into account the limits of the scope of works required by the client, the time scale involved and the resources, including financial and manpower resources, agreed between RSK and the dient.
- 2. Other than that expressly contained in paragraph 1 above, RSK provides no other representation or warranty whether express or implied, in relation to the Services.
- 3. Unless otherwise agreed the Services were performed by RSK exclusively for the purposes of the client. RSK is not aware of any interest of or reliance by any party other than the dient in or on the Services. Unless expressly provided in writing, RSK does not authorise, consent or condone any party other than the client relying upon the Services. Should this report or any part of this report, or otherwise details of the Services or any part of the Services be made known to any such party, and such party relies thereon that party does so wholly at its own and sole risk and RSK disclaims any liability to such parties. Any such party would be well advised to seek independent advice from a competent environmental consultant and/or lawyer.
- 4. It is RSK's understanding that this report is to be used for the purpose described in the introduction to the report. That purpose was a significant factor in determining the scope and level of the Services. Should the purpose for which the report is used, or the proposed use of the site change, this report may no longer be valid and any further use of or reliance upon the report in those circumstances by the client without RSK 's review and advice shall be at the client's sole and own risk. Should RSK be requested to review the report after the date hereof, RSK shall be entitled to additional payment at the then existing rates or such other terms as agreed between RSK and the client.
- 5. The passage of time may result in changes in site conditions, regulatory or other legal provisions, technology or economic conditions which could render the report inaccurate or unreliable. The information and conclusions contained in this report should not be relied upon in the future without the written advice of RSK. In the absence of such written advice of RSK, reliance on the report in the future shall be at the client's own and sole risk. Should RSK be requested to review the report in the future, RSK shall be entitled to additional payment at the then existing rate or such other terms as may be agreed between RSK and the client.
- 6. The observations and conclusions described in this report are based solely upon the Services which were provided pursuant to the agreement between the client and RSK. RSK has not performed any observations, investigations, studies or testing not specifically set out or required by the contract between the dient and RSK.. RSK is not liable for the existence of any condition, the discovery of which would require performance of services not otherwise contained in the Services. For the avoidance of doubt, unless otherwise expressly referred to in the introduction to this report, RSK did not seek to evaluate the presence on or off the site of asbestos, electromagnetic fields, lead paint, heavy metals, radon gas or other radioactive or hazardous materials.
- 7. The Services are based upon RSK's observations of existing physical conditions at the Site gained from a walk-over survey of the site together with RSK's interpretation of information including documentation, obtained from third parties and from the client on the history and usage of the site. The Services are also based on information and/or analysis provided by independent testing and information, including documentation, reviewed by RSK and the observations possible at the time of the walk-over survey. Further RSK was not authorised and did not attempt to independently verify the accuracy or completeness of information, documentation or materials received from the client or third parties, inducing laboratories and information services, during the performance of the Services. RSK is not liable for any inaccurate information or condusions, the discovery of which inaccuracies required the doing of any act including the gathering of any information which was not reasonably available to RSK and induding the doing of any independent investigation of the information provided to RSK save as otherwise provided in the terms of the contract between the client and RSK.
- 8. The phase II or intrusive environmental site investigation aspects of the Services is a limited sampling of the site at pre-determined borehole and soil vapour locations based on the operational configuration of the site. The conclusions given in this report are based on information gathered at the specific test locations and can only be extrapolated to an undefined limited area around those locations. The extent of the limited area depends on the soil and groundwater conditions, together with the position of any current structures and underground facilities and natural and other activities on site. In addition chemical analysis was carried out for a limited number of parameters [as stipulated in the contract between the client and RSK] [based on an understanding of the available operational and historical information,] and it should not be inferred that other chemical species are not present.
- 9. Any site drawing(s) provided in this report is (are) not meant to be an accurate base plan, but is (are) used to present the general relative locations of features on, and surrounding, the site

FIGURES

EXPLORATORY HOLE LOGS

INSPECTION PIT LOG

Contract:		NIAB	- Pha	ase 1				Clena B I)W Tradin		T-J	∍.:	HP14
Contract Re	<u>.</u> :			Dale:			Graun	d Level (m AOC)	: Natana G	rd Caland huld:	Ghœ	.:	
	254	59			15.0	8.13						1	a' 1
San	ാരം	nd his	u Tesa	,	b	Ī						Dea.1	l Maler Court
Destr	No	liyse	Kes	i _ 13					Description	of Strata		(Thick hess)	
Pun (Nac	1 1 1 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3			1. 1			C GROUND: T sana ine a ca sana la tareas an angaanas al lemina edal	In yellow provide and provide angulant a concern and provide and a concern and	y CLAY two in ac (GAULT TO RW)	andy CLAY term grave stand term xats on a line to (TRON).	:0.20; 0.20 :0.23; 0.25; 0.25;	
					<u> </u>		<u>.</u>			L 5			
Method				Dun.	I		n d	niensens ninie.	Lagged	Scale:	1:13 Checked		
Joed:	H	and du		Jaed			Hand	tools		GJBall	Checked Dy:		46

INSPECTION PIT LOG

Contract:		NIAB	- Pha	ase 1				Clena I	BDW	/Trading	g Limited		с с-Т	.:	HP1
Contract Re				Cale:			Graun	id Level (m AC)C(:	Natona Gr	rd Calandinux	1:	Sheet:		
	254	59			15.0	8.13									a' '
Sam	ാരംപ	nd hist	u Tesa		Na.er					Description	- 4 (744-			Death Itt	Male Grap
Depin	No	Тур а	Res	ul8] š					-				(Thick ness)	Lege
· 0.50 · 0.50 · . · . · . · . · . · . · . · . · . · .	1						MAD accu accu accu accu accu	 CROUND: John The Jarca sent Tradies (1) CROUND: Sent The Store sent to be and sent to	L and L and L T T L and	yellow prov sangular to r iekers and p grey sandy pRMATION; Smi	mis gruy si g subreunded f nek fragmenis QuAV wumin	r sandy CLA n. grave s a 	(Yi wuri nd wuri		
3	- ▲ [<u>in</u>			2. T 3. T	-a a -a a	, tenia . Jerni i	Lonstwamitic ned dity and sa rated al. 0.85m red with an sin	averca a a e	istiw tri doga	sana grush				
					<u> </u>		A d	nervens nin	ie.res		Scale:		1:13		
Method				Pan.	<u>. </u>					Lagged		Check Dy:			C
doed:	H:	and du	a	Joed	l:		Hand	l tools		Dyt	GJBall	Dy:			6

WINDOW SAMPLE LOG

Contract:						C e	1.:					Windo:	N Santo	ie:
	NIAB -	Pha	ise 1					BDW	/ Trading l	imited	ł			/S101
Contract Refs				15.08.13	Graun	id Lev	e (m.2		Natana Grd (Shee.:		
2	5459		End:	15.08.13									1	് 1
Progress		Sam	ies/T	ess.	Ξ.	- 1						•	Death	Malera
Wireow Run	Destr	Mc.	lyse	Kes. Is					Descript	or of Sh	ata		(Thes	Graanie
			190e				88 M A	27.67	OUND: Drawn	s an s a		SAND	hess)	XXXXX
-	-						🗱 🛪 /	acon i	ana line ta mi	ed unifan	ցսաի ն հներ	aunded	(0.00)	\otimes
[X, hea	uen, g	win lacas are Nysi subba	naarok ian Taarok ian	raghients an Id raotets (id iw n (1 Shini _m	0.00	\boxtimes
-	-						ينه 🞇	nee-(.`					;0.00;	\boxtimes
-	0.50	1	23				🗶 tan	idy CLA	OUNC: Thing Yiwin accusa	na ine x	a mied umi ang	an an an	0.80	\boxtimes
[הרא 🕅	räundeo	filling and with	accus an	a lahok haghi	ients. 🛛		<u>× × × ×</u> ×
-	-						300	n arawa Katu aliji	i and grey silgr yellow sandt (G	ny sahay Muliti To	CLAY WAT RMATION).	equen.	-	· _ · _ · _ ·
ŀ	-												-	
F	1.00	2	IS.										;0.90;	<u></u>
[F						8						[
ŀ	ŀ						8						ŀ	
ŀ	ŀ						8						1.50	
[1.50	а	IS.				S. 1	anan	n und grey La rure paeko	e gays	sandy - CLA	í wia Cali T	-	
-	-						8 6 0	asaru ZMATK	ila hare paeko VVV	is a ya	aw sand. P	64111	-	
-	-						8						-	
Ľ	-						8						-	<u></u>
F.	2.00	4	فند				8						-	
ŀ	-						8						(1.50)	
-	F						8						-	
[[8						-	· · · · · · · · · ·-
-	2.50	5	ΞS				8						-	
ŀ	F						8						-	
[8							
-	3.00						8		eminated at 0.0	·			0.00	<u>. </u>
-	- 300	6	ور					ende e	- 11 11 .00 1 . 1 .0	/11			-	
t i														
-	-												-	
-	F												-	
t	Ľ												-	
-	-												-	
-	-												-	
-	F												-	
[
-	-												-	
ŀ	ŀ						1						ŀ	
D- 1	g Progressia L Recent				W				Gene	eral R	emarks			
Cale Th	Borehd Dept (m		ading Depth J(m)	Bondhole Diametar (mmi)	Water Depti (m)				0010		Gridina			
	91	+	9.1		91	1.	Weath Dahenr	et cand Le reniv	, anst wathit, av mediaty and sa	erant wi Jac	un accus anu	ght sha	wers	
						ā.	Daheno	10.010	hazed at 0.0hi					
										i				
	icked wind		1	Archwa	v Cor				מזא ה חופ, פא		510: 	<u>1:25</u> Checks		1
Method Tra Used:	sampling	00	204 1966	n ciiwaj	9.001	nhan	101	Dried Dy:	MOS	Lagged Dy:	GJBall	Dy:	50	AGS
<u> </u>			-											

or i Listone ter de lag viruota suert lata zeser rub i Nost harte er 1966 de 1987 das 198 Leconomitat 181 equestical Hund Hungebeit Hehandelei Hitter – et 1974 20050 tec 1942 20050 (Neb veerbearde

WINDOW SAMPLE LOG

The Second State	Contract:	NIAB	- Phi			r	C en:	BDV	V Trading I				VS1
Pergents Summa : Tous Bit Description of Strate	Cantract -						id Leve	(m/XOC):	Natana Grati 		Sheet:		
W rook H Dest No Hyde Health Mo Mo Health Health Mo Health Health Mo Health Health Health Mo Health Health <th><u> </u></th> <th></th> <th></th> <th></th> <th></th> <th><u> </u></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>İ</th> <th>1</th>	<u> </u>					<u> </u>						İ	1
1 1				1		- Mater	Extri		Descro	lor of Strata		(Thes	Gha
Date Trile Borchole Oppting Borchole Water Date Trile Dopting Dopting Dopting Dopting Oth Oth Oth Oth Oth Oth Oth Oth Oth Oth Oth		(_r Destr	NG 1 2 3 4	Iyse Ca Ca Ca				with Teque and with T Tequent tra MADE GR with decars The analysis a medium (GAULT Tr	OUND: Duex in the torned request of Shink OUND: Soft of and the torn that gray sign angulation sia DRMATION).	signuy gravey ea lant anguantional and ash fragment Lantelet). Thinye overarownis edium angular to s agments. It y sandy CLAY wi nd occasional she	inded Tims si and twith andy CLAY subrounded	(Thes ness) (0.00) (0.0	Gru Leg XX
		Time Dept		kading Depth	Bondholie Diametar	Depth	2. De	rende renia rende temi	, ans: warnit, av ined dity and s nated at 0.0m	vendra i wilin doctra o	ana gritono	wers	
NUMBER OF THE PARTY OF THE ADDRESS OF THE PARTY OF THE PA	<u> </u>	Tracked wind	low	2.0	Archwa	v Con	u netito		210 1 10.09			er l	

WINDOW SAMPLE LOG

7	aniraci	1-							Te.	ient:					W index	wSamp	le ·
			Ы	IAB -	Dha	ioa 1					BDM	/ Trading I	imited	1		-	/S103
$\left \right _{c}$	aniraci	Ret					15.08.13	Gmu	l nd i	evela		National Grid			Sheel:		0105
-			5459	1		End:										-	a 1
			J=4 J ⊒ 						_							1	
\vdash	Pragn	es s			samp	iles / T	esis	— i	2			Dæarst	lor of Sira	=1=		Depth (Thick	
	V neov	k K∟r	De	eotr	No	Type	Kesu ta	115		ĥ						ness)	Legend
F			-									OUND: Black		arely clayey	SAND	0.15	\boxtimes
ŀ			-									onal brick trage OUND: Solt to		win and red	sandy	-	
ł			-								CLAY with Isocration	isubangularik Etilegmenis,	a subraun	ded llints an	d with	(0,45)	\otimes
t			Ľ								requertur	ek nagments.					\otimes
ŀ			0.80		1	ES					- : .					0.60	
ł			-								Firm brawn Ireguent fir	i and grey slig ne to coarse a	hily grave angular to	ly sandy CLA rounded Hin	its and i		
ł			-						×	‱h∙	occasional.	pockets o	l [™] yellaw	sand. (G	SAULT	0.80	
Ł			_								FORMATIC Firm brown	iand grey slig!	hily sandy	CLAY with In	e que ni	Ľ	
F			1.00		2	ES					pockets an-	d Enses al lin	e yellaw s	and and door	siona	[
ŀ			-								shell hagme	enis. (GAULTI	FORMATK	DNJ.		ŀ	
ł			╞													ŀ	<u> </u>
ł			-													ŀ	<u></u> -
1			1.80		з	ES			×							[
ŀ			-													ŀ	
ŀ			-													l.a. am	
ŀ			-													(2.20)	<u> </u>
t			2.00		4	ыя										-	
[F .													[<u> </u>
ŀ			-													-	
ł			-													ŀ	
ł			2.80		δ	ES										ŀ	
ſ			Ľ						×							[<u> </u>
ŀ			-													\mathbf{F}	
ł			-													1000	
t			3.00		6	ES					Barehale le	rminated at 0.0	յա				 -
			_													[
ŀ			-													\mathbf{F}	
ł			-													ŀ	
t			_													t l	
[[[
-			╞													ŀ	
ł			-													ŀ	
F			-													-	
Ī																[
ŀ			-													-	
ŀ			╞													ŀ	
L			L						_	1						L	
Γ		Drilling	g Prag	pessar	d Wa	ier Ot	iservations					~					
	Dale	Tir		Borchdo Dept	i c	oding (ttp:	Bondholie Diametar	Water Depth	1			Gene	erai Re	emarks			
	Dak			011) î î	(666)	()"(1. We	a lher candi	lions: warm, or	re roas I will	h occasional l	igh I sha	wers	
										2. Bar	ehole rema	ined dry and si inaled at 0.0m	la ble		•		
										J. 501	CHOIC IC MIT	aco ar o ora					
									╟		Aldimensi	ions in metes	84	ale:	1:25		
	leihad	Гга	cked	windo	w		Archwa	y Cor	пр		Drilled		Logged		Check	ed	
Ŀ	ised:		sam	pling		Use		-	•		By:	MOS	By:	GJBall	By:		AGS

or i Listone ter de lag viruota suert lata zeser rub i Nost harte er 1966 de 1983 das 198 Leconomitat 181 equestical Hund Hungebeit Hehandelin H1980 - et 1974 2076 f. a. 1974 2066 f. Seb veerskoork

APPENDIX - Results of Gas Monitoring (date 30/04/2013)

Atmospheric Pressure (mb): 1022

AP Conditions (BBC Website): Rising

Equipment Used: GA 2000 +3

Temperature: 15C

Weather Conditions: Sunny spells, dry

Observation								
Product								
(udd) Cld								
Hydrogen Sulphide (ppm)	0	0	0	0	0	0	0	0
Carbon Monoxide (ppm)	0	0	0	0	0	0	0	0
(%)	0	0	0	0	0	0	0	0
Oxygen (%/vol)	20.8	20.4	20.3	20.2	20.1	20.1	20.1	20.1
Carbon Dioxide (%/vol)	0.1	0.5	0.5	5.0	0.5	0.5	5.0	0.5
Methane (%/vol)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Flow (I/hr)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Time (secs.)	0	15	30	60	90	120	180	240
Differential Pressure (mb)								
Depth to base of well (m bgl)	4.27							
Depth to water (m bgl)	1.70							
Location	BH1							

Observation								
Product								
(mqq) CIA								
Hydrogen Sulphide (ppm)	0	0	0	0	0	0	0	0
Carbon Monoxide (ppm)	0	0	0	0	0	0	0	0
(%) Lel	0	0	0	0	0	0	0	0
Oxygen (%/vol)	20.4	19.9	19.9	19.9	19.9	20.0	20.0	20.0
Carbon Dioxide (%/vol)	0.0	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Methane (%/vol)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Flow (I/hr)	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1
Time (secs.)	0	15	30	60	06	120	180	240
Differential Pressure (mb)								
Depth to base of well (m bgl)	4.34							
Depth to water (m bgl)	1.86							
Location	BH2							

		ę	2	
2	7			
		ł		
		ſ	1	

Observation									Observation									
Product									Product									
(mqq)									DID	(mqq)								
Hydrogen Sulphide (ppm)	0	0	0	0	0	0	0	0	Hydrogen	Sulphide (ppm)	0	0	0	0	0	0	0	0
Carbon Monoxide (ppm)	0	0	0	0	0	0	0	0	Carbon	Monoxide (ppm)	0	0	0	0	0	0	0	0
(%)	0	0	0	0	0	0	0	0	ΓEΓ	(%)	0	0	0	0	0	0	0	0
Oxygen (%/vol)	20.8	20.7	20.7	20.7	20.8	20.8	20.8	20.8	Oxygen	(10/%)	20.7	19.4	19.4	19.4	19.4	19.4	19.4	19.4
Carbon Dioxide (%/vol)	0.0	0.2	0.2	0.2	0.2	0.2	0.2	0.2	Carbon	Dioxide (%/vol)	0.5	1.4	1.4	1.4	1.4	1.4	1.4	1.4
Methane (%/vol)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Methane	(0^/%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Flow (I/hr)	0.0	-0.1	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	Flow	(I/hr)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Time (secs.)	0	15	30	09	06	120	180	240	Time	(secs.)	0	15	30	60	06	120	180	240
Differential Pressure (mb)									Differential	Pressure (mb)								
Depth to base of well (m bgl)	3.22								Depth	to base of well (m bgl)	4.30							
Depth to water (m bgl)	1.78								Depth	to water (m bgl)	1.14							
Location	BH3								Location		BHG							

Report No. 25459

Page 3 of 5

	1		
•	1		1
	K	1	
	ł	ſ	

Product Observation								
(mqq) Cliq								
Hydrogen Sulphide (ppm)	0	0	0	0	0	0	0	0
Carbon Monoxide (ppm)	0	0	0	0	0	0	0	0
(%) LEL	0	0	0	0	0	0	0	0
Oxygen (%/vol)	20.9	20.0	20.0	20.0	19.9	19.9	19.9	19.9
Carbon Dioxide (%/vol)	0.0	0.9	0.9	0.9	1.0	1.0	1.0	1.0
Methane (%/vol)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Flow (I/hr)	0.01	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Time (secs.)	0	15	30	60	06	120	180	240
Differential Pressure (mb)								
Depth to base of well (m bgl)	4.3							
Depth to water (m bgl)	1.35							
Location	ЯНВ							

Observation								
Product								
OId (mdd)								
Hydrogen Sulphide (ppm)	0	0	0	0	0	0	0	0
Carbon Monoxide (ppm)	0	0	0	0	0	0	0	0
(%)	0	0	0	0	0	0	0	0
Oxygen (%/vol)	20.9	19.8	19.8	19.9	20.0	20.1	20.2	20.3
Carbon Dioxide (%/vol)	0.4	1.4	1.4	1.4	1.3	1.3	1.2	1.1
Methane (%/vol)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Flow (I/hr)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Time (secs.)	0	15	30	60	06	120	180	240
Differential Pressure (mb)								
Depth to base of well (m bgl)	3.20							
Depth to water (m bgl)	1.55							
Location	WS3							

	-	6	
	•	1	
C	l	þ	
2	5		J
ь	ť	6	

Observation	Could not locate position
Product	
(wdd) Cld	
Hydrogen Sulphide (ppm)	
Carbon Monoxide (ppm)	
(%)	
Oxygen (%/vol)	
Carbon Dioxide (%/vol)	
Methane (%/vol)	
Flow (I/hr)	
Time (secs.)	
Differential Pressure (mb)	
Depth to base of well (m bgl)	
Depth to water (m bgl)	
Location	WS17

Observation								
Product								
(mqq)								
Hydrogen Sulphide (ppm)	0	0	0	0	0	0	0	0
Carbon Monoxide (ppm)	0	0	0	0	0	0	0	0
(%)	0	0	0	0	0	0	0	0
Oxygen (%/vol)	19.5	19.2	19.2	19.1	19.1	19.1	19.1	19.2
Carbon Dioxide (%/vol)	2.0	2.1	2.1	2.2	2.3	2.3	2.2	2.2
Methane (%/vol)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Flow (I/hr)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Time (secs.)	0	15	30	60	06	120	180	240
Differential Pressure (mb)								
Depth to base of well (m bgl)	2.32							
Depth to water (m bgl)	1.6							
Location	HSM							

CHEMICAL TEST RESULTS

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: Issue Number: 13/03938

1

Date: 03 September, 2013

Client:

RSK Environment Ltd Hemel 18 Frogmore Road Hemel Hempstead Hertfordshire UK HP3 9RT

Project Manager: Project Name: Project Ref: Order No: Date Samples Received: Date Instructions Received: Date Analysis Completed: Nigel Austin / Chris Ball NIAB 1 25459 Not specified 20/08/13 20/08/13 02/09/13

Prepared by:

Approved by:

Melanie Marshall Laboratory Coordinator Liz Oliver Client Service Manager

Page 1 of 5

Envirolab Job Number: 13/03938

Client Project Name: NIAB 1

Client Project Ref: 25459

					Client	Project Ref	: 20409			
Lab Sample ID	13/03938/1	13/03938/2	13/03938/3	13/03938/4	13/03938/5	13/03938/6	13/03938/7	13/03938/8		
Client Sample No										
Client Sample ID	HP14	H P15	WS1	WS1	WS2	WS2	WS3	WS3		
Depth to Top	0.50	0.50	0.50	1.50	0.50	1.50	0.50	1.50		
Depth To Bottom										
Date Sampled	15-Aug-13	15-Aug-13	15-Aug-13	15-Aug-13	15-Aug-13	15-A ug-13	15-Aug-13	15-Aug-13		τ
Sample Type	Soil - ES	Soil - ES	Soil - ES	и	Method ret					
Sample Matrix Code			6BE	3	3BE	3	5	3	Units	Met
ОСР										
Aldrin	<50	< 50	-	-	-	-	-	-	µg/kg	Sub con
alpha-Hexachlorocyclohexane (HCH)	<50	< 50	-	-	-	-	-	-	µg/kg	Sub con
beta-Hexach lorocyclo hexane (HCH)	<50	< 50	-	-	-	-	-	-	µg/kg	Sub con
Chlorothalonil	<1000	< 1000	-	-	-	-	-	-	µg/kg	Subcon
cis-Chlord ane	<50	< 50	-	-	-	-	-	-	µg/kg	Subcon
Dieldrin	<50	< 50	-	-	-	-	-	-	µg/kg	Subcon
Endosu Iphan Sulph ate	<50	< 50	-	-	-	-	-	-	µg/kg	S ub con
Endosu Iphan I	<50	< 50	-	-	-	-	-	-	µg/kg	S ub con
Endosu Iphan II	<50	< 50	-	-	-	-	-	-	µg/kg	Subcon
Endrin	<50	< 50	-	-	-	-	-	-	µg/kg	S ub con
gamm a-Hexach lorocyclohexane (HCH / Lindane)	<50	< 50	-	-	-	-	-	-	µg/kg	Sub con
Heptachl or	<50	< 50	-	-	-	-	-	-	µg/kg	S ub con
Heptachl or Epo xid e	<50	< 50	-	-	-	-	-	-	µg/kg	S ub con
Hexachlorobenzene	<50	< 50	-	-	-	-	-	-	µg/kg	Subcon
Isodrin	<50	< 50	-	-	-	-	-	-	µg/kg	S ub con
o,p-DDE	<50	< 50	-	-	-	-	-	-	µg/kg	S ub con
o,p-DDT	<50	< 50	-	-	-	-	-	-	µg/kg	S ub con
o,p-Methoxychlor	<50	< 50	-	-	-	-	-	-	µg/kg	S ub con
o,p-TDE (DDD)	<50	< 50	-	-	-	-	-	-	µg/kg	Subcon
p,p-DDT	70	< 50	-	-	-	-	-	-	µg/kg	Subcon
p,p-Methoxychlor	<50	< 50	-	-	-	-	-	-	µg/kg	Subcon
p,p-DDE	213	72	-	-	-	-	-	-	µg/kg	S ub con
p,p-TDE (DDD)	<50	< 50	-	-	-	-	-	-	µg/kg	Subcon
Pendimethalin	<50	< 50	-	-	-	-	-	-	µg/kg	Subcon
Permethrin I	<50	< 50	-	-	-	-	-	-	µg/kg	S ub con
Permethrin II	<50	< 50	-	-	-	-	-	-	µg/kg	Subcon
Quintozene; (PCNB)	<50	< 50	-	-	-	-	-	-	µg/kg	S ub con
Tecnazene	<50	< 50	-	-	-	-	-	-	µg/kg	Subcon

Envirolab Job Number: 13/03938

Client Project Name: NIAB 1

Client Project Ref: 25459

Lab Sample ID	13/03938/1	13/03938/2	13/03938/3	13/03938/4	13/03938/5	13/03938/6	13/03938/7	13/03938/8		
ClientSampleNo										
ClientSampleID	HP14	HP15	WS1	WS1	WS2	WS2	WS3	WS3		
Depth to Top	0.50	0.50	0.50	1.50	0.50	1.50	0.50	1.50		
Depth To Bottom										
Date Sampled	15-Aug-13	15-Aug-13	15-Aug-13	15-Aug-13	15-Aug-13	15-A ug-13	15-Aug-13	15-Aug-13		ţ
Sample Type	Soil - ES	n	- Po							
Sample Matrix Code			6BE	3	3BE	3	5	3	Units	Method
Telod rin	<50	< 50	-	-	-	-	-	-	µg∕kg	Subcon
trans-Ch lordane	<50	< 50	-	-	-	-	-	-	µg∕kg	Subcon
Triadimefon	<50	< 50	-	-	-	-	-	-	µg∕kg	Subcon
Triallate	<50	< 50	-	-	-	-	-	-	µg∕kg	Subcon
Trifluralin	<50	< 50	-	-	-	-	-	-	µg∕kg	Subcon

Envirolab Job Number: 13/03938

Client Project Name: NIAB 1

Client Project Ref: 25459

					Ollerit	Project Ref	. 20405			
Lab Sample ID	13/03938/1	13/03938/2	13/03938/3	13/03938/4	13/03938/5	13/03938/6	13/03938/7	13/03938/8		
Client Sample No										
Client Sample ID	HP14	H P15	WS1	WS1	WS2	WS2	WS3	WS3		
Depth to Top	0.50	0.50	0.50	1.50	0.50	1.50	0.50	1.50		
Depth To Bottom										
Date Sampled	15-Aug-13	15-Aug-13	15-Aug-13	15-Aug-13	15-Aug-13	15-A ug-13	15-Aug-13	15-Aug-13		τ
Sample Type	Soil - ES	Soil - ES	Soil - ES	ю	Method ret					
Sample Matrix Code			6BE	3	3BE	3	5	3	Units	Met
TPH CWG										
% Stones >10mm _A [#]	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	% w/w	A-T-044
Ali >C5-C6 _A [#]	-	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022 s
Ali >C6-C8 _A [#]	-	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022 s
Ali >C8-C10 _A [#]	-	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022 s
Ali >C10-C12 _A #	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T -023 s
Ali >C12-C16 _A [#]	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023 s
Ali >C16-C21 _A #	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T -023 s
Ali >C21-C35 _A [#]	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	0.6	mg/kg	A-T-023 s
Total Aliphatics _A	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	0.6	mg/kg	A-T-022 +23s
Aro >C5-C7 _A [#]	-	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022 s
Aro >C7-C8 _A [#]	-	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022 s
Aro >C8-C9 _A #	-	•	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T -022 s
Aro >C9-C10 _A #	-	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022 s
Aro >C10-C12 _A [#]	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T -023 s
Aro >C12-C16 _A [#]	-	-	2.3	<0.1	<0.1	<0.1	0.3	<0.1	mg/kg	A-T -023 s
Aro >C16-C21 _A #	-	-	44.0	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T -023 s
Aro >C21-C35 _A [#]	-	-	252	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023 s
Total Aromatics _A	-	-	298	<0.1	<0.1	<0.1	0.3	<0.1	mg/kg	A-T-022+23s
TPH (Ali & Aro) _A	-	-	298	<0.1	<0.1	<0.1	0.3	0.6	mg/kg	A-T-022+23s
BTEX - Benzene _A [#]	-	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022 s
BTEX - Toluene ⁴	-	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022 s
BTEX - Ethyl Benzene _A #	-	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022 s
BTEX - m & p Xylene [#]	-	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T -022 s
BTEX - o Xylene _A #	-	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022 s
MTBE _A #	-	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022 s
Mineral Oil (>C10-C35) _A	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	0.6	mg/kg	A-T-023 s

REPORT NOTES

Notes - Soil anal vsis

All results are reported as dry weight (<40°C).

For samples with Matrix Codes 1 - 6 natural stones >10mm are removed or excluded from the sample prior to analysis and reported results corrected to a whole sample basis. For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis.

Notes - General Subscript "A" indicates analysis performed on the sample as received. "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve, unless as bestos is found to be present in which case all analysis is performed on the sample as received.

All analysis is performed on the dried and crushed sample for samples with Matrix Code 7 and this supercedes any "A" subscripts.

Superscript "M" indicates method accredited to MCERTS.

For complex, multi-compound analysis, quality control results do not always fall within chart limits for every compound and we have criteria for reporting in these situations. If results are in italic font they are associated with such quality control failures and may be unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling.

<u>TPH analysis of water by method A-T-007</u> Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, Samples with Matrix Code 7 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our MCERTS accreditation.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

IS indicates Insufficient sample for analysis.

NDP indicates No Determination Possible. NAD indicates No Asbestos Detected. Superscript #indicates method accredited to ISO 17025. An alytical results reflect the quality of the sample at the time of analysis only. Opinions and interpretations expressed are outside the scope of our accreditation.

Please contact us if you need any further information.

RSK GAC FOR RESIDENTIAL LAND USE WITH PATHWAYS FOR PLANT UPTAKE

Generic assessment criteria for human health: residential scenario – private gardens

The human health generic assessment criteria (GAC) have been developed during a period of regulatory review and updating of the Contaminated Land Exposure Assessment (CLEA) project. Therefore, the Environment Agency (EA) is in the process of publishing updated reports relating to the CLEA project and the GAC presented in this document may change to reflect these updates. This issue was prepared following the publication of soil guideline value (SGV) reports and associated publications⁽¹⁾ for mercury, selenium, benzene, toluene, ethylbenzene and xylene in March 2009, arsenic and nickel in May 2009, cadmium and phenol in June 2009, dioxins, furans and dioxin-like polychlorinated biphenyls (PCBs) in September 2009. It was also produced following publication of GAC by LQM⁽⁶⁾. Where available, the published soil guideline values (SGV)⁽¹⁾ were used as the GAC. The GAC for lead is discussed separately below owing to it not being derived using the same approach as other compounds.

Lead GAC derivation

The Environment Agency SGV and Tox reports for lead were withdrawn in 2009. In addition, the provisional tolerable weekly intake data published in the Netherlands were withdrawn in 2010 owing to concerns that they were not suitably protective of human health. The withdrawn SGVs were based on a target blood lead concentration of 10µg/dl. In the absence of current guidelines many consultants continue to use the withdrawn SGV. However, as this is not considered sufficiently protective of human health, after attendance at the SOBRA summer workshop June 2011, RSK has revised its GAC and is currently undertaking a review of recent toxicological developments that will be used to refine this GAC further in the coming months. In the meantime, RSK has undertaken sensitivity analysis using the Society of Environmental Geochemistry and Health (SEGH) equation and the CLEA model to produce an interim GAC value. The results are summarised below:

- Using CLEA with the former provisional tolerable weekly intake (PTWI) (25 μ g/kg bw), assuming 100% lead is bioavailable, produces a GAC of 212 mg/kg
- Using CLEA with the former PTWI, assuming 50% lead is bioavailable, produces a GAC of 478 mg/kg
- Using the SEGH equation amended for a blood target concentration of 5.6 µg/dl (equal to the LOAEL for IQ defects) gives a negative GAC number unless other factors such as child background blood concentration or delta are amended. Without undertaking further research into these numbers, RSK can present sensitivity analysis to demonstrate the sensitivity of these input parameters but cannot justify one parameter over another. The results are:
 - GAC between 39mg/kg and 99mg/kg if the value of delta (the slope or response of blood Pb versus soil and dust Pb relationship) only is amended from 5 to 2µg/dl/1000µg/g. The value of 2 was chosen as it is within the reasonable range quoted in the former SGV report
 - GAC between 244mg/kg and 610mg/kg if the geometric mean of blood lead concentration in young children is reduced from 3.4µg/dI to 2µg/dI. This decrease has been simulated on the basis that blood concentrations are likely to decrease over time across the UK owing to a ban on lead in petrol, lead within paint used internally and water pipe replacement. This decrease is considered reasonable as the site is a new development

so lead-based paints will not be used internally and lead water supply pipelines will be absent.

Therefore, given the results above RSK proposes to use a GAC of **300mg/kg** for a residential end use. This value is broadly in the middle of the range of sensitivity modelling results quoted above when background mean blood lead concentrations in children are reduced to reflect a new development. The value is also broadly in the middle of the range of sensitivity modelling results for a range of bioavailability of lead between 50% and 100%. This number is considered reasonably protective of human health while being practical for use.

GAC derivation for other metals and organic compounds

Model selection

Soil assessment criteria (SAC) were calculated using CLEA v1.06 and the supporting UK guidance⁽¹⁻⁶⁾. Groundwater assessment criteria (GrAC) protective of human health via the inhalation pathway were derived using the RBCA 1.3b model. RSK has updated the inputs within RBCA to reflect the UK guidance⁽¹⁻⁵⁾. The SAC and GrAC collectively are termed GAC.

Conceptual model

In accordance with EA Science Report SC050221/SR3⁽³⁾, the residential with private garden scenario considers risks to a female child between the ages of 0 and 6 years old. In accordance with Box 3.1, SR3⁽³⁾, the pathways considered for production of the SAC in the residential with gardens scenario are:

- direct soil and dust ingestion;
- consumption of home-grown produce;
- consumption of soil attached to home-grown produce;
- dermal contact with soil and indoor dust, and
- inhalation of indoor and outdoor dust and vapours.

Figure 1 is a conceptual model illustrating these linkages.

The pathway considered in production of the GrAC is the volatilisation of compounds from groundwater and subsequent vapour inhalation by residents while indoors. Figure 2 illustrates this linkage. Although the outdoor air inhalation pathway is also valid, this contributes little to the overall risks owing to the dilution in outdoor air. Within RBCA, the solubility limit of the determinant restricts the extent of volatilisation, which in turn drives the indoor air inhalation pathway. While the same restriction is not built into the CLEA model, the CLEA model output cells are flagged red where the soil saturation limit has been exceeded.

An assumption used in the CLEA model is that of simple linear partitioning of a chemical in the soil between the sorbed, dissolved and vapour phase⁽⁴⁾. The upper boundaries of this partitioning are represented by the aqueous solubility and pure saturated vapour concentration of the chemical. The CLEA software uses a traffic light system to identify when individual and/or combined assessment criteria exceed the lower of either the aqueous-based or the vapour based

saturation limits. Where model output cells are flagged red the soil or vapour saturation limit has been exceeded and further consideration of the SAC to be used within the assessment is required. One approach that could be adopted is to use the 'modelled' solubility saturation limit or vapour saturation limit of the compound as the SAC. However, as stated within the CLEA handbook⁽⁴⁾ this is likely to not be practical in many cases because of the very low limits and, in any case, is highly conservative. Unless free-phase product is present, concentrations of the chemical are unlikely to be present at sufficient concentration to result in an exceedance of the health criteria value (HCV).

RSK has adopted an approach for petroleum hydrocarbons in accordance with LQM/CIEH⁽⁶⁾ whereby the concentration modelled for each petroleum hydrocarbon fraction has been tabulated as the SAC with the corresponding solubility or vapour saturation limit given in brackets. Therefore, when using the SAC to screen laboratory analysis the assessor should take note if a given SAC has a corresponding solubility or vapour saturation limit (in brackets), and subsequently incorporate this piece of information within the screening analytical discussion. If further assessment is required following this process then an additional approach can be utilised as detailed within Section 4.12 of the CLEA model handbook⁽⁴⁾, which explains how to calculate an effective assessment criterion manually.

Input selection

Chemical data was obtained from EA Report SC050021/SR7⁽⁵⁾ and the health criteria values (HCV) from the UK TOX⁽¹⁾ reports where available. For SAC for total petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAH), toxicological and chemical specific parameters were obtained from the LQWCIEH report⁽⁶⁾. Similarly, toxicological and specific chemical parameters for the volatile organic compound 1,2,4-trimethylbenzene were obtained from EIC/AGS/CL:AIRE⁽⁷⁾.

For total petroleum hydrocarbons (TPH), aromatic hydrocarbons C_5 - C_8 were not modelled since benzene and toluene are being modelled separately. The aromatic C_8 - C_9 hydrocarbon fraction comprises ethylbenzene, xylene and styrene. Since ethylbenzene and xylene are being modelled separately, the physical, chemical and toxicological data for this band has been taken from styrene.

Owing to the lack of UK-specific data, default information in the RBCA model was used to evaluate methyl tertiary butyl ether (MTBE). No published UK data was available for 1,3,5-trimethylbenzene, so information was obtained from the US EPA as in the RBCA model. RBCA uses toxicity data for the inhalation pathway in different units to the CLEA model and cannot consider separately the mean daily intake (MDI), occupancy periods or breathing rates. Therefore, the HCV in RBCA was amended to take account of:

- amendments to the MDI using Table 3.4 of SR2⁽²⁾
- a child weighing 13.3kg (average of 0–6 year old female in accordance with Table 4.6 of SR3⁽³⁾) and breathing 11.85m³ (average daily inhalation rate for a 0–6-year old female in accordance with Table 4.14 of SR3⁽³⁾

1. The 50% rule (for petroleum hydrocarbons, trimethylbenzenes and MTBE)⁽²⁾ where MDI data is not available but background exposure is considered important in the overall exposure.

Physical parameters

For the residential with private gardens scenario, the CLEA default building is a small two-storey terrace house with concrete ground-bearing slab. The house is assumed to have a 100m² private garden consisting of lawn, flowerbeds and incorporating a 20m² plot for growing fruit and vegetables consumed by the residents. SR3⁽³⁾ notes this residential building type to be the most conservative in terms of protection from vapour intrusion. The building parameters are outlined in Table 5.

The parameters for a sandy loam soil type were used in line with SR3⁽³⁾. This includes a value of 6% for the percentage of soil organic matter (SOM) within the soil. In RSK's experience, this is rather high for many sites. To avoid undertaking site-specific risk assessments for this parameter, RSK has produced an additional set of SAC for an SOM of 1% and 2.5%. For the GrAC, the depth to groundwater was taken as 2.5m based on RSK's experience of assessing the volatilisation pathway from groundwater.

GAC

The SAC were produced using the input parameters in Tables 1 to 5 and the GrAC using input parameters in Table 6. The final selected GAC are presented by pathway in Table 7 and the combined GAC in Table 8.

Figure 1: Conceptual model for CLEA residential scenario - private gardens

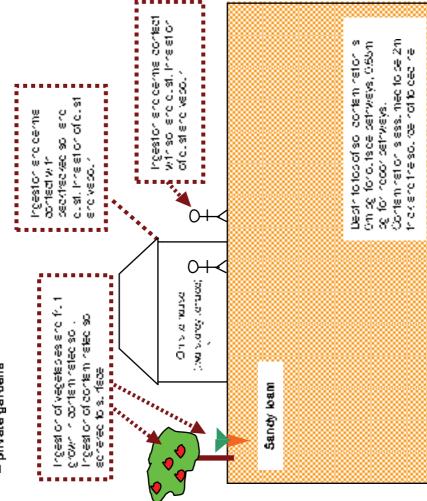


Table 1: Exposure assessment parameters for residential scenario private gardens – in puts for CLEA model

	Crosen and lise	Key generic assumption gren in Box 5.1, e cort SC050021/SR3 [%]	Key genercassurator gven h Box 3.1, epot SC050021/SR3. Two storey sha terraced notes chosen as t sithe nost conservative residents ou digitype interns of protection four vacor infusion (Section 3.4.6, record SC050021/SR3 j ^a	Most connon UK so type (Section 4.5.1, Fron Tape 5.1, recort SC050021/SR5/ ³	Range of age cæsee correcond ng bi∢ey genercae≋unoton hraftne	ortcarecendor ≋a young 15rnae on deged 25roto≋x. Fort Box 3.1, ecot 800.06002 1/3R5*	Representative of sandy carry so eccord ng to EA guidance note dated January 2000 entited Changes Wie Have Made to the CLEA Franework Documents ^M	To provide SAC for stee where	SOM ଏଡିଲି ଅଟେ ସିକା ପର୍ବେଦ୍ୟ ଅନ୍ RSK	Mode defaut
	Residentia with nomegrowin produce	Fenseon dage 1 to 6	earor becervet ervS	Sandy Loan	1	9	9	1	2.5	7
	land see	Recedor	Ð, þ rg	So type	Slari A.C (age case)	End AC (age case)	(%) MOS	_		Ha

		umptio by ag		e (g FV s	/ kg ⁻¹	BW	Dry weight conversion factor		Home-grown fraction (high end)		Preparation correction factor
Name	1	2	3	4	5	6	g DW g⁻¹ FW	-	-	g g⁻¹ DW	-
Green vegetables	7.12	6.85	6.85	6.85	3.74	3.74	0.096	0.05	0.33	1.00E-03	2.00E-01
Root vegetables	10.69	3.30	3.30	3.30	1.77	1.77	0.103	0.06	0.4	1.00E-03	1.00E+00
Tuber vegetables	16.03	5.46	5.46	5.46	3.38	3.38	0.21	0.02	0.13	1.00E-03	1.00E+00
Herbaceous fruit	1.83	3.96	3.96	3.96	1.85	1.85	0.058	0.06	0.4	1.00E-03	6.00E-01
Shrub fruit	2.23	0.54	0.54	0.54	0.16	0.16	0.166	0.09	0.6	1.00E-03	6.00E-01
Tree fruit	3.82	11.96	11.9 <u></u> 6	11.96	4.26	4.26	0.157	0.04	0.27	1.00E-03	6.00E-01
Justification	Table	Table 4.17, SR3 ⁽³⁾					Table 6.3, SR3 ⁽³⁾	Table 4.19, SF	R3 ⁽³⁾	Table 6.3,	SR3 ⁽³⁾

Table 2: Residential with private gardens -home-grown produce data for CLEA model

		Age class									
Parameter	Unit	1	2	3	4	5	6				
EF (soil and dust ingestion)	day yr ⁻¹	180	365	365	365	365	365				
EF (consumption of home-grown produce)	day yr ⁻¹	180	365	365	365	365	365				
EF (skin contact, indoor)	day yr ⁻¹	180	365	365	365	365	365				
EF (skin contact, outdoor)	day yr ⁻¹	180	365	365	365	365	365				
EF (inhalation of dust and vapour, indoor)	dayyr ⁻¹	365	365	365	365	365	365				
EF (inhalation of dust and vapour, outdoor)	day yr ⁻¹	365	365	365	365	365	365				
Justification		Table 3.1, SR3 ⁽³⁾									
Occupancy period (indoor)	hr day⁻¹	23	23	23	23	19	19				
Occupancy period (outdoor)	hr day ⁻¹	1	1	1	1	1	1				
Justification		Table 3.2,	SR3 ⁽³⁾								
Soil to skin ad heren ce factor (indoor)	mg cm ⁻² day ⁻¹	6.00E-02	6.00E-02	6.00E-02	6.00E-02	6.00E-02	6.00E-02				
Soil to skin ad heren ce factor (outdoor) mg cm ⁻² da y ⁻¹		1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00				
Justification	Justification		SR3 ⁽³⁾								
Soil and dust ingestion rate	g day ⁻¹	1.00E-01	1.00E-01	1.00E-01	1.00E-01	1.00E-01	1.00E-01				
Justification		Table 6.2,	SR3 ⁽³⁾								

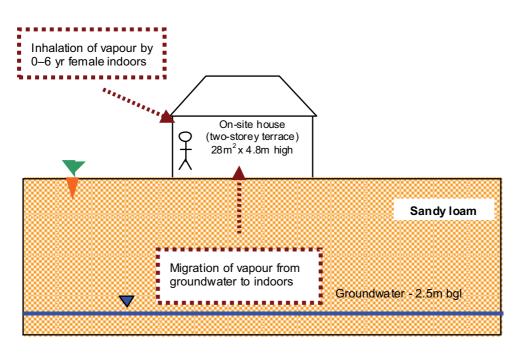
Table 3: Residential with private gardens - land use data for CLEA model

Of note, for **cadmium**, the exposure assessment for a residential land use is based on estimates representative of lifetime exposure AC1-18. This is because the TDI_{oral} and TDI_{inh} – are based on considerations of the kidney burden accumulated over 50 years. It is therefore reasonable to consider exposure not only in childhood but averaged over a longer time period. See the Environment Agency Science report: SC05002 / TOX 3 ⁽¹⁾ and Science Report SC050021/Cadmium SGV ⁽¹⁾ for more information.

De ser ser a fa se	Unit	Age (Class	luctification				
Parameter		1	2	3	4	5	6	Justification
Body weight	kg	5.6	9.8	12.7	15.1	16.9	19.7	$T_{able} = 4.0 OD(3)$
Body height	m	0.7	8.0	0.9	0.9	1	1.1	Table 4.6, SR3 ⁽³⁾
Inhalation rate	m ³ day ⁻¹	8.5	13.3	12.7	12.2	12.2	12.2	Table 4.14, SR3 ⁽³⁾
Max exposed skin fraction (indoor)	m ² m ⁻²	0.32	0.33	0.32	0.35	0.35	0.33	
Max exposed skin fraction (outdoor)	m ² m ⁻²	0.26	0.26	0.25	0.28	0.28	0.26	Table 4.8, SR3 ⁽³⁾

Table 4: Residential with private gardens – receptor data for CLEA model

See cadmium note as per Table 3 above.


Table 5: Residential with private gardens - soil and building inputs for CLEA model

Pa ra mete r	Unit	Value	Justification
Soil properties for sandy loam			
Porosity, total	cm ³ cm ⁻³	0.53	
Porosity, air filled	cm ³ cm ⁻³	0.20	
Porosity, water filled	cm ³ cm ⁻³	0.33	Default soil type is sandy loam, Section 4.3.1,
Residual soil water content	cm ³ cm ⁻³	0.12	$SR3^{(3)}$
Saturated hydraulic conductivity	cm s⁻¹	3.56E-03	Parameters for sandy loam from Table 4.4,
van Genuchten shape parameter (<i>m</i>)	-	3.20E-01	
Bulk density	g cm ⁻³	1.21	
Threshold value of wind speed at 10m	m s⁻¹	7.20	Default value taken from Section 9.2.2, SR3 ⁽³⁾
Empirical function (F _x) for dust model	-	1.22	Value taken from Section 9.2.2, SR3 $^{(3)}$
Ambient soil temperature	к	283	Annual average soil temperature representative of UK surface soils. Section 4.3.1, SR3 ⁽³⁾
Air dispersion model	_	_	
Mean annual wind speed (10m)	m s ⁻¹	5.00	Default value taken from Section 9.2.2, $SR3^{(3)}$
Air dispersion factor at height of 0.8m	or at height $g m^{-2} s^{-1}$ per kg m ⁻² 2400		Values for a 0.01 ha site, appropriate to a residential land use in Newcastle (most representative city for UK). (from Table 9.1,
Air dispersion factor at height of 1.6m	g m ⁻² s ⁻¹ per kg m ⁻ 3	0	SR3) ⁽³⁾ Assumed child of 6 is not tall enough to rea <i>c</i> h 1.6m
Fraction of site with hard or vegetative cover	m ² m ⁻²	0.75	Section 3.2.6, SR3 ⁽³⁾ based on residential land use

Parameter	Unit	Value	Justification
Building properties for small te	errace house	ewith ground-	-bearing floor slab
Building footprint	m ²	28	
Living space air exchange rate	hr ⁻¹	0.50	From Table 3.3 and 4.21, SR3 $^{(3)}$
Living space height (above ground)	m	4.8	
Living space height (below ground)	m	0.0	Assumed no basement
Pressure difference (soil to enclosed space)	Ра	3.1	
Foundation thickness	m	0.15	From Table 3.3, SR3 ⁽³⁾
Floor crack area	cm ²	423	
Dust loading factor	Jgm ⁻³	50	Default value for a residential site taken from Section 9.3, SR3 $^{(3)}$
Vapour model			
Default soil gas ingress rate	cm ³ s ⁻¹	25	Generic flow rate, Section 10.3, SR3 ⁽³⁾
Depth to top of source (be neath building)	cm	50	Section 3.2.6, SR3 ⁽³⁾ states source is 50cm below building or 65cm below ground surface
Depth to top of source (no building)	cm	0	Section 10.2, SR3 ⁽³⁾ assumes impact from 0m to 1m for outdoor inhalation pathway
Thickness of contaminant layer	cm	200	ModeI default for indoor air, Section 4.9, SR4 ⁽⁴⁾
Time average period for surface emissions	years	6	Time period of a 0 to 6 year old, Box 3.5, SR3 ⁽³⁾
User-defined effective air permeability	cm ²	3.05E-08	Calculated for sandy loam using equations in Appendix 1, SR3 $^{(3)}$

Figure 2: GrAC conceptual model for RBCA residential with private gardens scenario

Table 6: Residential with private gardens - RBCA in puts

Parameter	Unit	Value	Justification
Receptor			
Averaging time	Years	6	From Box 3.1, SR3 ⁽³⁾
Receptor weight	kg	13.3	Average of CLEA 0–6 year old female data, Table 4.6, ${\rm SR3}^{\rm (3)}$
Exposure duration	Years	6	From Box 3.1, report, SR3 ⁽³⁾
Exposure frequency	Days/yr	350	Weighted using occupancy period of 23 hours per day for 365 days of the year
Soil type – sandy loam			
Total porosity	-	0.53	
Volumetric water content	-	0.33	CLEA value for sandy loam. Parameters for sandy loam
Volumetric air content	-	0.20	from Table 4.4, SR3 ⁽³⁾
Dry bulk density	g cm ⁻³	1.21	
Vertical hydraulic conductivity	cm s ⁻¹	3.56E-3	CLEA value for saturated conductivity of sandy loam, Table 4.4, SR3 $^{\rm (3)}$
Vapour permeability	m ²	3.05E-12	Calculated for sandy loam using equations in Appendix 1, SR3 $^{\rm (3)}$
Capillary zone thickness	m	0.1	Professional judgement

Parameter	Unit	Value	Justification
Fraction organic carbon	%	(i) 0.0348	Representative of sandy loam according to EA guidance note dated January 2009 entitled 'Changes We Have Made to the CLEA Framework Documents' ⁽⁸⁾
		(ii) 0.0058	To provide SAC for sites where SOM < 6% as often observed by RSK
Building			
Building volume/area ratio	m	4.8	Table 3.3, SR3 ⁽³⁾
Foundation area	m ²	28	
Foundation perimeter	m	22	Calculated assuming building measures 7m x 4m to give 28m ² foundation area
Building air exchange rate	d ⁻¹	12	
Depth to bottom of foundation slab	m	0.15	Table 3.3, SR3 ⁽³⁾
Foundation thickness	m	0.15	
Foundation crack fraction	-	0.0151	Calculated from floor crack area of 423 $\rm cm^2$ and building footprint of 28m² in Table 4.21, $\rm SR3^{(3)}$
Volumetric water content of cracks	-	0.33	Assumed equal to underlying soil type in assumption that cracks become filled with soil over time. Para meters for
Volumetric air content of cracks	-	0.2	sandy loam from Table 4.4, SR3 ⁽³⁾
Indoor/outdoor differential pressure	Pa	3.1	From Table 3.3, SR3 ⁽³⁾

References

- Environment Agency (2009), 'Science Report SC050021/benzene SGV, toluene SGV, ethylbenzene SGV, xylene SGV, mercury SGV, selenium SGV, nickel SGV, arsenic SGV, cadmium SGV, phenol SGV, dioxins, furans and dioxin like PCBs SGVs', 'Supplementary information for the derivation of SGV for: benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel, arsenic, cadmium, phenol, dioxins, furans and dioxin- like PCBs', and 'Contaminants in soil: updated collation of toxicological data and intake values for humans: benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel, arsenic, cadmium, phenol, dioxins, furans and dioxin- like PCBs', March 2009, May 2009 and September 2009.
- 2. Environment Agency (2009), *Human health toxicological assessment of contaminants in soil. Science Report Final SC050021/SR*2, January (Bristol: Environment Agency).
- 3. Environment Agency (2009), Science Report SC050021/SR3. Updated technical background to the CLEA model (Bristol: Environment Agency).
- 4. Environment Agency (2009), Contaminated Land Exposure Assessment (CLEA) software, version 1.06.
- 5. Environment Agency (2008), *Science Report SC050021/SR7. Compilation of Data for Priority Organic Pollutants for Derivation of Soil Guideline Values* (Bristol: Environment Agency).
- 6. Chartered Institute for Environmental Health and Land Quality Management (2009), 'The LQM/CIEH Generic Assessment Criteria for Human Health', second edition.
- 7. CL:AIRE (2009), Soil Generic Assessment Criteria for Human Health Risk Assessment (London: CL:AIRE).
- 8. Changes made to the CLEA framework documents after the three-month evaluation period in 2008, released January 2009 by the Environment Agency.

Human Health Generic Assessment Criteria by Pathway for Reskiential Scenario - Private Gard	ria by Pai	thwayforResid	lential Scenario - I											
C ompound	Notes	GrAC (mg/l)	SAC Approprie Oral	ate to Pathway SON Inhalation	M 1% (mg/kg) Combined	Soil Saturation Limit (mg/kg)	SAC Appropriat Oral	te to Pathway SOM Inhalation	1 2 5% (mg/kg) Combined	SoilSaturafion Limit (mg/kg)	SAC Appropriate to Oral In	ate to Pathway SOM Inhalation	M 6% (mg/kg) Combined	SoilSaturafon Limit (mg/kg)
Metals														
Arsenic	(p)(c)		324E+01	8.50E+01		NR	3.24E+01	8.50E+01		NR	3.24E+01	8.50E+01		NR
Cadmium	(P)		1.12E+01	1.85E+02	1.10E+01	NR	1.12E+01	1.85E+02	1.10E +01	NR	1.12E+0	1.85E+02	1.10E+01	NR
Chromium (III) - oxide			1.84E+04	3.55E+03	2.98E+03	NR	1.84E+04	3.55E+03	2.98E+03	NR	1.84E+04	3.55E+03	2.98E+03	NR
Chromium (VI) - hexavalent			1.02E+01	4.25E+00	3.21E+00	NR	1.02E+01	4.25E+00	3.21E+00	NR	1.02E+01	4.25E+00	321E+00	NR
Conner	L		2.66E+03	1.04E+04	2.33E+03	NR	2.66E+03	1.04E+04	2.3 ≆ +03	NR	2.66E+03	1.04E+04	2.33E+03	NR
ead	(a)		3.00E+02			NR	3.00E+02			NR	3.00E+02			NR
Elemental Mercury (Ha ⁰)	(P)(q)	9.40E-03		1.70E01		4.31E+00		4.24E-01		1.07E+01		1.02E+00		2.58E+01
(+2	(q)		1.81E+02	2.55E+03	1.69E+02	NR	1.81E+02	2. 55E+03	1.69 ±02	NR	1.81E+02	2.55E+03	1.69E+02	NR
	(4)	2 00F+M	1.39E+01	1 59F+01	7 40F+00	7.33E+01	1 396+01	3.08F +01	9.55F+00	1.42E+02	1.39F+M	6.53E+01	1 14F+M	3 04F +02
Nickel	(h)(d)		5.31E+M	1.03E+01		NR	5 31E+00	1 2/E+02	<i>a:20</i> E-00	NR	5 31E+00	0.33E+01	10.1411	NR 02
alona Seleniim	(h)(c)		350E+02			X N	3.50F+02	NR		NR	3.50F+02			an
			3.75E+02	2 55F+07		AN AN	3.75F+03	2 45E+07		NR	3.75F+M	2 55E+07		an
Cyari de	6		2.66E+01	3.97E+00	3.68E+00	NR	2.66E+01	3. 97E+00	3.6Æ +00	NR	2.66E+01	3.97E+00	3.68E+00	NR
•														
rolatile Organic compounds	(4)	7 20E±M	1 12E.01	2 60E-M	7 005-00	1 225403	0.08E.0	A 00E01	1 67ED1	0 266403	A 805-04	1 04E±M	3 20E-04	4 74 E403
olitane Alitane	6	1 anE+m	1.120-01	6 26F+02	1 10E+02	8.69E+02	3 36F+M	4.33E41	9 70E ±00	2.20C+03	7 595400	3 146+03	6.11E+00	4.36E+03
Ethvibenzene	(q)	2 60E+02	1 06F+02	1 70F+02	6.52E+01	5.18E+02	2.51E+00	3 98F+02	1 54F +02	1.22E+03	5 70F+02	9.32E+02	354F+02	2.84E+03
Kvlene - m	1	840E+01	2.02E+02	5.56E+01	4.36E+01	6.25E+02	4.80E+02	1.31E +0.2	1.03E+02	1.47E+03	1.09E+03	3.07E+02	2.40E+02	346 ±+03
Xylene - o	(q)	1.00E+02	1.85E+02	5.98E+01	4.52E+01	4.78E+02	4 38E +02	1.40E+02	1. 06E+02	1.12E+03	9.96E+02	3.27E+02	2.46E+02	2.62E+03
(ylene - p		870E+01	1.91E+02	5.34E+01	4.17E+01	5.76E+02	4.51E+02	1.26E+02	9.82E+01	1.35E+03	1.02E+03	2 94E+02	228E+02	3.17E+03
Totalxylene		840E+01	2.02E+02	5.56E+01	4.36E+01	625E+02	4.80E+02	1.31E+02	1. 03E+02	1.47E+03	1.09E+03	3 07 E+02	2.40E+02	3.46E+03
ethvl t-Butvlether		220E+03	1.75E+00	1.84E+02	1.75E+00	1.66E+04	3.68E+00	2 40E +02	3.67E+00	2.16E+04	7.41E+00	3 70E +02	7.37E+00	3.34E+04
Trichloroethene		1.80E+00	2.83E+00	1.10E-01	1.06E-01	1.54E+03	6.25E+00	2.30E-01	2.22E-01	3.22E+03	1.40E+01	5.11E-01	4.93E-01	7.14E+03
eirachloroethene	╏	360E+00	1.06E+01	1.03E+00	9.36E-M	424E+02	2.44E+01	2.30E +00	2.10E+00	9.51E+02	5.5 E +01	5 28E +00	4.82E+00	2.18E+03
1.1.1 - Trich aroethane	ţ	260E+01	320E+02	6.33E+00	6.21E+00	1.43E+03	6.97E+02	1.29 +01	1.27E+01	2.92E+03	1.5 또 +03	2 84E +01	2.79E+01	6.39E+03
1.1.2 Tetrachloroethane	ţ	1.40E+01	5.19E+00	1.08E+00	8.93E-0	2.60E+03	1.22E+01	2.50E +00	2.08E+00	6.02E+03	2.7 Æ +01	5 83E +00	4.82E+00	1.40E+04
.12.2-16frachorœthane	t	1400-101	2./UE+00	2./6E+00	1.3/E+00	2.6/E+U3	5.85E+00	5 61± +00	2.8/E+UU	5.46E+U3	1.30E+01	1. 24E +01 0.00F 00	6.64E+00	1.20E+04
arbon letrachoride 2 DioHormitheno	t	5.50E-02	001100 c	1.81E-UZ 6.46E-m	1./9E-UZ 6 24E 03	2.41E±03	2.41E+00 6.62E M	3.8/E-UZ 0.22E.02	3,93E-02 7.00E.02	3.32E+U3 4.04E+03	5.44E+UU 4.06E_04	8.99E-02 4 R/E 02	8.92E-UZ 1 20E 0.0	0.45E±03
invl C Horida	t	1.90E-0	3.69E-03	5.43E-04	4 73F-04	1.36F+0.3	6.64E-03	7.02F-04	6.35F-04	1 76F+03	1.045-01	1.00E-02 1.07E-03	9.86E-04	2.69E+03
.2.4-Trimethylbenzene	L	7.50E-02		3,51E01		5.57E+02		8.55E-01		1.36E+03		2.10E+00		3.25E+03
,3,5-Titmethylbenzene		4.70E-02	1.45E+01	4.60E-01	4.56E-01	9.47E+01	3.47E+01	1.10E +00	1.09E+00	2.26E+02	7.94E+01	2 59E +00	2.56E+00	5.33E+02
Settir - Volatile Organic Compounds A conamitione	L	3.20F+m	2 18E+02	3 46F+03	2 06E+02	5 70E +01	5 08F+02	8 54F 403	4 79F+02	1 416+02	1 005+03	2 0.1 ±04	1 ME+03	3 36F+02
cenaphthylene	L	420E+00	1.78E+02	3.27E+03	1.68E+02	8.61E+01	4.17E+02	8 03E +03	3.97E+02	2.12E+02	8.90E+02	1.91E +04	8.51E+02	5.06E+02
Anthracene		2.10E-02	2.31E+03	1.08E+05	2.26E+03	1.17E+00	5.03E+03	2 65 +05	4.93E+03	2.91E+00	9.3 3 €+03	6 15E +05	9. 19E+03	6.96E+00
enzo(a)anthracene		3.80E-03	7.00E+00	5.55E+00	3.10E+00	1.71E+00	8.98E+00	9.83 +00	4.69E+00	4.28E+00	1.01E+01	1.41E+01	5.88E+00	1.03E+01
enzo(b)fluoranthere		2.00E-03	8.06E+00	1.79E+01	5.56E+00	1.22E+00	9.78E+00	1.9	6.53E+00	3.04E+00	1.0. 在+01	2 05 ±01	7.02E+00	7.29E+00
enzo(gh,iþerylene		2.60E-04	6.68E+01	1.27E+02	4.38E+01	1.54E-02	7.04E+01	1.3	4.59E+01	3.85E-02	7.19 + 01	1. 34E +02	4.68E+01	923E-02
enzo(k)fluoranthene		8.00E-04	125E+01	2.66E+01	8.51E+00	6.87E-01	1.44E+01	2 83 +01	9.56E+00	1.72E+00	1.5 3 €+01	2 91E +01	1.00E+01	4.12E+00
hrvsene		2.00E-03	8.76E+00	1.95E+01	6.00E+00	4.40E-01	1.20E+01	24年+01	8.04E+00	1.10E+00	1.41E+01	2.7无+01	9.27 E+00	2.64E+00
Dibenzo(a.h)arthraœne		6.00E-04	1.19E+00	2.13E+00	7.62E-01	3.98E-03	1.33E+00	24 年 + 00	8.5 Æ -01	9.82E-03	1.3 Œ +00	25任+00	9.03E-01	2.36E-02
luoianthene	ţ	2.30E-M	2.59E+02	2.69E+04	2.57E+02	1.89E +01	4.67E+02	6.2 年 +0.4	4.63E+02	4.73E+01	6.7 11 +02	1.28E +05	6.74E+02	1.13E+02
	t	1.90E+00	1./0E+02	4.35E+U3	1.63E+02	3.095 +01	3.91E+02	1.0/E +04	3.77E+02	7.65E+U1	8.00±+02	2 54E +04	1./6E+U2	1.83E+U2
ndero (1, 2 3-ca)pyrene	t	2.0054	4.58E+W	1.04E+01	3.18E+00	0.13E-UZ	0./4E+UU	1. 1/E ±01	3.85E+UU	10-32-01	0.3/E+00	1.2.4 ±01	4. 19E+00	3.0005-01
Viene	t	1.30E-M	5.69E+02	6.18E+04	5.63E+02	2 20F+00	1.05F +03	1 44F+05	1.04E+03	5496+00	1.56F+03	2.97E+0.5	3.00-:02 1.56F+03	1.32F+01
Benzo (a) pvrene		3.80E-03	121E+00	2.62E+00	8.26E-01	9.11E-01	1.42E+00	2.81E+00	9.43E-01	2.28E+00	1.5汇 +00	2.90E+00	9.98E-01	5.46E+00
Naphthalene		1.90E+ <mark>0</mark> 1	2.68E+01	1.64E+00	1.54E+00	7.64E+01	6.36E+01	3. 93E+00	3.70E +00	1.83E+02	1.4 3 E +02	9.27E+00	8.71E+00	4 32E+02
Pherol	(q)		4.51E+02	3.11E+02	1.84E+02	4.16E+04	9.38E+02	4.20E+02	2.90E +02	8.15E+04	2.04E +03	5.21E+02	4.1 ⊞ +02	1.74E+05

IV ATE GARDEN:	
Ē	
ΛΑΝ Η ΕΑ	
IT ER IA FO	
SE SS MEN	
NER	

Table 7

Unit (modility) Ora Inhibition Combined Combined Combined Combined Inhibition Combined 146:10:1 121:10:10 121:10:10 121:10:10 121:10:10 111:10:10		No	GrAC	SAC Appropri	SAC Appropriate to Pathway SOM 1% (mg/kg)	M 1% (mg/kg)	Soil Saturation	SAC Approprik	SAC Appropriate to Pathway SOM 2 5% (mg/kg)	M 2.5% (mg/kg)	Soils sturation	SAC Appropr	SAC Appropriate to Pathway SOM 6% (mg/kg)	OM 6% (mg/kg)	Soi IS #uraf on
Z 966-00 J 066-00 6.466-00 6.466-00 6.466-00 6.466-00 6.466-00 7.166-00 1.166-00	punoduc	te s	(mg/l)	Oral	Inhalation	C ombi ned	Limit (mg/kg)	Oral	Inhalation	Combined	Limit (mg/kg)	Oral	Inhalation	C ombi ned	Lim it (mg/kg)
Selenci Soletion	tal Petroleum Hvdrocarbons														
1 7.20E-001 1.44E-0C 2.71E-041 1.04E-0C 2.71E-042 1.02E-001 2.72E-012 1.04E-02 2.77E-012 1.04E-02 2.77E-012 1.04E-02 2.72E-012 1.02E-012 2.72E-012 1.72E-012 1.72E-012 1.72E-012 2.72E-012 2.72E-012 </td <td>phatic hydrocarbons EC₅-EC₆</td> <td></td> <td>1.00E+01</td> <td>4.79E+03</td> <td>2.98E+01</td> <td>2.97E+01</td> <td>3.04E+02</td> <td>1.08E+04</td> <td>5.4 元 +0 1</td> <td>5.46E+01</td> <td>5.58E+02</td> <td>2.35E+04</td> <td>1.13 +02</td> <td>1.13E+02</td> <td>1.15E+03</td>	phatic hydrocarbons EC ₅ -EC ₆		1.00E+01	4.79E+03	2.98E+01	2.97E+01	3.04E+02	1.08E+04	5.4 元 +0 1	5.46E+01	5.58E+02	2.35E+04	1.13 +02	1.13E+02	1.15E+03
1 1 1 1 0	phatic hydrocarbons >EC ₆ -EC ₈		540E+00	1.43E+04	7.27E+01	7.26E+01	1.44E+02	3.21E+04	1.6	1.62E+02	3.22E+02	6.36E+04	3.7. ±0.2	3.71E+02	7.36E+02
Image: Section of the sectin of the section of the section	phatic hydrocarbons >EC ₈ -EC ₁₀		2.30E-01	1.46E+03	1.89E+01	1.88E+01	7.77E +01	2.44E+03	4.60E +01	4.58E+01	1.90E+02	3.30E+03	1.09E +02	1.08E+02	4.51E+02
7.4EF-02 2.32F-01 (16F-03) (16F-03) (14F-03)	phatic hydrocarbons >EC10-EC12		3.40E-02	3.52E+03	9.3 4 E+01	9.28E+01	4.75E+01	4.01E+03	2 3 ± 102	2.2 <mark>9</mark> E+02	1.18E+02	4.24E+03	5 57E +02	5.37E+02	2.83E+02
···· 0.46E-00 3.8E-04 ··· ··· 1.212E-01 7.8E-04 ··· ··· 1 1.58E-02 0.48E-00 0.84E-01 0.84E-02	ohatic hydrocarbons >EC ₁₂ -EC ₁₆		7.60E-04	4.37E+03	7.82E+02	7.44E+02	2.37E+01	4.40E+03	1.95 +03	1.69E+03	5.91E+01	4.41E+03	4.68E +03	3.03E+03	1.42E+00
0 0.046-00 0.	ohatic hydrocarbons >EC ₁₆ -EC ₃₅	(c)		4.51E+04			8.48E+00	6.38E+04			2.12E+01	7.61E+04			5.09E+01
135E-02 326E-02 326E-02 155E-03 355E-03 355E-03 <t< td=""><td>phatic hydrocarbons >EC₃₅-EC₄₄</td><td>(c)</td><td></td><td>4.51E+04</td><td>,</td><td>,</td><td>8.48E+00</td><td>6.38E+04</td><td></td><td>,</td><td>2.12E+0</td><td>7.61E+04</td><td>,</td><td>,</td><td>5.09E+01</td></t<>	phatic hydrocarbons >EC ₃₅ -EC ₄₄	(c)		4.51E+04	,	,	8.48E+00	6.38E+04		,	2.12E+0	7.61E+04	,	,	5.09E+01
2 800-01 6 130-02 1 316-02	matic hydrocar bons $> EC_g (styrene)$	-	7.40E+00	1.66E+02	2.65E+02	1.33E+02	6.20E+02	3.92E+02	6.4元+02	3.16E+02	1.52E+03	8.50E+02	1.54E +03	7.02E+02	3.61E+03
6 6 6 9 6 9 6 0 3 6 0 3 6 0 3 6 0 3	imatic hydrocar bons >ECgrEC ₁₀		7.40E+00	5.55E+01	3.33E+01	2.69E+01	6.13E+02	1.31E+02	8 16 +01	6.54E+01	1.50E+03	2.84E+02	1. 94E +02	1.51E+02	3.58E+02
1 08E+02 0 18E+02 0 318E+02 0 318E+02 0 19E+02 0 19E+02 0 18E+02 0 19E+02	imatic hydrocarbons >EC ₁₀ EC ₁₂		250E+01	7.97E+01	1.82E+02	6.91E+01	3.64E+02	1.86E+02	4.48 +02	1.62E+02	8.99E+02	3.87E+02	1.07至+03	3.46E+02	2.15E+03
· 537E+01 4.8E+02 · 1.31E+00 1.34E+02 · 1.34E+02 · · 3.48E+02 · · 4.88E+02 · · 1.34E+02 ·	imatic hydrocarbons >EC₁₂ EC₁₀			1.40E+02	2.00E+03	1.38E+02	1.69E+02	3.13E+02	4, 9Œ +03	3.08E+02	4.19E+02	6.01E+02	1.18E +04	5.93E+02	1.00E+03
- 4.85±-00 1.11±-03 - 1.21±-01 1.22±-03 - - way, or an dasance of bxicolog caldata. 4.83±+00 1.11±+03 -	matic hydrocarbons >EC₁⊕ EC₂₁	(c)	,	2.47E+02	,	,	5.37E+01	4.82E+02			1.34E+02	7.60 +02	,	,	3.21E+02
••••••••••••••••••••••••••••••••••••	matic hydrocarbons >EC ₂ rEC ₃₅	(c)		8.88E+02			4.83E+00	1.11E+03			1.21E+01	1.2			2.90E+01
Example that and a dialed only to working the working the second methods in the element optimary or an disence of biolog aldale. The component art in order a dialed only to working the statement method. The component art is a seasment of the intervention. O.E.A model and net of condition and therefore no pathway, or an disence of biolog aldale. The component art is a seasment of the intervention. O.E.A model and net of condition and net of condition of the intervention. O.E.A model and net of condition and networks. O.E.A model and net is a seasment of the intervention. O.E.A model and put is court coded depending upon whether the sol startation limit and may significantly of test has the network. The Solution of the intervention of the intervention of the intervention. O.E.A model and put is court coded depending upon whether the sol startation limit and may significantly since he contribution of the intervention of the intervention. O.E.A model and put is court coded depending upon whether the sol startation limit and may significantly since he contribution of the intervention of the intervention. O.E.A model and put is court coded depending upon whether the sol startation limit and may since he contribution of the intervention of the intervention of the intervention of the intervention of the intervention. O.E.A model and put is count of the other and code on the other and cudion vapor pathway to ted exposure is contributed of the other and cudion vapor pathway to ted exposure is startation. O.E.A model and put is a startation limit and may since a fact of the intervention of the intervention of the intervention of the intervention of the intervention of the intervention of the intervention of the intervention of the intervention of the intervention of the intervention of the intervention of the intervention of the intervention of the intervention of the intervention of the intervention of the intervention of	matic hydrocar bons >EC ₃₅ EC ₄₄	(c)		8.88E+02			4.83E+00	1.11E+03			1.21E+0	1.2涯 1 03			2.90E+01
LEA model auput is cobuc caded depending upon whether the soil saturation limit hasbeen acceeded. Image: Interpret ty the solution of the indoor and outdoor vapour pathway to bell expaare is a state model cadoutsed SAC exceeds soil saturation limit and maysign/ficantly since the corribution of the indoor and outdoor vapour pathway to bell expaare is a state model cadoutsed SAC with the saturation limit and maysign/ficantly since the corribution of the indoor and outdoor vapour pathway to bell expaare is a state model cadoutsed SAC with the saturation limit and maysign/ficantly since the corribution of the indoor and outdoor vapour pathway to tad exposure is <10%. This shadng hasals to ben used for the RSCA output/there the flooredical solubility limit that bene acceded. To the indoor and outdoor vapour pathway to tad exposure is <10%. This shadng hasals to ben used for the SAC acceds soil equation limit. Solutid at SAC exceeds and exceed in production of the outdoor vapour pathway to tad exposure is <10%. Cadoutad SAC exceeds and exceed in production of the outdoor vapour pathway to tad exposure is <10%. Solutid to SAC does not exceed in production of the outdoor vapour pathway to tad exposure is <10%. Solutid to SAC does not exceed in production of the outdoor vapour pathway to tad exposure is <10%. Solutid to saturation interval canonic interval cada outdoor vapour pathway to tad exposure is <10%. Solutid to saturation into saturation into saturation into the indoor and outdoor vapour pathway to tad exposure is <10%. Solutid to saturation into saturation into saturation into the indoor and outdoor vapour pathway to tad exposure is <10%. Solutid to saturatical solutifity into within REA has been exceeded in production of the indoor and outdoor vapour pathway outda exceeded in production of the outdoor saturation into exceeded in production of the indoor and outdoor vapour pathway of 10.1.1. SR3 Solutid to satura	eric æsessmert oriteria notoal aulak he compound is not volatile and there quivalent carbon. GrAC - groundwate	ed owing to afore a soil s sr assessme	low volatility of æturation limit r ∍ntcriteria. SA	substance and tha not calculated withi C- soil assesmen	refore no pathway,o n CLEA it criteria	or an absence of t	oxicologi cal data.								
Calculated SAC exceeds solisaturation limit and may significantly effect the interpretation of any exceedancess into a contribution of the indoor and outdoor vapour pathway to bell expeare is 210%. This shading has also been used for the RECA output where the theoreticals dublity limit thas been exceeded. The SAC has been ast as the model calculated SAC with the saturation limit by the saturation limit by the saturation limit by the saturation limit by the saturation limit by the saturation limit by the saturation limit by the saturation limit by the saturation limit by the saturation limit by the saturation limit by the saturation limit. Calculated SAC exceeds solisaturation limit by the saturation limit by the saturation limit within RECA has been exceeded in production of the GAC, these heat even that the indoor vapour pathway b total exposure is <10%. Calculated SAC exceeds an exceeded in production of the GAC, these calls have also been hat ched red. The SAC has been exceeded in production of the GAC, these calls have also been hat ched red. The SAC has been exceeded in production of the GAC, these calls have also been hat ched red. The SAC has been exceeded in production of the GAC, these calls have also been hat ched red. The SAC has been exceeded in production of the GAC, these calls have also been hat ched red. The SAC has been exceeded in production of the GAC, there are also have produced using an alternation fractor in that also provers and solid science. Methods and specific arrantic solubility limit with the vapour site of the GAC. The second and state of the GAC, there are also a the calculated SAC with the saturation in the favorena second of the GAC. The output of the GAC, there are also a second of the GAC, the second second of the GAC. The second second of the GAC, there are also a second of the GAC. The neutron second and the calculated SAC with the vapour second and the calculated second of the GAC. The output of the calculated SAC with the vapour second and the calculated SAC with the vap	.EA model autput is colour caded de	oendng up	an whether the	soil saturation limit	t hasbeen exœeded										
onsistercy where the theoretical solubility limit within RBCA has been exceeded in production of the GAC, these cell shave also been hatched red. SAC for organic comparands are dependentupon soil organic mater (SOM) (%) content. To obtain SOM from total organic compounds are dependentupon soil organic mater (SOM) (%) content. To obtain SOM from total organic comparands are dependentupon soil organic mater (SOM) (%) content. To obtain SOM from total organic mater (SOM) is 0.58% TOC. DL Rowell Sci Science Methods and Applications, Longmans, 1994, for TPH fractions, pdy cyclic aromatic hydrocarbons, MTBE, BTEX and trineitlyblenzere compounds were produced using an attenuation fador for the indoor air inhalt in pathway of 10 to reduce conservatis massociated with the vapur that dim pathway, section 10.1.1. SR3 assibility analysis undertaken on SEGH equation and CLEA model, considered reasonable in absence of UK specific data to the fer form the Environment Agency SSV reports published 2008. C for some of UK specific data C fer form the Environment Agency SSV reports published 2008. C for sense is only based on oral contribution (terher than combined) owing to the metrivesmall for a remotion and contribution in accordance with the SSV report. The same approach has been adopted for a remotion of the tare is only based on oral contribution (terher than combined) owing to the metrivesmall runtification accordance with the SSV report. The same approach has been adopted for a remotion of the initiation on accordance with the SSV report. The same approach has been adopted for a remotion of the time initiation for the initiation for the initiation for initiation in accordance with the SSV report. The same approach has been adopted for a remotion of the contribution (terher than combined) owing to the metrivesmall aromatic runtification in accordance with the SSV report. The same approach has been adopted for a remotion of the contribution (terher than combined) owing to the metrivesmall aromatic runtification in accordance			lculated SAC e >10%. This lculated SAC e: 'culated SAC d	xcæds soil saturat shadng hasalso t xcæds soil saturat æs nd exceed the	ion limit and maysig æen used for the RE ion limit but will mot ∉ ∶soil s∉uration limit.	jnificantly effætth 3CA outputwhere sflect the SSV sign	ie interpretation of any the theoretical sclubil rificantly since the co	y exceedancessinc lility limi thas been e xhribution of the ind	e the contribution of xeeeded. The SAC oor and outdoor vap	f the indoor and outd has been set as the your pathway to total	oor vapour pathw <i>ay</i> model calculated S/ exposure i s<10%.	to total exposure AC with the satura:	is tion limi ts shown in	bradets.	
SAC for organic compaunds are dependentupon sollorganic mater (SOM) (%) content. To obtain SOM from total loganic cabon (TCC) (%) divide by 0.80. 1% SOM is 0.58% TOC. DL Rowell Sol Science Methods and Applications, Lagmans, 1994, Stor TFH fractions, polyacide armaticity droathoins, MTBE, BTEX and firmethythenzere compunds were produced using an attenuation fador for the indoor air inhal atten pathway, of 10 to reduce conservatis massociabed with the vapur inhal attion pathway, sedicar 10.1.1, SR3 sensitivity analysis underated on art CLEA model, considered reasonable in absence of UK specific data SAC taken from the Environment Agency SOV reports published 2008. AC for selerium, aliphetic and anomatic hydrocerbons >EC 66 doesnot include inhaled in pathway wing b absence of toxid y data. SAC for assencies on onal contribution (ather than combined) owing to the relative small	consistency where the theoretical solub	ility limit wit	hin RBCA has	bæn excæded in ⊧	production of the Gr	AC, these cell sha	₁ve also been hatche	.paip							
ensitivity analysis undertaken on SEGH equation and CLEA model, considered reasonable in absence of UK specific data 2AC taken from the Environment Agency SGV reports published 2006. 3AC En selentum, aliphatic and anomatic hydrocarbons >EC 16 does not include inhalation path vayowing biabesence of toxicity data. SAC En asenic is ontybased on onal contribution (rather than combined) owing to the relative small	SAC for organic compoundsare deper of or TPH fractions, pdy cyclic aromatic inhal ation pathway, section 10.1.1, SR3	ndantupon 'ny drocarbo	soil organic ma ns, MTBE, BTE	tter (SOM) %) ∞n Xand trimethylber	itent. To obtain SOM rzere compounds w	<i>A</i> from total organ ere produced usin	ic carbon (TOC) (%) c ig an attenuation fact	divide by 0.38. 1% or for the indocr air	SOM is 0.58% TOC inhal at ion pathway (DL Rowell Sal Sci of 10 to reduce cons.	ence: Methods and / ervatism associated	Applications, Lang with the vapour	imars, 1994.		
	sensitivity analysis undertaken on SEGI SAC taken from the Environment Agenc SAC for selenium, aliphatic and aromatic	Hequation SGVrept hydrocarb	and CLEA mod orts published 2 ons >EC 16 doe 20V monort The	el, considered reas :009. ssnot include inhal	sonable in abserce (lation pat hwayowing	ofUK specific dat jto absence of tov	a iid by data. SAC for a	arsenic is orl ybased	d on oral cortributior	า (rather than combir	hed) owing to the rek	ative small			

GENERIC ASSESSMENT CRITERIA FOR HUMAN HEALTH - RESIDENTIAL WITH PRIVATE GARDENS

Table 8 Human Health Generic Assessment Criteria for Residential Scenario - Private Gardens

letals	GrAC for Groundwater (mg/l)	SAC for Soil SOM 1% (mg/kg)	SAC for Soil SOM 2.5% (mg/kg)	SAC for Soil SOM (mg/kg)
rsenic	-	32	32	32
admium	-	10	10	10
hormium (III) - oxide	-	3.000	3.000	3.000
hromium (VI) - hexavalen t opper	-	4.3 2,300	4.3 2,300	4.3 2,300
ead	-	300	300	300
lemental Mercury (Hg")	0.009	0.17	0.42	1.0
noranic Mercury (Hg2+)	-	170	170	170
/lethyl Mercury (Hg ⁴⁺)	20	7.4	9.6	11
lickel	-	130	130	130
elenium	-	350	350	350
inc	-	3,800	3,800	3,800
Syanide	-	3.7	3.7	3.7
olatile Organic Compounds				
enzene	7	0.079	0.157	0.33
oluene	1,900	120	270	610
thylbenzene	260	65	154	350
ylene - m	100 87	44 45	103 106	240 250
ylene - o ylene - p	84	43	98	230
otal xylen e	84	44	103	240
lethyl tertiary butyl ether (MTBE)	2,200	1.8	3.7	7.4
richloroethene	1.8	0.11	0.2	0.49
	3.6	0.94	2.1	4.8
,1,1-Trichloroethane ,1,1,2Tetrachloroethane	26 14	6.2 0.89	12.7 2.1	28 4.8
,1,2,2-Tetrachloroethane	14	1.4	2.87	6.3
Carbon Tetrachloride	0.055	0.018	0.039	0.089
,2-Dichloroethane	0.30	0.0053	0.0080	0.014
/inyl Chloride	0.019	0.00047	0.0006	0.001
.2.4-Trimethylbenzen e	0.075	0.35	0.85	2.1
.3.5-Trimethylbenzen e	0.047	0.46	1.1	2.6
em i-Volatile Organic Compounds				
cena phthene	3.2	210	480	1,000
œna phthylene	4.2	170	400	850
nthracene	0.021	2,300	4,900	9,200
senzo (a)anthracene senzo (b)fluoranthene	0.0038 0.0020	3.1 5.6	4.7 6.5	5.9 7.0
enzo (g. h. i) pervlen e	0.0020	44	46	47
enzo (k) fluoranthene	0.00080	8.5	9.6	10
hrysene	0.0020	6.0	8.0	9.3
Dibenzo(a,h)anthracene	0.00060	0.76	0.86	0.90
luoranthene	0.23	260	460	670
luorene ndeno(1,2,3-cd)pyrene	1.9 0.0002	160 3.2	380 3.8	780
Phenanthrene	0.53	92	200	380
vrene	0.13	560	1.000	1.600
	0.0038	0.83	0.94	1.0
enzo (a) pvrene	19	1.5	3.7	8.7
enzo (a) pvrene laphthalene	10	100		
enzo(a)pvrene aphthalene	-	180	290	420
t <u>enzo (a)ovrene</u> laphthalene ?henol	-	180		
enzo (a)pyrene laphthalene 'henol o tal Petro leu m Hydro carbo ns			290	420
ienzo (a)ovrene Iaphthalene Ihenol o tal Petro leu m Hydro carbo ns Lliphatic hydrocarbons E C ₅ -EC ₆	- 10	30	290 55	420 110
enzo (a)ovrene aphthalene henol o tal Petro leu m Hydro carbo ns liphatic hydrocarbons E C ₅ -EC ₆ liphatic hydrocarbons >E C ₆ -EC ₈	- 10 5.4	30 73	290 55 160	420 110 370
enzo (a)ovrene aphthalene henol o tal Petro leu m Hydro carbo ns liphatic hydrocarbons E C ₅ -EC ₆ liphatic hydrocarbons >E C ₆ -EC ₈ liphatic hydrocarbons >E C ₆ -EC ₈	10 5.4 0.23	30 73 19	290 55 160 46	420 110 370 110
enzo (a)ovrene aphthalene henol iotal Petro leu m Hydro carbo ns liphatic hydrocarbons E C ₅ -EC ₆ liphatic hydrocarbons >E C ₆ -EC ₈ liphatic hydrocarbons >E C ₈ -EC ₁₀	- 10 5.4	30 73	290 55 160	420 110 370
enzo (a)ovrene aphthalene henol liphatic hydrocarbons EC ₅ -EC 6 liphatic hydrocarbons >EC ₅ -EC 8 liphatic hydrocarbons >EC ₆ -EC 10 liphatic hydrocarbons >EC ₆ -EC 10 liphatic hydrocarbons >EC ₆ -EC 12	10 5.4 0.23	30 73 19	290 55 160 46	420 110 370 110
enzo (a)ovrene aphthalene henol otal Petro leu m Hydro carbo ns liphatic hydrocarbons EC_{5} - EC_{6} liphatic hydrocarbons > EC_{6} - EC_{8} liphatic hydrocarbons > EC_{6} - EC_{10} liphatic hydrocarbons > EC_{10} - EC_{12} liphatic hydrocarbons > EC_{12} - EC_{16}	10 5.4 0.23 0.034	30 73 19 93 (48)	290 55 160 46 230 (118)	420 110 370 110 540 (283)
$enz_{0} [aptralene \\ aphthalene \\ henol \\ \hline \\ brand \\ liphatic hydrocarbons EC_{5}-EC_{6} \\ liphatic hydrocarbons > EC_{6}-EC_{8} \\ liphatic hydrocarbons > EC_{6}-EC_{10} \\ liphatic hydrocarbons > EC_{10}-EC_{12} \\ liphatic hydrocarbons > EC_{12}-EC_{12} \\ liphatic hydrocarbons > EC_{12}-EC_{16} \\ liphatic hydrocarbons > EC_{16}-EC_{16} \\ liphatic hydrocarbons > EC_{16}-EC_{25} \\ liphatic hydrocarbons > EC_{16}-EC_{16} \\ liphatic hydrocarbons >$	10 5.4 0.23 0.034 0.00076	30 73 19 93 (48) 744 (24) 45,100 (8.48)	290 55 160 46 230 (118) 1,700 (59) 64,000 (21)	420 110 370 110 540 (283) 3,000 (142) 76,000
$\label{eq:aphthalene} \end{tabular} t$	10 5.4 0.23 0.034 0.00076	30 73 19 93 (48) 744 (24) 45,100 (8.48) 45,100 (8.48)	290 55 160 46 230 (118) 1,700 (59) 64,000 (21) 64,000 (21)	420 110 370 110 540 (283) 3,000 (142) 76,000 76,000
$\label{eq:aphthalene} \end{tabular} \begin{tabular}{lllllllllllllllllllllllllllllllllll$	10 5.4 0.23 0.034 0.00076	30 73 19 93 (48) 744 (24) 45,100 (8.48) 45,100 (8.48) 130	290 55 160 46 230 (118) 1,700 (59) 64,000 (21) 64,000 (21) 316	420 110 370 110 540 (283) 3,000 (142) 76,000 76,000 700
$\begin{array}{c} \text{isp2x (a) pvrene} \\ \text{iaphthalene} \\ \hline \\ \text{ibhanol} \\ \hline \text{otal Petro leum Hydro carbons} \\ \text{liphatic hydrocarbons} EC_{9}{-}EC_{6} \\ \text{liphatic hydrocarbons} > EC_{9}{-}EC_{6} \\ \text{liphatic hydrocarbons} > EC_{9}{-}EC_{10} \\ \text{liphatic hydrocarbons} > EC_{10}{-}EC_{12} \\ \text{liphatic hydrocarbons} > EC_{12}{-}EC_{16} \\ \text{liphatic hydrocarbons} > EC_{12}{-}EC_{16} \\ \text{liphatic hydrocarbons} > EC_{9}{-}EC_{4} \\ \text{io matic hydrocarbons} > EC_{9}{-}EC_{9} \\ \text{(styrene)} \\ \text{io matic hydrocarbons} > EC_{9}{-}EC_{10} \\ \hline \end{array}$	10 5.4 0.23 0.034 0.00076 - 7.4 7.4 7.4	30 73 19 93 (48) 744 (24) 45,100 (8.48) 45,100 (8.48) 130 27	290 55 160 46 230 (118) 1,700 (59) 64,000 (21) 64,000 (21) 316 65	420 110 370 110 540 (283) 3,000 (142) 76,000 76,000 700 150
$\begin{array}{c} \operatorname{serve}(a)\operatorname{pvrene}\\ aphthalene\\ henol\\ \hline\\ \end{tabular} onto the product of the product$	10 5.4 0.23 0.034 0.00076 - - 7.4 7.4 7.4 25	30 73 19 93 (48) 744 (24) 45,100 (848) 45,100 (848) 130 27 69	290 55 160 46 230 (118) 1,700 (59) 64,000 (21) 64,000 (21) 316 65 160	420 110 370 110 540 (283) 3,000 (142) 76,000 76,000 700 150 346
tenzo (a)ovrene taphthalene 'henol 'o tal Petro leu m Hydro carbo ns viliphatic hydrocarbons $\geq C_{0} \in \mathbb{C}_{6}$ viliphatic hydrocarbons $\geq C_{0} \in \mathbb{C}_{6}$ viliphatic hydrocarbons $\geq C_{10} \in \mathbb{C}_{12}$ viliphatic hydrocarbons $\geq C_{10} \in \mathbb{C}_{12}$ viliphatic hydrocarbons $\geq C_{10} \in \mathbb{C}_{35}$ viliphatic hydrocarbons $\geq C_{10} \in \mathbb{C}_{35}$ viliphatic hydrocarbons $\geq C_{0} \in \mathbb{C}_{35}$ viliphatic hydrocarbons $\geq C_{0} \in \mathbb{C}_{35}$ vin matic hydrocarbons $\geq C_{0} \in \mathbb{C}_{12}$ vin matic hydrocarbons $\geq C_{10} = \mathbb{C}_{12}$ vin matic hydrocarbons $\geq C_{12} = \mathbb{C}_{12}$	10 5.4 0.23 0.034 0.00076 - 7.4 7.4 7.4	30 73 19 93 (48) 744 (24) 45,100 (8.48) 45,100 (8.48) 130 27 69 140	290 55 160 46 230 (118) 1,700 (59) 64,000 (21) 64,000 (21) 316 65 160 310	420 110 370 110 540 (283) 3,000 (142) 76,000 76,000 700 150 346 593
$\label{eq:approximation} \begin{split} & \text{lapthalene} \\ & \text{henol} \\ & \text{otal Petro leum Hydro carbons} \\ & \text{liphatic hydrocarbons EC_{0}-EC_{6}} \\ & \text{liphatic hydrocarbons >EC_{0}-EC_{6}} \\ & \text{liphatic hydrocarbons >EC_{0}-EC_{10} \\ & \text{liphatic hydrocarbons >EC_{10}-EC_{12} \\ & \text{liphatic hydrocarbons >EC_{12}-EC_{16} \\ & \text{liphatic hydrocarbons >EC_{12}-EC_{16} \\ & \text{liphatic hydrocarbons >EC_{12}-EC_{16} \\ & \text{liphatic hydrocarbons >EC_{20}-EC_{10} \\ & \text{liphatic hydrocarbons >EC_{12}-EC_{10} \\ & \text{lipmatic hydrocarbons >EC_{12}-EC_{10} \\ & lipmatic hydro$	10 5.4 0.23 0.034 0.00076 - - 7.4 7.4 25 5.8	30 73 19 93 (48) 744 (24) 45,100 (8.48) 45,100 (8.48) 130 27 69 140 250	290 55 160 46 230 (118) 1,700 (59) 64,000 (21) 64,000 (21) 316 65 160 310 480	420 110 370 110 540 (283) 3,000 (142) 76,000 76,000 76,000 700 150 346 593 770
$\begin{array}{c} \operatorname{enzo}(a)\operatorname{pvrene}\\ \operatorname{aphthalene}\\ \operatorname{henol}\\ \end{array}$	10 5.4 0.23 0.034 0.00076 - - 7.4 7.4 7.4 25	30 73 19 93 (48) 744 (24) 45,100 (8.48) 45,100 (8.48) 130 27 69 140	290 55 160 46 230 (118) 1,700 (59) 64,000 (21) 64,000 (21) 316 65 160 310	420 110 370 110 540 (283) 3,000 (142) 76,000 76,000 700 150 346 593

The SAC has be enset as the model calculated SAC with the saturation limit shown in backets. For consistency where the GAC exceeds the solubility limit, GrAC has been set at the solubility limit. The GrAC conservatives noise concents also of the chemical are very unlikely to be at sufficient concentration to result in an exceedance of the health criteria value at the point of exposure (i.e. ind cor air) provided free-phase product is absent.

18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9R T UK

Telephone: +44 (0)1442 437500 Fax: +44 (0)1442 437550 www.rsk.co.uk

Our ref: 25459-02R (00)

1st May 2013

Cambridge City Council – Environmental Services Mandela House 4 Regent Street Cambridge CB2 1BY

For the attention of: Themis Kantara

Dear Themis

Supplementary Investigation NIAB 1 Fields, Phase 1 Development Your reference wk/201258067

Background

A geo-environmental ground investigation was conducted at the above site by RSK to supplement a previous phase of investigation performed by Millard Consulting Engineers. The reports were submitted on behalf of our Client, Barratt Homes, in support of the planning application references 07/0003/OUT and S/07/0001/F.

The planning application spans the boundary between the districts administered by South Cambridgeshire District Council (SCDC) and Cambridge City Council (CCC), therefore both local authorities were consulted in respect to the information submitted and a joint response was issued on 12th December 2012.

Specifically, the response confirmed the northern portion of the site, located within the SCDC district to have been adequately investigated in respect its proposed future use. The following scope of further investigation, was however, prescribed for the remaining area of the site:

- Three additional rounds of ground gas monitoring to confidently characterise the ground gas regime beneath the site;
- Further non-targeted chemical testing for herbicides and pesticides to provide greater confidence in the initial suite of analyses; and
- Further targeted investigation of a former waste disposal area, two former above ground storage tanks and a former shed.

A scope of supplementary, targeted investigation and chemical analyses was subsequently proposed by RSK in January 2013, which comprised the following:

- Three additional rounds of ground gas monitoring;
- Additional investigation targeted to the location of an above ground fuel storage tank, formerly located adjacent to the farm yard, comprising the excavation of two shallow trial pits (HP1 and HP2) and testing a minimum of two soil samples for a suite of analyses including polycyclic aromatic hydrocarbons (PAH) (EPA16) and petroleum hydrocarbons (TPH-CWG);
- Additional investigation targeted to the location of a former waste storage area, comprising the
 excavation of five shallow trial pits (HP3 to HP7) and testing a minimum of five soil samples for a
 suite of analyses including PAH (EPA16), nine commonly occurring metals, a screen for asbestos
 containing materials (ACMs), Triazine herbicides, Phenoxy acid herbicides and petroleum
 hydrocarbons (TPH-total);
- Additional investigation targeted to the location of a former storage shed, comprising the
 excavation of three shallow trial pits (HP8 to HP10) and testing a minimum of three soil samples
 for a suite of analyses including PAH (EPA16), nine commonly occurring metals, a screen for
 asbestos containing materials (ACMs), Triazine herbicides, Phenoxy acid herbicides and
 petroleum hydrocarbons (TPH-total); and
- Additional investigation targeted to the location of an above ground fuel storage tank, formerly located adjacent to the sports pavilion, comprising the excavation of two shallow trial pits (HP12 and HP13) and testing a minimum of two soil samples for a suite of analyses including polycyclic aromatic hydrocarbons (PAH) (EPA16) and petroleum hydrocarbons (TPH-CWG).

The scope of testing for pesticides and herbicides was proposed following discussions between RSK and the National Institute of Agricultural Botany regarding the use of the plant protection products at the site. It was confirmed that plant protection products, approved for use by the Chemical Regulations Directorate, had been applied to the site in strict accordance with the Code of practice for using plant protection products. The products were stored off-site within the farmyard and mixed within a bunded chemical mixing unit with spill catchment facility. Based on this information, the risk posed by the former use of plant protection products was considered to be low.

The proposed scope of work was verbally agreed between RSK and yourself prior to its commencement.

Supplementary fieldwork

Thirteen trial pits, designated HP1 to HP13, were excavated by hand at the locations agreed for further investigation on 1st March 2013. The investigation and the soil descriptions were carried out in general accordance with 'BS 5930:1999. Code of Practice for Site Investigations' (BSI, 1999) and 'BS10175:2011 Investigation of Potentially Contaminated Sites – Code of Practice' (BSI, 2011).

The investigation points were located by rigorous surveying techniques as shown in Figure 1, the exploratory hole logs are also appended for reference.

The soils samples were collected in containers appropriate to the anticipated testing suite required. The containers were filled to capacity and placed in a cool box to minimise volatilisation. Samples were transported directly to RSK's testing laboratory (Envirolab) under chain of custody documentation. The samples were tested for the agreed suite of organic and inorganic compounds.

In addition to the above, three additional rounds of ground gas monitoring were conducted to record ground gas concentrations from the installations constructed during the previous main phase of investigation.

The results of the supplementary ground gas monitoring events and laboratory analyses are appended to this letter.

Ground conditions

The supplementary, targeted investigation confirmed the shallow ground conditions at the specified locations to comprise a generally uniform veneer of made ground overlying the Gault Formation. The made ground soils typically comprised a silty sandy locally gravelly clay with rare pockets of ash and brick. No obvious signs of any significant contamination were observed during the course of the investigation. No groundwater was encountered during the course of the shallow investigation.

Copies of the exploratory hole records are appended to this letter for reference.

Chemical test results and assessment

The chemical test results were directly compared against the RSK Generic Assessment Criteria (GAC) values derived using CLEA version 1.06 for the protection of human health in residential sites with pathways for plant uptake. The GAC values and details of their derivation are appended to this letter for reference.

No elevated concentrations of any determinants were identified during the comparison. Whilst no GACs have been derived for the assessment of herbicides, pesticides or ACM's, no concentrations of any of these contaminants were recorded above the relevant laboratory limits of detection.

Ground Gas Regime

The results of the three recent monitoring events have been combined with the previous three rounds and are appended to this letter. The minimum and maximum results are summarised in the table below.

Borehole	Response zone/strata	Probable source(s) of ground gas	Number of monitoring visits	Methane (%)	Carbon dioxide (%)	Oxygen (%)	Flow rate (<i>l</i> /hr)	Water level (m b TOC)	Atmospheric pressure (mbar)
BH1	GC	Shallow topsoil /madeground	6	<0.1 to 0.1	0.1 to 1.8	18.5 to 21.4	0.0	Dry to 1.70	1005 to 1022
BH2	RTD/ GC	Shallow topsoil / made ground	6	<0.1	0.5 to 1.6	18.5 to 21.0	-0.4 to 0.4	0.85 to 1.86	1004 to 1022
BH3	RTD/ GC	Shallow topsoil / made ground	6	-0.2 to <0.1	0.5 to 1.5	17.7 to 21.2	0.0	1.38 to 1.44	1005 to 1022
BHG	MG.TS / RTD / GC	Shallow topsoil / made ground	6	<0.1	0.0 to 1.8	19.3 to 21.5	-0.1 to 0.2	0.95 to 2.19	1005 to 1022
ВНК	RTD / GF	Shallow topsoil /madeground	6	-0.1 to 0.1	0.0 to 3.5	18.0 to 21.0	-0.1 to 0.2	1.35 to 2.09	1006 to 1022
WS3	MG.TS /GF	Shallow topsoil / made ground	6	<0.1 to 0.1	0.3 to 2.2	19.3 to 21.0	0.0 to 0.9	1.55 to 2.92	1006 to 1022
WS17	MG.TS /GF	Shallow topsoil / made ground	5	<0.1	0.0 to 2.9	18.6 to 21.4	0.0 to 0.2	1.57 to 1.88	1005 to 1022
WSH	MG.TS	Shallow topsoil / made ground	6	<0.1 to 0.1	0.1 to 4.2	18.0 to 20.8	0.0 to 0.2	Dry	1005 to 1022
Note: MG.TS – M	lade Grour	nd / Topsoil, RT	DC – R	iver Terra	ce Depos	sits, GC –	Gault Cl	ay	

Table 1: Summary of ground gas monitoring results

The results of the combined data set have been assessed in accordance with the guidance provided in *CIRIA Report C665: Assessing risks posed by hazardous ground gases to buildings* (Wilson et al., 2007). In the assessment of risks posed by hazardous ground gases and selection of appropriate mitigation measures, CIRIA C665 identifies two types of development, termed Situation A (modified Wilson and Card method), appropriate to all development excluding traditional low-rise construction, and Situation B (National House-Building Council, NHBC) only appropriate to traditional low-rise construction with ventilated sub-floor voids. The site is to be redeveloped with both low-rise residential houses and commercial properties and therefore falls under Situation A and B.

The gas monitoring data has identified a maximum methane concentration of 0.1% and a maximum concentration of carbon dioxide of 4.2%. A maximum gas flow rate of 0.9l/hr has been recorded. The

calculated GSV for methane is 0.0009l/hr and the GSV for carbon dioxide is 0.0378l/hr. Based on the GSVs the site has been characterised as CS1 for the area of the development defined by Situation A and as Green for the remainder of the development defined by Situation B.

The proposed mixed-use development, which fulfils the requirements of both Situation A and Situation B, has been characterised as Characteristic Situation 1 and Green, respectively. This indicates that a negligible gas regime has been identified and that gas protection measures are not considered necessary.

Conclusions

The results of the agreed scope of supplementary investigation have not identified any significant ground contamination. The supplementary investigation has therefore provided a greater level of confidence that the soils across the site are suitable for use within all areas of the proposed mixed-use development.

In addition, the supplementary rounds of ground gas monitoring, which has increased the data set for the site to the minimum prescribed by CIRIA C665, has confirmed a negligible gas regime, for which gas protection measures are not considered necessary.

In conclusion, the supplementary phase of investigation has confirmed, with an appropriate level of confidence, that the site is suitable for its proposed use. No further investigation or remediation is therefore recommended at this stage. However, should any unexpected ground conditions be revealed during redevelopment, immediate advice should be sought from the local authority and the environmental consultant.

We trust the information supplied is sufficient to recommended discharge of the contaminated land conditions pertaining to the site, should however, you have any queries or require any further information please do not hesitate to give me a call.

Yours sincerely For RSK Environment Ltd

Duncan Sharp Associate Director RSK Environment - Geosciences

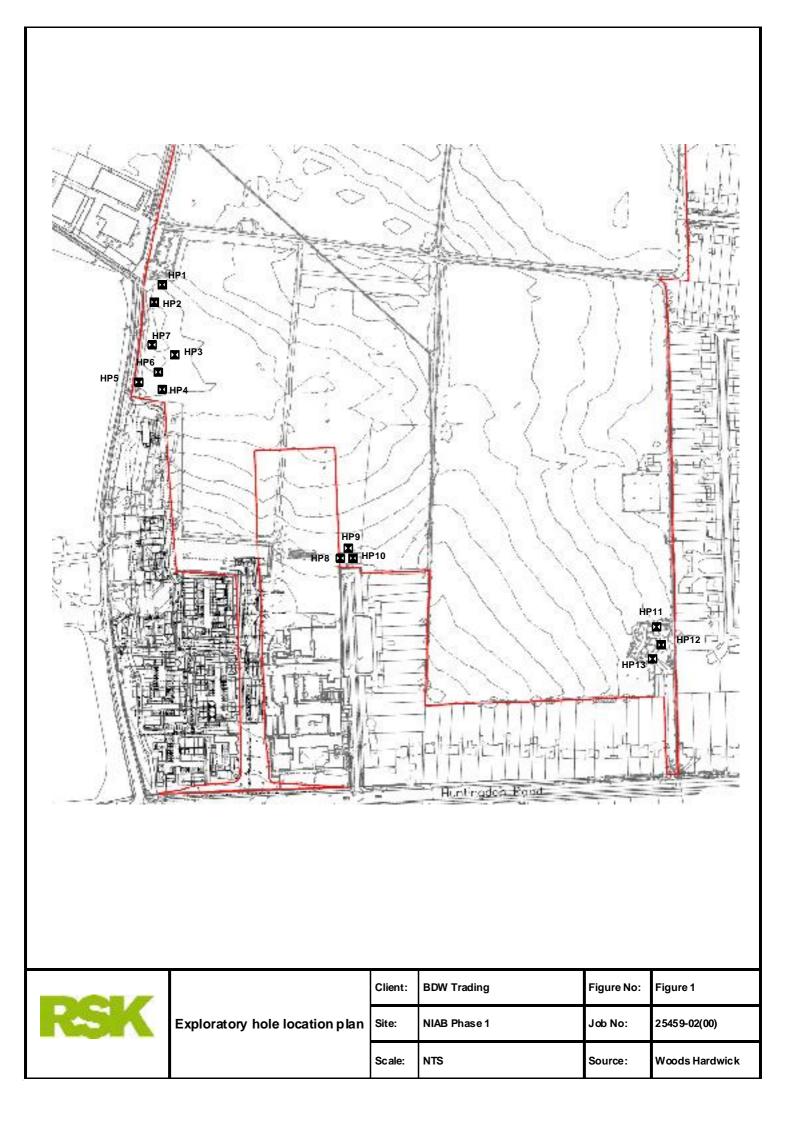

Encl.

Figure 1 Exploratory hole location plan Exploratory hole records Chemical test results Ground gas monitoring records RSK GAC values for residential sites with pathways for plant uptake

Cc. Claire Sproats - SCDC

FIGURES

EXPLORATORY HOLE LOGS

Contract:		NIAB						Client:			g Limited		Γ-J P		HP
Contract Re	் 254	ΕŇ		Cale:			Graun	id Level (ni .	460 <u>(</u> :	Natana Gr	rd Caland hate	:	Gheel:		a' '
					01.0	i					•••			Death	
	-				Nate	1HX2			[escription (of Strata			(Thes	Gu:
5.111 Depth 0.20 0.30 0.30	-	Type Type Ta Ta Ta	<u> Tess</u> <u>Res</u> T+ T+	UU8 472 472	Water	averal and a second second second second second second second second second second second second second second	addi radii Sifin (MA) MAC addi AMA	rsiana isua , elsi (1 2mm el ja median DE GROUN El GROUN Islana isua , relashi sua , relashi sua , DE GROUN	D: Thin angulati damete n D: Thin D: Thin angulati D: Dhin as and : D;	dark provin ne ki osanya t) and oosan	i sign, yisi yi si n, gawesa sana ta tare y ni sign, yisi yi si n, gawesa nisi	nd win deca asin paeketsi	isiana . Gand	Dea.n (Thek (0.00) (0.00) (0.00) (0.00)	Grup
- - - - - - - - - - - - - - - - - - -	- • Г	e; ???			- a. F	nsaed	. an al. 21 cano	iter encourt. Lansing Terna ned s Lansi coal.	ered Loe avercus		Remarks	3	1.13	- - -	
Method I		ection (nit +	Pan.			A d	niersans i		Lagged	Geulle:	Checke	<u>1:13</u>		2
ulsed:		and du		Joed	:		Hand	l tools		249900 2 <u>7</u> 1	CJBall	Dy:	-		Å

		NIAB	- Pha	ıse 1				2 end I			g Limite		т	-u P.:		HP:
Contract Re		۶Å		Cale:			Graund	Llevel (m AG	70): Nu	.anu G	rd Calardin	J.C.:	3	102.:	ч	
L	254				-	3.13 I	1									a 1
	_		u Tesis		Water	Exciti			Dee	cription	of Strata				Death (Thick	Grup
Depth	NO	Турө	Rea	811	5	== XXXXX	MADE	CREDED	i-m du-	< anona	N an v S	a sandi	V CLAY		ness)	uege XXX
0.20	1 2	u u u u u u u u u u u u u u u u u u u	T+	W_			doous raalid sifind (WAD) doous arbit (WAD) Circle accus	E GROUND ana Sub ang S (12mm du a meduni E GROUND) GROUND ana Sub ang Sush backels E GROUND) ye awi praw ana Sub ang mit (GAULT 1	gulatine : anteker; a finit ye k gulatine : and at ek gulatine : gulatine	a caunx nd accu te araw a caunx a caunx (hagma gray mic a caun	si ni giuve Sena te ta ni Signty S si ni giuve ni Si	Sand w relating y sand sand w	victory victory victory	with and and and and	0 40; 0 40; 0 20; 0 20; 0 80	
F														F		
ŀ														ŀ		
ŀ														ļ		
Pun (Natio	ിംപം						I		Ger	neral	Remar	ks				I
	† [<u>, 171</u>			- a. F	nsaed	ana.π	er encauntere unsing entuned sub tans : caalt av	ie –							
					<u> </u>		يەلى ۋ									
								iensians nini	ietres 👘		Gen e: 👘		1:	13		

Contract:		NIAB	i - Pha	ıse 1				Client:	BDW		ng Limite			T-j ⊃		HP
Contract Re		- ^		Dale:			Graun	id Level (ni A	60):	Natana (Grd Calard (1976:		Sheet:	_	
	254				01.0	i										a 1
		· · · ·			Nate:	84			C	escriptio	n of Strata				(Thes	Grad
3 Dep1h 0.20 0.50 	1 No 1	· · · ·	T+	U18 +V_	Water		accu rad.r Timi accu med	ye ay pro	C soli Iguari Ianiotor Iguari Iguari 1934.	anawn nei a cau'r (, , edi gney nei a ca ATION(),	n Saurà In Sa Regurà Paga Regurà Regurà Paga Regurà Paga Regurà Regurà Regurà Paga Regurà Regu	ss and 9	v. nacar	2 GUD	Cean (These) (These) (0.40) (0.40) (0.20) (0.80) (0	
															-	
Pun (Na. J	പ	ی <u>ہ</u> د:				I	1		G	enera	l Rema	rks				1
		ົາກ			1. N 2. D	la gra lacki	und wa od with can bit	iter encounte riansing remained sta	ed	5.1510						
ç	ב ב ו [0. 4. ¥	Vea.n	er oand	l anstaat o	wercus							
c c c Me.nod	₹ 			241.	4. 1	Veala	er cank	nensans n	wereas netres	agged	Ser e:		Checkee	1:13		

Contract:		NIAB	- Pha	ise 1				C enc		BDW	Tradin	g Limit	ted		ς υ.Τ	.:	HP4
Contract Re		_		Cale:			Graun	id Leve	(m AC	/C):	Natana G	rd Calara	Inale:		Sheel:		_
	254	59			01.0	3.13											<u>a' 1</u>
	_	nd his			Water	Backfill				Г	excription	of Strata				Death (Thick	Maler Grae
Depth	No	Турө	Rea	uls -	ŝ	ĥ					-					ness;	
Depth 020 040	1	туре	Т+. -	+V_	1. \(2.3)		MA: acc acc acc acc acc acc acc acc acc ac	isiana Isiana Isiana Isiana San Isiana Isiana J Isiana J Isiana J Isiana J Isiana J Isiana J Isiana J		The form of the fo	dark arown The tail Inni diame.	i sign, y ned un er; and e misign, y ned un med un med un solution	S (y Sul integration accurs on S (y Sul integration CLAY - and S (integration accurs on CLAY -	we's and ia la an mdy CLA We's and	li win relash Yi win Li win	0.20 (0.20) (0.25) (0.25)	.ege
	┋╹│							lansia									
ç	♥ L																
							<u>)</u> A A	mensia	יי רי צר	etes.		Scale:			1:13		
Weined				Pun.							agged	1		Checke			E.
Joed:	Ha	and du	a	Joed	l:		Hand	i tools			Dy:	GJBa	11	Dy:			A

	254	50		Dale:							-			
Sant		50					G.07.	id Level (ni A	.60):	Nalaha G	rd Calard have	: 31	ice.:	
					01.0	3.13							1	<u>a'</u> 1
Depth	<u>.</u> .	nd his .	u Tesis		Water	Backfill			п	escription	of Strata		Death (Thick	Male Grap
	NO	Туре	Rea	8 1 U	Ŵ	X'E				-			hess;	
• • 0.20 • 0.40 • • • • • • • • • • • • • • • • • • •	1	23	T+_4 T+_4	•V_	1. N 2. 3		MAD and and and and and and and and and and	In an an sub a la contra sub a	ngu u- in Sandi si Sandi si ngu u- in sis and si <u>sign, y si</u> ni nated a	e la cauro ne la med e la cauro recinagnia <u>y⊂uAY p</u> i. 0.30 m de	ein, gavesu uni, mis gruyis y ein, gavesu mis, GAULT FORM/		0.00 0.00	
3					- a. F	rsaec	an a.	tema nod sa ditansi caali (136					
	▼ L]												
							<u>ل</u> ر د				1 -	1:1		
							- CL - M	mensions n	metres		Geare:	I.	1.5	

		NIAB								ng Limited	: נ-T	•.:	HP
Contract Re				Cale:			Graum	d Level (m AOC)	: Natana	Grd Calardhuæ:	Ghee.		
	254	59			01.0	3.13	-						a' '
Sant	കെ	nd hist	u Tesis		Water	Backfill			Decausie	n of Strata		Death (Thick	Max Grae
Depth	No	Туре	Rea	3 1 U	2M	N'E			-			ness)	
020 040	1	23	T+_+ T+_+				MAD MAD docu a fu a fu su fu su fu su fu a fu su fu su fu su fu su fu su fu su fu fu fu fu fu fu fu fu fu fu fu fu fu f	sional see angles nonts, Sandi si in Sana see angles Talah see angles an	ar ine ta caa e ta medium ni ye aw ara ni he ta caa id ar ek inagn ad grey sign tangaa rine rangaa rine	own signty sity sa se fint grave sland lients. y sity sandy CLAY la cause fint grav	diwun tare artok Indy CLAY (wun I wun docus ana	;0.20; 0.20; .;0.20; 0.50	
- - - -										Bomder		-	
- - - - -									Genera	l Remarks		-	
- - - - - - - - - - - - - - - - - - -	- • [2:			I G. F	nsaec.	an at	ter encountered runsing remained subte Lianst cool, aven		l Remarks		-	
	- • [[Þ	a. 1 4, 9	nsaec.	lan al. 21 cand	remained subject	<u>115.</u>	I Remarks	1:13 Cnecked		

Contracto		NIAB	- Pha	ıse 1				Clent: BD\		g Limited	: נ-T		HP7
Contract Re		_		Cale:			Graun	d Level (m AOD):	Natana G	rd Caland hate:	Shee		_
	254	59			01.0	3.13	-	•••				-	<u>a' 1</u>
Same	കെപ	nd his	u Tesis		Water	Excitil			Decareton	od Cdrada		De altr	Maler Graat
Depth	No	Турө	Rea	s I u	ŝ	N.			Description			ness)	
0.20	1	13	T+				Viak (Shin addx MAC Viak Suak Viak Viak Viak Viak	C GROUND and angular the talka angular the talka essund anex hagn angular the talka ye av provin ma angular the talka angular talka angular the talka angula	gn, prown s gn, prown s se in, gruve lens, 	gn, y sity CLAY sund with accuse sund with accuse gn, y sity CLAY are sit Sund i site are		;0.50; 0.50 0.50	
Plan (Notito	ടപ	2:						(Seneral	Remarks			
	↓ [<u>, 111</u>			- a. F	nsaec	. an 19 . 21 Cano	ter encountered (ansing) remained suble (tions : cool, overca					
							$-\Delta = \mathbf{d}$	niensians in nietre		Scale:	1:13		
Method				Pan.					Lagged		Checked		

Contract:		NIAB	- Pha						g Limited	< P-1 - 2	:	HP
Canitad, Ro		- ^	-	Cale:			Graund Level (nr AGC):	Natana G	rd Calard hate:	Sheet:		
	254				-	3.13					1	a 1
Sanı Depth		nd his Type	u Tesis Rea t	3 1 1	Water	ExMI		Description	of Strata		Death (Thick ness)	Graa
Dep1h	NO	Туре 23	Кеац +_+ Т+_+	¥			MADE GROUND in sublanguatine one (12mm damezet) and ingments. MADE GROUND in accessional sublangua medium. (GAULT FOR Inspection atterningue Inspection atterningue	ni greysni : dum i ni gra I accus anu i gru grawn i ne ia cau iau ed grey i ne ia med MATION()	vewn signty s ves and with acc to rane ash acc i signty sily sa se i ht gravest signty sily san ani i ht gravest	aisonal roducts webs and lares ndy CLAY with Sand is line to		
Pan (Noc	ടപ	e;					l	General	Remarks			
	2777 1. Na gr 2. Cuck 0. hsae						nd bater encountered edivitinalitying an pit remained stable ricand tanspood taverou					
	¥ L											
	¥ L						Alid mensions in metre	Lagged	Scale:	1:13 Checked		

Contract:		NIAB								g Limited	: נ-T	· ::	HP
Cantua, Ra				Сы.е:			Graui	id Level (m AGC):	Natana G	rd Caland hate:	Ghee.		
	254	59			01.0	3.13							a' '
Sand	u es .	nd hist	u Tesis		Water	Bookill			Description	-á Rinata		Death (Thick	Maid Grae
Depth	No	Туре	Real	ula	ŝ	N.			Description	JISHAB		ness)	
- 0.20 0.40 - - - - - - - - - - - - - - - - - - -	1	23	T+_+ T+_+				MAC MAC MAC MAC MAC MAC MAC MAC MAC MAC	C GROUND 1 m relatin backets and clash backets and clash backets and gen backets and gen backets and clash backets and c	The ki county Lanck Tragme Type aw prow The ki county I an eximagine at grey and k gular fine to 1 <u>23MATKON</u> ; dia: 0.000m de	si ni, gʻuve sund nisi, Sundi si ne v nisi ghuy si yi su si ni, ghuve sund nisi, unange si ghuy si ned uni i ni, ghuve	ndy CLAY with with docurs and	;0.20; 0.20; ;0.20; 0.50	
	- • Г				- a. F	nsaed	an a.	ter encountered Lansing remained suble Litans : cool, avercu					
							A d	niensans ninetre		Geure:	1:13		
Method				Pan.					Lagged	:	Checked		Đ
		and duy		Joed			Hand		Dy:	CJBall	Dy:		

Contract:		NIAB	i - Pha	ase 1				Clena BDV		g Limited		ı Þ.:	HP10
Contract Re		- ^		Calle:			Graun	id Level (m AGC):	Natana G	rd Caland hute:	Sh	99.: Ja	
	254				i	3.13	1					<u>.</u>	a' 1
					at er	201			Description	of Strata		(Thes	Gua
Sani Depth 020 030 030 030 030 030 030 030 030 030	1 NO	Type 33 33	Res T+∠	UIS	Water		MAD docu a ru a ru a ru a ru a ru a ru	C GROUND Thm escal sub-angulat esc (1 Shim diame i fagments, Sand c GROUND Thm is ona sub-angulat gen site angulat gen site angulat accurs and sub-angulat accurs and sub-angulat contait termination	dark arown inetalogates lett and local sline taimed the talogates arek inagine al grey and s inded line tai RMATION).	is gruy sily san si nu grave sland is ona ito hare as anit nu nu si nu grave sland nus arange is gruy si med aniti nu grave	ndy CLAY iw with decay of	(Theorem in the second	
-							L						
Plan (Natio	ദാപ	e;						(General	Remarks			
¢	= ↓ [<u>ייי</u>			- a. F	nsaec.	an at	ter encountered Lansing remained suble Litens : cool, averaa	۵.				
							A d	niensians in nietres		Scale:	1:1	-	
Method				Pan.					Lagged		Checked	3	

Contract:		NIAB	- Pha							ış Limited		P.:	HP1 ⁻
Contract Ro		БŲ		Cale:			Graun	id Level (m AOC):	Natana K	and Calland hute:	Sho		
	254				01.0	i	1			•••			<u>a' 1</u>
			u Tesis		Water	Backfill			Description	i of Strata		Death (Thick	Grad
Depth	NO	Турө	Rea	3IU	3	nî XXXXX	9 11 2 -		-			hess;	Lege
Dep1h	NO 1 2	туре 13	Res T+ T+	+V_	PEW		uodi und ush WAC uodi und und und und und und und und und und	is anali subinaundek with access anali had backets: Sundis Th SE GROUNCI soft relating access and relating access and	i dark arek dita sualah ulets (1.2 hr let a median ta fimi ara fine ta caar fine ta caar fiar ok fragmi ulatoo finu g	m signuy si y san guar fine to modit n diametor(and op n whisi gruy sity sa se fint graves and entst gruy sity CLAY r rave st Sand to fin	ini fini grava casiana tana ndy CLAY w with accusian	0.20)	
Pan(Natio	. Sec. 1								Genera	Remarks			
- 11, 40 6 6	- • Г	•; ••••			- a. F	nsaec	an a.	ken en caunt er ted i unsing remained sub e Li anst caal, avercu					
							A d	niers ans in nietre	>	Scale:	1: 1	3	
Method				Pan.					Lagged		Checked	_	

Contract:		NIAB	i - Pha							ing Limited	T-u P	'.:	HP12
Cantae, Re		- ^		Dale:			Grau.	id Level (m AOC	(; Natana	i Grd Calardhuiz:	Shee.		
	254				01.0	1	1					1	a 1
	_		.u Tesis		Water	Exciti			Descript	on of Strata		Death (Thick	Graan
Depth	NO	Турө	Rea	ula	M	nî XXXXX		- 070 197	-			hess;	Lege.
Dep1h 0.20 0.50	1		T+	+V_			MAC accu accu Salu The Insa	Sona Sublanga els (1 2mm diam Sona Sublang Sona Sublan	init durk on iter ine a co iter ine a co iter ine a a stand room war war s iter is iter a could a origin	awn sign, y si y su urse fint gruves und as studge. 	Twinteeus and	iness) .;0,40; 	
	: 	<u>, 171</u>			- a. F	nsaec	an a.	rener an aounte red Fains ing Teinia ned Sala a Li ans : coal Lave					
							A d	nersens nine		Scale:	1: 13		
Weined				Pan.	I				Lagged	1	Checked		C
Joed:	Ha	and du	9	Joed			Hand	i tools	Dyc	VMacfarlane	Dy:		Â.

Contract:		NIAB	i - Pha					Clen::			ıg Limited		с г-Т		HP
Cantae, Ro	் 254	59		Cale:	01.0	3 1 3	Gʻuu	dleve (m. 	AGC):	Natana G	Grid Calandinu 	A:	Sheet:		a
			.u Tests		-	i								Dealn	
Depth	-	па ні с Туре	Res		Water	Exciti			[escription)	i of Strata			(Thes	Gʻu
Dopin	1.00	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	14.00		-		MAC	COROLN:	D ne war	ked laasa	and grass co	ver.		ness;	$\overline{\mathbb{X}}$
								- 070 0	12					0.10	\bigotimes
							002	izana zia Verovez el	i rounded	ine la	whi very is ly medium if n. ser; and dee	gawe si a	nd win		\bigotimes
0.20	1	23	T+	WL I			3004	isiana inda. .e.s. Sandi s	els (12 síne an	nedum.	ser; und doo	n n' n' n	רעם שים	;0.00;	\bigotimes
														ŀ	\bigotimes
								- 670 19	- ·			···· s mate C	82 a. a	040	\bigotimes
							0001	, constructions and sub-	- " 1911-" 1914-"	ne a caur ne a caur	vnisign, yrsi. Selfin, gruver Jer(i wyniash	s, accus and	i a ure mi a ure	-;0.20;	\bigotimes
0.50	2	<u>13</u>	T+	W_				nens.	0.5 ,12		ier, with ast	adevels a	N 3-C(\bigotimes
						*****	a hsa	ection altre	mina.ed	a. 0.30 m d	leath			0.60	pxx
-														-	
-														-	
											Derreit			-	
Plan (Natua	ദവം									eneral	Remark	S			
	- - - -	<u>, m</u>			- a. F	nsaec	an a.	tertencount rainsing remained s Litens (coort	ызе						
				1-			A d	niensiens i			Sea e:	I _	1:13		
Method I Used:		action and du		Pan. Joed			Unne	l tools		Lagged Dy:	VMacfarlan	e Chec B	oed		i i

CHEMICAL TEST RESULTS

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: **Issue Number:**

13/01097

1

Date: 18 March, 2013

Client:

RSK Environment Ltd Hemel 18 Frogmore Road Hemel Hempstead Hertfordshire UK **HP3 9RT**

Project Manager: Project Name: Project Ref: Order No: Date Samples Received: **Date Instructions Received: Date Analysis Completed:**

Nigel Austin / Chris Ball / Verity Macfarlane BDW Trading / NIAB 1, Cambridge 25459 Not specified 06/03/13 06/03/13 18/03/13

Prepared by:

Approved by:

Melanie Marshall Laboratory Coordinator Gill Scott Laboratory Manager

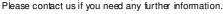
Notes - Soil analysis

All results are reported as dry weight (<40 °C).

For samples with Matrix Codes 1 - 6 inert stones >10mm are removed or excluded from the sample prior to analysis and reported results corrected to a whole sample basis. For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis.

All analysis is performed on the dried and crushed sample for samples with Matrix Code 7 and this supercedes any "A" subscripts. Superscript "M" indicates method accredited to MCERTS.

For complex, multi-compound analysis, quality control results do not always fall within chart limits for every compound and we have criteria for reporting in these situations. If results are in italic font they are associated with such quality control failures and may be unreliable.


A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling. Predominant Matrix Codes - 1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTH ER.

Samples with Matrix Code 7 are not predominantly a SAN D/LOAWCLAY mix and are not covered by our MCER TS accreditation.

Secondary Matrix Codes - A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

IS indicates Insufficient sample for analysis. NDP indicates No Determination Possible. NAD indicates No Asbestos Detected. Superscript # indicates method accredited to ISO 17025. Analytical results reflect the quality of the sample at the time of analysis only.

Opinions and interpretations expressed are outside the scope of our accreditation.

Notes - General Subscript "A" indicates analysis performed on the sample as received, "D" indicates analysis performed on the dried sample.

Client Project Name: BDW Trading / NIAB 1, Cambridge

					Client	Project Ref	: 25459			
Lab Sample ID	13/01097/1	13/01097/2	13/01097/3	13/01097/4	13/01097/5	13/01097/6	13/01097/7	13/01097/8		
ClientSampleNo										
ClientSampleID	HP1	H P2	HP3	HP4	HP5	HP6	HP7	H P8		
Depth to Top	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.10		
Depth To Bottom										
Date Sampled	01-Mar-13	01-Mar-13	01-Mar-13	01-Mar-13	01-Mar-13	01-Mar-13	01-Mar-13	01-Mar-13		τ
Sample Type	Soil - ES	Soil - ES	Soil - ES	n	Method ret					
Sample Matrix Code	5AE	5E	6AE	6AE	6AE	6AE	6AE	6E	Units	Met
Asbestosin soil _o #	-	-	NAD	NAD	NAD	NAD	NAD	NAD		A-T-045
Asbesto s Matrix _D	-	-	-	-	-	-	-	-		A-T-045
Arsenic _D ^{M#}	-	-	6	5	7	6	5	5	mg/kg	A-T-024
Cadmiu m _D ^{M#}	-	-	0.9	0.8	0.8	0.8	0.9	1.0	mg/kg	A-T-024
Copper _D ^{M#}	-	-	24	20	16	20	21	25	mg/kg	A-T-024
Chromiu m _D ^{M#}	-	-	41	36	26	39	40	47	mg/kg	A-T-024
Lead _D ^{M#}	-	-	50	41	32	42	46	52	mg/kg	A-T-024
Mercu ry _D	-	-	0.40	0.34	0.18	0.26	0.39	0.27	mg/kg	A-T-024
Nickel ^{b^{M#}}	-	-	32	30	23	32	32	38	mg/kg	A-T-024
Selenium _D ^{M#}	-	-	<1	<1	<1	<1	<1	<1	mg/kg	A-T-024
Zinc ^{M#}	-	-	70	59	54	ន	69	78	mg/kg	A-T-024
TPH total (C6-C40) _A	-	-	<10	<10	25	<10	<10	21	mg/kg	A-T-007 s

Lab Sample ID

Client Project Name: BDW Trading / NIAB 1, Cambridge

Client Sample No										
Client Sample ID	HP1	H P2	HP3	HP4	HP5	HP6	HP7	H P8		
Depth to Top	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.10		
Depth To Bottom										
Date Sampled	01-Mar-13	01-Mar-13	01-Mar-13	01-Mar-13	01-Mar-13	01-Mar-13	01-Mar-13	01-Mar-13		t
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	n	Method ref
Sample Matrix Code	5AE	5E	6AE	6AE	6AE	6AE	6AE	6E	Units	Rei
Acid Herbs										
2,3,6-TBA	-	-	-	<0.1	-	<0.1	-	<0.1	mg/kg	Sub con
2,4-D	-	-	-	<0.1	-	<0.1	-	<0.1	mg/kg	Sub con
2,4-DB	-	-	-	<0.1	-	<0.1	-	<0.1	mg/kg	Sub con
2,4,5-T	-	-	-	<0.1	-	<0.1	-	<0.1	mg/kg	Sub con
2,4,5-TP; (Fenoprop); (Silvex)	-	-	-	<0.1	-	<0.1	-	<0.1	mg/kg	Sub con
4-CPA	-	-	-	<0.1	-	<0.1	-	<0.1	mg/kg	Sub con
Benazolin	-	-	-	<0.1	-	<0.1	-	<0.1	mg/kg	Sub con
Bentazone	-	-	-	<0.1	-	<0.1	-	<0.1	mg/kg	Sub con
Bromacil	-	-	-	<0.1	-	<0.1	-	<0.1	mg/kg	Sub con
Bromox yn i	-	-	-	<0.1	-	<0.1	-	<0.1	mg/kg	Sub con
Clop yralid	-	-	-	<0.1	-	<0.1	-	<0.1	mg/kg	Sub con
Dicamba	-	•	-	<0.1	-	<0.1	-	<0.1	mg/kg	Sub con
2,4-DP; (Dichlorprop)	-	-	-	<0.1	-	<0.1	-	<0.1	mg/kg	Sub con
Diclofop	-	•	-	<0.1	-	<0.1	-	<0.1	mg/kg	Sub con
Flamprop	-	-	-	<0.1	-	<0.1	-	<0.1	mg/kg	Sub con
Flamp ro p-isopro pyl	-	-	-	<0.1	-	<0.1	-	<0.1	mg/kg	Sub con
Fluroxypyr	-	-	-	<0.1	-	<0.1	-	<0.1	mg/kg	Sub con
loxynil	-	-	-	<0.1	-	<0.1	-	<0.1	mg/kg	Sub con
МСРА	-	-	-	<0.1	-	<0.1	-	<0.1	mg/kg	Sub con
МСРВ	-	-	-	<0.1	-	<0.1	-	<0.1	mg/kg	Sub con
MCPP; (Mecoprop)	-	-	-	<0.1	-	<0.1	-	<0.1	mg/kg	Sub con
PCP; (Pentachlorophenol)	-	-	-	<0.1	-	<0.1	-	<0.1	mg/kg	Sub con
Pidoram	-	-	-	<0.1	-	<0.1	-	<0.1	mg/kg	Sub con
Triclopyr	-	-	-	<0.1	-	<0.1	-	<0.1	mg/kg	Sub con

Client Project Name: BDW Trading / NIAB 1, Cambridge

					Client	Project Ref	: 25459			
Lab Sample ID	13/01097/1	13/01097/2	13/01097/3	13/01097/4	13/01097/5	13/01097/6	13/01097/7	13/01097/8		
Client Sample No										
ClientSampleID	HP1	H P2	HP3	HP4	HP5	HP6	HP7	H P8		
Depth to Top	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.10		
Depth To Bottom										
Date Sampled	01-Mar-13	01-Mar-13	01-Mar-13	01-Mar-13	01-Mar-13	01-Mar-13	01-Mar-13	01-Mar-13		τ
Sample Type	Soil - ES	Soil - ES	Soil - ES	и	Method ret					
Sample Matrix Code	5AE	5E	6AE	6AE	6AE	6AE	6AE	6E	Units	Mei.
PAH 16										
Acenaph thene ^{A^{M#}}	< 0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	mg/kg	A-T-019 s
Acenaph thylene _A ^{M#}	<0.01	<0.01	<0.01	0.05	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-019 s
Anthracen e _A ^{M#}	<0.02	<0.02	<0.02	0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	A-T-019 s
Benzo(a) <i>a</i> n thracene _A ^{M#}	0.14	0.10	<0.04	0.11	<0.04	<0.04	<0.04	<0.04	mg/kg	A-T-019 s
Benzo(a) pyren e _A ^{M#}	0.22	0.18	<0.04	0.96	<0.04	<0.04	<0.04	<0.04	mg/kg	A-T-019 s
Benzo(b)fluo ran thene $A^{M\#}$	0.28	0.21	<0.05	0.60	<0.05	<0.05	<0.05	<0.05	mg/kg	A-T-019 s
Benzo(ghi)perylene _A ^{M#}	0.19	0.13	<0.05	4.69	<0.05	<0.05	<0.05	<0.05	mg/kg	A-T-019 s
Benzo(k) fluorant hene A ^{M#}	0.15	0.12	<0.07	0.59	<0.07	<0.07	<0.07	<0.07	mg/kg	A-T-019 s
Chrysene _A ^{M#}	0.20	0.13	<0.06	0.13	<0.06	<0.06	<0.06	<0.06	mg/kg	A-T-019 s
Dibenzo(ah)anthracene A ^{M#}	<0.04	<0.04	<0.04	3.89	<0.04	<0.04	<0.04	<0.04	mg/kg	A-T-019 s
Fluo ran thene _A ^{M#}	0.28	0.13	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	mg/kg	A-T-019 s
Fluoren e _A ^{M#}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-019 s
Inden o(123-cd) pyrene _A ^{M#}	0.15	0.12	<0.03	4.37	<0.03	<0.03	<0.03	< 0.03	mg/kg	A-T-019 s
Naphthalene _A ^{M#}	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	A-T-019 s
Phenant hrene _A ^{M#}	0.07	<0.03	<0.03	< 0.03	<0.03	< 0.03	<0.03	<0.03	mg/kg	A-T-019 s
Pyrene _A ^{M#}	0.28	0.15	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	mg/kg	A-T-019 s
Total PAH _A ^{M#}	1.96	1.29	<0.08	15.4	<0.08	80.0>	<0.08	<0.08	mg/kg	A-T-019 s

Client Project Name: BDW Trading / NIAB 1, Cambridge

					Client	Project Ref	: 25459			
Lab Sample ID	13/01097/1	13/01097/2	13/01097/3	13/01097/4	13/01097/5	13/01097/6	13/01097/7	13/01097/8		
Client Sample No										
ClientSampleID	HP1	HP2	HP3	HP4	HP5	HP6	HP7	H P8		
Depth to Top	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.10		
Depth To Bottom										
Date Sampled	01-Mar-13	01-Mar-13	01-Mar-13	01-Mar-13	01-Mar-13	01-Mar-13	01-Mar-13	01-Mar-13		ţ
Sample Type	Soil - ES	Soil - ES	Soil - ES	ы	Method ret					
Sample Matrix Code	5AE	5E	6AE	6AE	6AE	6AE	6AE	6E	Units	Rei B
Triazines (x11)										
Ametryne	-	-	<0.2	-	<0.2	<02	<0.2	-	mg/kg	S ub con
Atraton	-	-	<0.1	-	<0.1	<0.1	<0.1	-	mg/kg	Sub con
Atrazine	-	-	<0.02	-	<0.02	<0.02	<0.02	-	mg/kg	S ub con
Cyanazin e	-	-	<0.02	-	<0.02	<0.02	<0.02	-	mg/kg	S ub con
Prometon	-	-	<0.1	-	<0.1	<0.1	<0.1	-	mg/kg	Sub con
Prometryn	-	-	<0.02	-	<0.02	<0.02	<0.02	-	mg/kg	S ub con
Propazine	-	-	<0.02	-	<0.02	<0.02	<0.02	-	mg/kg	Subcon
Simazine	-	-	<0.02	-	<0.02	<0.02	<0.02	-	mg/kg	Subcon
Simetryn	-	-	<0.1	-	<0.1	<0.1	<0.1	-	mg/kg	Subcon
Terbuthylazine	-	-	<0.02	-	<0.02	<0.02	<0.02	-	mg/kg	Subcon
Terbutryn	-	-	<0.02	-	<0.02	<0.02	<0.02	-	mg/kg	S ub con

Client Project Name: BDW Trading / NIAB 1, Cambridge

Client Project Ref: 25459 Lab Sample ID 13/01097/1 13/01097/2 13/01097/3 13/01097/4 13/01097/5 13/01097/6 13/01097/7 13/01097/8 Client Sample No Client Sample ID HP1 HP2 HP3 HP4 HP5 HP6 HP7 HP8 Depth to Top 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.10 Depth To Bottom 01-Mar-13 01-Mar-13 01-Mar-13 01-Mar-13 01-Mar-13 01-Mar-13 01-Mar-13 01-Mar-13 Date Sampled Method ret Soil - ES Soil - ES Soil - ES Soil - ES Soil - ES Soil - ES Soil - ES Soil - ES Sample Type Units Sample Matrix Code 5AE 5E 6AE 6AE 6AE 6AE 6AE 6E TPH CWG A-T-022 s Ali >C5-C6₄# <0.01 <0.01 mg/kg A-T-022 s Ali >C6-C8_A# <0.01 <0.01 -----mg/kg A-T-022 s Ali >C8-C10_A# < 0.01 < 0.01 mg/kg A-T-023 s Ali >C10-C12_A# <0.1 <0.1 ---. -mg/kg A-T-023 s Ali >C12-C16₄# <0.1 <0.1 ma/ka -_ ----A-T-023 s Ali >C16-C21_A# mg/kg <0.1 <0.1 ------Ali >C21-C35_A# A-T-023 s <0.1 <0.1 mg/kg -----Total Aliphatics_A# mg/kg A-T-022 +23s <0.1 <0.1 --_ ---Aro >C5-C7_A# <0.01 <0.01 A-T-022 s -----mg/kg A-T-022 s Aro > C7-C8_A# <0.01 <0.01 mg/kg ------Aro >C8-C9_A# A-T-022 s <0.01 <0.01 -----mg/kg A-T-022 s Aro >C9-C10_A# < 0.01 <0.01 -----mg/kg Aro >C10-C12₄# A-T-023 s <0.1 <0.1 -----mg/kg A-T-023 s *Aro >C12-C16 ma/ka <0.1 <0.1 -----. A-T-023 s Aro >C16-C21_A# mg/kg <0.1 <0.1 ------Aro >C21-C35₄# A-T-023 s <0.1 <0.1 mg/kg -----A-T-022+23s Total Aromatics⊿[#] <0.1 <0.1 mg/kg ------A-T-022+23s TPH (Ali & Aro)_A# <0.1 <0.1 mg/kg ------A-T-022 s BTEX - Benzen e_A# <0.01 <0.01 -mg/kg --. -BTEX - Toluene_A# A-T-022 s <0.01 < 0.01 mg/kg --A-T-022 s BTEX - Ethyl Benzene[#] <0.01 < 0.01 mg/kg ------A-T-022 s BTEX - m & p Xylene_A# <0.01 <0.01 mg/kg ----_ -A-T-022 s BTEX - o Xylene A[#] <0.01 <0.01 mg/kg -----MTBE_A# <0.01 <0.01 mg/kg A-T-022 s ------

Client Project Name: BDW Trading / NIAB 1, Cambridge

					Client	Project Rei	. 20400		
Lab Sample ID	13/01097/9	13/01097/10	13/01097/11	13/01097/12	13/01097/13				
ClientSampleNo									
ClientSampleID	HP9	HP10	HP11	HP12	HP13				
Depth to Top	0.20	0.20	0.20	0.20	0.20				
Depth To Bottom									
Date Sampled	01-Mar-13	01-Mar-13	01-Mar-13	01-Mar-13	01-Mar-13				τ
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES			n	Method ref
Sample Matrix Code	6AE	6E	6E	5AE	6AE			Units	Met
Asbestos in soil _D #	NAD	NAD	-	-	-				A-T-045
Arsenic _o ^{M#}	6	7	-	-	-			mg/kg	A-T-024
Cadmiu m _D ^{M#}	0.9	0.9	-	-	-			mg/kg	A-T-024
Copper _D ^{M#}	22	25	-	-	-			mg/kg	A-T-024
Chromiu m _D ^{M#}	37	31	-	-	-			mg/kg	A-T-024
Lead _D ^{M#}	51	85	-	-	-			mg/kg	A-T-024
Mercu ry _D	0.24	0.26	-	-	-			mg/kg	A-T-024
Nickeb ^{M#}	32	28	-	-	-			mg/kg	A-T-024
Selenium _D ^{M#}	<1	2	-	-	-			mg/kg	A-T-024
Zinc ^{D^{M#}}	97	107	-	-	-			mg/kg	A-T-024
TPH total (C6-C40) _A	<10	45	-	-	-			mg/kg	A-T-007 s

Client Project Name: BDW Trading / NIAB 1, Cambridge

Client Project Ref: 25459

					Client	Project Ref	. 20409		
Lab Sample ID	13/01097/9	13/01097/10	13/01097/11	13/01097/12	13/01097/13				
Client Sample No									
Client Sample ID	HP9	HP10	HP11	HP12	HP13				
Depth to Top	0.20	0.20	0.20	0.20	0.20				
Depth To Bottom									
Date Sampled	01-Mar-13	01-Mar-13	01-Mar-13	01-Mar-13	01-Mar-13				ti
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES			и	Method ref
Sample Matrix Code	6AE	6E	6E	5AE	6AE			Units	Mert
Acid Herbs									
2,3,6-TBA	-	<0.1	-	-	-			mg/kg	Sub con
2,4-D	-	<0.1	-	-	-			mg/kg	S ub con
2,4-DB	-	<0.1	-	-	-			mg/kg	Subcon
2,4,5-T	-	<0.1	-	-	-			mg/kg	Sub con
2,4,5-TP; (Fenoprop); (Silvex)	-	<0.1	-	-	-			mg/kg	Subcon
4-CPA	-	<0.1	-	-	-			mg/kg	Subcon
Benazolin	-	<0.1	-	-	-			mg/kg	Sub con
Bentazone	-	<0.1	-	-	-			mg/kg	Sub con
Bromacil	-	<0.1	-	-	-			mg/kg	S ub con
Bromox yn i	-	<0.1	-	-	-			mg/kg	Sub con
Clop yralid	-	<0.1	-	-	-			mg/kg	Subcon
Dicamba	-	<0.1	-	-	-			mg/kg	Sub con
2,4-DP; (Dichlorprop)	-	<0.1	-	-	-			mg/kg	Sub con
Diclofop	-	<0.1	-	-	-			mg/kg	Sub con
Flamprop	-	<0.1	-	-	-			mg/kg	Sub con
Flamp ro p-isopr o pyl	-	<0.1	-	-	-			mg/kg	Sub con
Fluroxypyr	-	<0.1	-	-	-			mg/kg	Sub con
loxynil	-	<0.1	-	-	-			mg/kg	Sub con
МСРА	-	<0.1	-	-	-			mg/kg	Subcon
МСРВ	-	<0.1	-	-	-			mg/kg	Subcon
MCPP; (Mecoprop)	-	<0.1	-	-	-			mg/kg	Subcon
PCP; (Pentachlorop henol)	-	<0.1	-	-	-			mg/kg	Subcon
Pidoram	-	<0.1	-	-	-			mg/kg	Subcon
Triclopyr	-	<0.1	-	-	-			mg/kg	Sub con

Client Project Name: BDW Trading / NIAB 1, Cambridge

Lab Sample ID	13/01097/9	13/01097/10	13/01097/11	13/01097/12	13/01097/13			
Client Sample No								
Client Sample ID	HP9	HP10	HP11	HP12	HP13			
Depth to Top	0.20	0.20	0.20	0.20	0.20			
Depth To Bottom								
Date Sampled	01-Mar-13	01-Mar-13	01-Mar-13	01-Mar-13	01-Mar-13			tu
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES		и	Method ref
Sample Matrix Code	6AE	6E	6E	5AE	6AE		Units	Mert
PAH 16								
Acenaph thene _A ^{M#}	< 0.01	<0.01	< 0.01	<0.01	<0.01		mg/kg	A-T-019 s
Acenaph thylene _A ^{M#}	<0.01	<0.01	<0.01	<0.01	<0.01		mg/kg	A-T-019 s
Anthracene _A ^{M#}	<0.02	<0.02	<0.02	<0.02	0.04		mg/kg	A-T-019 s
Benzo(a) <i>a</i> n thracene _A ^{M#}	<0.04	<0.04	<0.04	<0.04	0.16		mg/kg	A-T-019 s
Benzo(a)pyrene _A ^{M#}	<0.04	<0.04	<0.04	0.05	0.24		mg/kg	A-T-019 s
Benzo(b)fluoran thene ^{M#}	<0.05	<0.05	<0.05	0.07	0.29		mg/kg	A-T-019 s
Benzo(ghi)perylene _A ^{M#}	<0.05	<0.05	<0.05	<0.05	0.17		mg/kg	A-T-019 s
Benzo(k) fluorant hene A ^{M#}	<0.07	<0.07	<0.07	<0.07	0.14		mg/kg	A-T-019 s
Chrysene _A ^{M#}	<0.06	<0.06	<0.06	0.09	0.26		mg/kg	A-T-019 s
Dibenzo(ah)anthraceneA ^{M#}	<0.04	<0.04	<0.04	<0.04	<0.04		mg/kg	A-T-019 s
Fluo ran thene _A ^{M#}	<0.08	<0.08	<0.08	0.15	0.38		mg/kg	A-T-019 s
Fluorene _A ^{M#}	<0.01	<0.01	<0.01	<0.01	<0.01		mg/kg	A-T-019 s
Inden o(123-cd) pyrene _A ^{M#}	<0.03	< 0.03	<0.03	< 0.03	0.13		mg/kg	A-T-019 s
Napht halene _A ^{M#}	<0.03	<0.03	<0.03	<0.03	<0.03		mg/kg	A-T-019 s
Phenant hrene _A ^{M#}	<0.03	<0.03	<0.03	0.05	0.19		mg/kg	A-T-019 s
Pyrene _A ^{M#}	<0.07	<0.07	<0.07	0.13	0.37		mg/kg	A-T-019 s
Total PAH _A ^{M#}	<0.08	<0.08	<0.08	0.55	2.38		mg/kg	A-T-019 s

Client Project Name: BDW Trading / NIAB 1, Cambridge

					Client	Project Ref	: 25459		
Lab Sample ID	13/01097/9	13/01097/10	13/01097/11	13/01097/12	13/01097/13				
ClientSampleNo									
ClientSampleID	HP9	HP10	HP11	HP12	HP13				
Depth to Top	0.20	0.20	0.20	0.20	0.20				
Depth To Bottom									
Date Sampled	01-Mar-13	01-Mar-13	01-Mar-13	01-Mar-13	01-Mar-13				τ
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES			n	Method ref
Sample Matrix Code	6AE	6E	6E	5AE	6AE			Units	K ci
Triazines (x11)									
Ametryne	<0.2	-	-	-	-			mg/kg	Sub con
Atraton	<0.1	-	-	-	-			mg/kg	Sub con
Atrazine	<0.02	-	-	-	-			mg/kg	Sub con
Cyanazine	<0.02	-	-	-	-			mg/kg	Sub con
Prometon	<0.1	-	-	-	-			mg/kg	Sub con
Prometryn	<0.02	-	-	-	-			mg/kg	Sub con
Propazine	<0.02	-	-	-	-			mg/kg	Sub con
Simazine	<0.02	-	-	-	-			mg/kg	Sub con
Simetryn	<0.1	-	-	-	-			mg/kg	Sub con
Terbuthylazine	<0.02	-	-	-	-			mg/kg	Sub con
Terbutryn	<0.02	-	-	-	-			mg/kg	Sub con

Client Project Name: BDW Trading / NIAB 1, Cambridge

Client Project Ref: 25459

					Client	Project Ref	. 23433		
Lab Sample ID	13/01097/9	13/01097/10	13/01097/11	13/01097/12	13/01097/13				
Client Sample No									
ClientSampleID	HP9	HP10	HP11	HP12	HP13				
Depth to Top	0.20	0.20	0.20	0.20	0.20				
Depth To Bottom									
Date Sampled	01-Mar-13	01-Mar-13	01-Mar-13	01-Mar-13	01-Mar-13				ħ
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES				Method ret
Sample Matrix Code	6AE	6E	6E	5AE	6AE			Units	Meth
TPH CWG									
Ali >C5-C6 _A #	-	-	< 0.01	<0.01	< 0.01			mg/kg	A-T-022 s
Ali >C6-C8 _A [#]	-	-	< 0.01	<0.01	< 0.01			mg/kg	A-T-022 s
Ali >C8-C10 _A [#]	-	-	<0.01	<0.01	< 0.01			mg/kg	A-T-022 s
Ali >C10-C12 _A [#]	-	-	<0.1	<0.1	<0.1			mg/kg	A-T-023 s
Ali >C12-C16 _A [#]	-	-	<0.1	<0.1	<0.1			mg/kg	A-T -023 s
Ali >C16-C21 [#]	-	-	<0.1	<0.1	<0.1			mg/kg	A-T-023 s
Ali >C21-C35 _A #	-	-	<0.1	<0.1	<0.1			mg/kg	A-T -023 s
Total Aliphatics [#]	-	-	<0.1	<0.1	< 0.1			mg/kg	A-T-022+23s
Aro >C5-C7 _A #	-	-	<0.01	<0.01	<0.01			mg/kg	A-T-022 s
Aro >C7-C8 _A [#]	-	-	<0.01	<0.01	<0.01			mg/kg	A-T-022 s
Aro >C8-C9 _A #	-	-	<0.01	<0.01	<0.01			mg/kg	A-T-022 s
Aro >C9-C10 _A #	-	-	<0.01	<0.01	<0.01			mg/kg	A-T -022 s
Aro >C10-C12 _A [#]	-	-	< 0.1	<0.1	< 0.1			mg/kg	A-T -023 s
Aro >C12-C16 _A #	-	-	<0.1	<0.1	<0.1			mg/kg	A-T -023 s
Aro >C16-C21 _A [#]	-	-	< 0.1	<0.1	< 0.1			mg/kg	A-T -023 s
Aro >C21-C35 _A #	-	-	<0.1	<0.1	<0.1			mg/kg	A-T -023 s
Total Aromatics _A [#]	-	-	<0.1	<0.1	<0.1			mg/kg	A-T-022 +23s
TPH (Ali & Aro) _A [#]	-	-	<0.1	<0.1	<0.1			mg/kg	A-T-022 +23s
BTEX - Benzene _A #	-	-	<0.01	< 0.01	<0.01			mg/kg	A-T -022 s
BTEX - Toluene _A #	-	-	<0.01	<0.01	<0.01			mg/kg	A-T-022 s
BTEX - Ethyl Benzene [#]	-	-	<0.01	<0.01	<0.01			mg/kg	A-T -022 s
BTEX - m & p Xylene _A #	-	-	<0.01	<0.01	<0.01			mg/kg	A-T-022 s
BTEX - o Xylenex [#]	-	-	<0.01	< 0.01	<0.01			mg/kg	A-T -022 s
MTBE _A #	-	-	<0.01	<0.01	<0.01			mg/kg	A-T-022 s

SUPPLEMENTARY GROUND GAS MONITORING RECORDS

																								AGS AGS
																							25459	1 of 11
		hdragen Su unde Jaun(00	00	00	00	00	00	00	00	00	00	00	00	0.0	00	00	00	00	00		Carrue, Ref:		:::6nc
	სმედმე ენიკე	Curtan Manaxda (aan)	00	00	00	00	00	00	00	00	00	00	00	00	0.0	00	00	00	00	00		2		
	A - Tenus 1 - Tenus 7 un	Cle :	2.0	0.2	6.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		Duc		
S	+ grovits :: A + nr. bob A + nr. bob	il 8		'	•	•		•	-	•	•	•	•	•		'	'	'	1	•				
SULT	7-9-5-4 9-9-5-0-9- 4-5-0-9- 0-9-5-4-5-0-9-5- 0-9-5-4-5-0-9-5- 0-9-5-4-5-0-9-5-0-9-5-0-9-5-0-9-5-0-9-5-0-9-5-0-9-5-0-9-5-0-0-0-0	(av. / %) (j. v. / %)	26,	, și	, ö,	, ö,	ŀö,	Рō,	ŀō,	Рō,	ŀö,	Рō,	Þб,	204	522	322	322	52,	522	የ ፖ.		Creeked Dy		
IG RE	thruch the second second second second second second second second second second second second second second s	Methine (Methine)	, ij	ò	à	à	10	ò	.10	.10	.10	.10	.10	0.0	0.0	0.0	0'0	0.0	0'0	0'0		C'ec		-
IORIN	- 90 - 90 - 90 - 90 - 90 - 90 - 90 - 90	Dana Seria Seria Seria Seria	90	20	90	90	90	90	90	90	90	90	90	00			1.		<i></i>	1.				NAB - Phase
MONITORING RESULTS	<u>Equipment Jood & Remunes</u> Dismologit + Medument Claur & Sumy + Graund: Dry + Mind: Sumg + Al-Tema: 18Degf Dismologit + GY2000 + MedumentOvertues + Graind: Duma + Mind: Medum + Al-Tema: 7Degf Dismologit + GTM 40 + MedumentOvertues & Sumy + Grand: Dry + Mind: Medum	Nuter Death Death	ъно	'	•	•	-	•	-	-	-	-	-	vнu	-		-			•		Due	24/10/12	NIAB
	<u>Equimen, Jved & Zenuro</u> 5 anie.er + G/2000 + Weu 5 anie.er + G/2000 + Weu 5 anie.er + G ⁻ M 40 + Weu	9,87 9,87	00%	00.00	00,667	00,00	00''''	0.0,667	00''''	00,00	.77'00	0.0_{ccc}	0.0_{cor}	00''''	0.0_{46}	0.0_{46}	0.0_{46}	0.0_{cor}	0.0_{22}	0.0_{66}			77	
IN-SITU GAS	101. Jyd 101. Jyd 101 - 6/2 101 - 6/2	Autor Presure (101	2.07	'	-	•	-	•	-	•		,		2007	-	-	-	-		•	11 <i>3</i> % -			
ź		provinc Data No Data No	2.07											1007				ı			- 24 G D T	Consided Dy		
	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ы тайты Соладия Соластия Соластия	1000/2012	E aces	20 0000	00 soos	30 secs	120 5005	130-000	240-6005	200-0000	300 6006	420-6006	001002012	E neer	20 5005	00 5005	20.4005	120-0000	130,5005	לפע (ד- h. u. 2010) פער 380 - 3. מעל 3. עני 120 - עניי בעראיי בעראיי ביווי ד- 3% אלי.	ů		Cantac:
	<u>Сатыр 347.</u> Сатып 3413 3419 1013 1013 1013	Marsurad Insulution Dear	_	1	1	1	1	I	Ι	Ι	Ι	I	I	4.22	Ι				Ι	I	Stardy Surkey V	RSK Environment I td	ore Road	impstead dshire 9RT
	aroso Buve Buve Buve	pur ng Buar ungy				•	•				`	`	`	2 [2]	2 (2)	2 (2)	2 (2)	2 (2)	2 (2)	2 (Z)	- 2014, 33 -	SK Enviro	18 Frogmore Road	Hemel Hempstead Hertfordshire HP3 9RT
	Tarka Tarka Tarka Tarka	Daaray Pastar D	ËН	ËН'	ŔН	ŔΗ	RΗ′	ŔΗ	КH′	RΗ′	RΗ′	RΗ′	RΗ′	RΗ′	ΕH′	ĽН′	ВН′	ËН	ΕH′	ĖН	key le huu o	â		

-A REPUBLIC CONTRACT AND ADDRESS AND ADDRESS AND ADDRESS ADDRE ADDRESS ADDR

																												25459		2 of 11 AGS
	hydragen Su unde Su unde	00	00	00	00	'	•	•	'	'	•	•	00	00	00	00	00	00	00	00	00	00	00	00	•		Contract Tell		adr _e	
	Curtan Manazda (aun)	00	00	00	00	'	'	'	'	'	•	'	00	00	00	00	00	00	00	00	00	00	00	00	'		2			
		0.0	0.0	0.0	0.0	'	'	'	'	'	•	•	0.3	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	'		anc Du e			
S	다.종	•	,		•	00	00	00	00	00	00	00	0.0	00	00	00	00	00	00	00	00	00	00	00	00					
MONITORING RESULTS	(ne.) %) (Je. / Mi	92,	92.	527	የ አን	20.9	66.	76,	,ō,	00.	06.	.6.	207	20.0	200	200	20.0	20.0	20.0	20.0	20.0	2002	2002	202	ōō,		C pocod Dy			
IG RE	lan, wî	0.0	0.0	0.0	0.0	0.0	0.0	0'0	0'0	0'0	0'0	0'0	r_{00}	0.0	0.0	0.0	0'0	0.0	0.0	0'0	0'0	0'0	0'0	0'0	0.0		0.60			-
IORIN	184740 89790 18670			1.		00	Γ.	\vec{r} ,	Ë,	\mathcal{T} ,	2.	\vec{r} ,	20	20	20	20	20	20	20	20	20	20	20	00	90					NAG - PN239
MON	Nurer Deur Ding (vнu		-	-	-	-	-	-			•				-	-	-	-	-			Due	24/10/12		0 N N D
	S ¹ , 2	0.0_{66}	0.0_{66}	0.0_{46}	0.0_{66}	0.0_{46}	0.0_{46}	0.0_{60}	0.0_{460}	0.0_{60}	0.0_{227}	0.0_{22}	0.2_{66}	0.2_{ccc}	0.2_{66}	0.2_{660}	0.2_{660}	0.2_{66}	0.2_{66}	0.2_{66}	$0.2_{RG'}$	0.2_{66}	0.2_{RG}	$0A_{\rm R}$	0.0_{cor}			7	-	
IN-SITU GAS	Autor Preserce (100)		,			000.							5.07	5.07	2.0,	2.0,	2.0.	2.0.	2.0,	2.0.	2.0.	5.07	5.07	2007	5707	11. – <i>3</i> % attr		n.,		
ź	ansolo ansolo ansolo					1750 /		-	-	-	•	-	2.0.	2.0.	2.0.	2.0.	2.0.	2.0.	2.0.	2.0.	2.0.	2.0.	2.0.	2007	5.01	ימאפי בעמיפאים היווי -	Consided Sys			
	Suiz & The of Mariang (eursedine)	240 5005	300-6005	300.000	420.6005	11/16/2012	Esecs	30 A CCS	00-20CE	10-1005	120,6005	130,5005	10/00/2012	Eace	20.000	00.9005	20-3005	120,0000	130,5005	240 6005	300.000	300-6005	420,0000	0571672012	E aces	- 70'0' - 11' - 10'0'. An Vol - 11' - 10'0'	ŭ		Cartaco	
	hsu ulah Debri (jing)	1	1	Ι	1	425	I	I	I	I	I	I	I	I	I	I	I	1	I	1	I	I	I	I	I		ht tranu	re Road	npstead Ichim	RT R
	pur ng Buar uniyy	2 (2)	2,2	2 (2)	2 (2)	<u> </u>	<u> </u>	(c) c	(c) c	(c) c	(C) 2	(C) 2											,	2	2	5 - <u>56 - 5</u> 6 - 5	PSK Environment I td	18 Frogmore Road	Hemel Hempstead Hertfordshim	HP3 9RT
	Dagaay Day ah D	ĔΗ	ËН,	ËН'	ĔΗ	ŔΗ	ĔΗ	'НЯ	ĘН,	'НЯ	ΕH′	EΗ′	EH2	EH2	EH2	EH2	EH2	EH2	EH2	EH2	EH2	EH2	EH2	EH2	EHZ	√ey. I= h. u. P= Peuk.33= 3.eudy3.u.e.	ă			

-A REPUIZED AND TRANSMERSENCE AN ADDITIONAL MEMORY AT ADDRESS AND ADD

																												25459		
lydragen Ar mele									•	•				•	•		•			-		00	0.0	00	00		Contract Ref:		adr _e	
Curson Menologia				-				-	-	1			-	-	-	-		-	-	-	ı	00	00	00	00					-
0	(H.85)			-	-			-	-	ı	-		•	-	-	-	ı			-	•	0.0	•		•		and Du e			
١Ì	1961 1	00	00	00	00	00	00	00	00	00	00	0.0_{kG}	00	00	-	-	•			-	ı	00	00	00	00					
იაჩზიე	[04/30]	ōō,	ōō,	26.	ōō,	ōō,	66,	ōō,	ōō,	ōō,	670Z	225 CZ	0.02	96.	ŀ6,	26.	26.	Þö,	Þ6,	P6.	ŀō,	907	ŀö,	۲ō,	ŀō,		C booking			
Metru re	[w./ w]	0.0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	.22/010	0'0	0'0	-	-	-	-	-	-		0'0	0.0	0'0	0'0		C'ec			
Sec. Sec.	D-1-5	0.5	0.5	97	6.5	65	0.5	0.5	0.5	0.5	0.2	1.140	12	12	2.	2,	17	Γ,	17	Ë,	17	00	0.7	07	07					
Mule Deco	i Britt			,					'	'			•	•		,	'			'	•	1.11	•	,	'		Due	24/10/12		
Q,	5	0.0_{46}	0.0_{46}	0.0_{460}	0.0_{460}	0.0,667	0.0_{460}	0.0_{co}	0.0_{460}	0.0_{460}	$0.0_{\rm H}$	0.0_{46}	0.0_{66}	0.0,667	0.0_{22}	0.0_{460}	0.0_{460}	0.0_{460}	0.0_{460}	0.0_{66}	00_{66}	0.0_{cor}	0.0_{cor}	0.0_{460}	0.0_{cc}			142		
Alitas Prestore		2.07	5.07	2.0.	2.0.	2.0,	2.0,	5.07	2.07	5.07	905.	905.	900 .	905.	905.	900.	905.	905.	200,	900.	200	675.			'	1 5% s		n.,		
ракала Около	9 7 H 7 H 7 H	2.0.	2.0.	2.0.	2.0.	2.0.	2.0.	2.0.	2.0.	2.0.	900.	900.	900.	900.	900.	900.	900.	955.	900.	900.	955.	•		-	•	ажы <u>Толак үе</u> н ш. – <u>8</u> % «М	çonu ed Dy			
Sue & The	a' Martang Jeunsedune)	30.6005	00.4005	30 accs	120-6006	130-5005	240 6006	300-6006	300-6006	420,0000	11/16/2012	E aces	30,6005	00-5005	10 aces	120-6005	130 5 005	240 4004	300 6006	300 6006	4 2 0 6005	05/16/2012	E aces	30,6005	00-1005	Nale: To To Net	ů		Can. ac.:	
hou u.a. Dere	(Bau)	I	I	I	I	I	I	I	Ι	I	I	I	I	I	Ι	I	I	I	Ι	I	I	3.23	I	I	I			re Road	npstead	
But a naki		2	2	7	2	2	2	2	2	2	2	2	2	2	າ	ົ	2	2	2	2	2	2 (2)	2 (2)	212	2.12	. ан Эсик, 88 – 8. сифу 8. г. с	RSK Environment I td	18 Frogmore Road	Hemel Hempstead	
Loonay Sector	5.0P	EH2	EH2	ZHR	ZHR	EH2	EH2	ZHB	ZHR	2H3	EH2	EH2	EH2	2H3	ZHR	ZHR	ZHB	ZHR	ZHB	ZHR	EH2	2H3	EHS	сня	2H3	kaja la huan Pr	ă			

IN-SITU GAS MONITORING RESULTS

AND LEADER AND PARTICLE AND REAL AND AN ADDRESS AND ADDRES

																												25459		4 of 11
	hdragen Su ande Jurut,	00	00	00	00	00	00	00			•		•	•	•	00	00	00	00	00	00	00	00	00	00		Carriaci Ref:		:aßn _e	
	Curson Maravde (Jani)	00	00	00	00	00	00	00	00	•		'	•	•	•	00	00	00	00	00	00	00	00	00	00		ą			
		•				•	•	•	•		•	•		•	-	5.0	010	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		an:			
S	山区	00	00	00	00	00	00	00	•		-	'		•	-	00	00	00	00	00	00	00	00	00	00					
MUNI IOKING KESULIS	(ne.)«) Johno	ŀö,	26,	Рō,	26,	26,	26,	26,	201	F9,	227	ō77.	ō77.	ō77.	577	202	202	202	202	20.3	20.3	20.3	20.3	202	202		C posciel D			
בא אב	lastragi atriag	0.0	0'0	0.0	0'0	0.0	0.0	0'0			-	-	-	-	-	0.0	010	0'0	0'0	0'0	0'0	0'0	0.0	0'0	0'0		0.60			÷
טאווי	1 n/1 %) ap volic up r 10	775	75	70	70	775	70	70	00	V_{s}	Υ,	ς,	Υ,	Υ,	Υ,	02	70	70	70	0.2	20	.15	02	20	20					NIAB - Phase 1
	l Bail) Lang Lang	•	-		-			-	281		-	-	-	-	-	272	-	-	-	•	-	-		-	•		Due	24/10/12		NIAB
_	Sec. 10	$0.0_{cc'}$	0.0_{46}	0.0_{cc}	0.0_{66}	0.0_{ctr}	$0.0_{cc'}$	$0.0_{co^{-1}}$	0.0_{ccc}	0.0_{cc}	0.0_{667}	0.0_{667}	00_{cc}	0.0_{cdr}	0.0_{ccc}	-07.66	-07 60	-07 46	-07,60	-0.1 au	-0.7 40	$-0.7_{-0.0}$	-0.7_{AG}	-0.7 40	-0.7 66			142		
	Auno Prese (101				,				200,			,			•	2.0.	ı	,		ı	•	•	•		•	11 <i>3</i> % s				
	(nii.) anssaic anang	•	-		-			-	•		-	-	-	-	-	2.0.			-	ı		1	•			ימאהו <u>המומצעה היווי - א</u> איאי	Consided Dy			
	Сыла&Тте a' (kurang jeutsed.ne)	00 3005	120 0000	130, 5005	240 6005	300,5005	300,5005	420 5005	11/16/2012	E sees	20 5005	00 sees	20-2002	120-0005	130,000	1000/2012	Eace	20 6005	00 1001	00 socs	120,0000	130,5005	240 5005	300 0000	300 6005	- nover - 111 - 1000	ů		Cartac:	
	htsurulation Depti (1980)	I	I	I	I	I	I	I	3.50	I	I	I	I	I	Ι	4.32	I	Ι	I	I	Ι	I	Ι	Ι	I			re Road	npstead	shire RT
	purn <u>e</u> Burnetiney	2 (2)	2 (2)	2 (2)	2 (2)	2 (2)	2 [2]	2 [2]	<u>হ</u> হ	(2) P	5,5	<u> </u>	3 (2)	5,5	222					`	、	、	`	、		o – Peuk, 33 – 3. audy 3.1 e.	PSK Environment I td	18 Frogmore Road	Hemel Hempstead	Hertfordshire HP3 9RT
	Daaray Paylar D	2H3	SHЗ	2H3	2H3	2H3	2H3	2H3	2H3	2H3	2H3	2H3	2H3	2H3	EH3	С) НЯ	0H3	ОHЯ НЯ	СНЯ	CHR	CHR	СНЯ	СНЗ	RHC	сня	≺ay I- h.u. >-	4			

-A REPLEMENT AND TRANSPORT WAS AN ADVITED REPORT OF THE ADVISED AND ADVIDENT ADVIDENT.

																												25459	
hydrogen Ar melo)II.55	00	00	00	00	00	00	00	00	00	00	00	00	-	-		-	-	-	-	-		-	•	9		201.00.10		:::Brc
Curson Mercedo	00.000 (0.00)	00	00	00	00	00	00	00	00	00	00	0.0	00	-	-		-	-	-	-	-		-	•	00		0		
0	; II. 66	0'0	0.0	0.0	0'0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-				-					-		0.0	ľ	202		
١ļ	(%)	00	00	00	00	00	00	00	00	00	0.0	0.0	00	00	00	00	00	00	00	00	00	00	00	00	ci V				
საწრიე	(%/ va)	202	202	95,	ōō,	2002	2007	2002	207	.772	20.1	207	202	670Z	2007	95.	۲ō,	25.	26.	Þ6.	P6,	Рō,	1/57	۲ö,	26,	:	Crecked <i>St</i>		
Metalitie	(W.144)	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0.0	0'0	0.0	0.0	0'0	0'0	0'0	0.0	0'0	0'0	0'0	0'0	0'0	0.0	0'0	0.0	ò	•	02.0		
95 57 57 57 6	10.1%)	70	00	20	20	20	20	20	02	20	0.7	0.7	.10	20	ï,	2.	2,	\mathcal{T}	2,	Γ,	Γ.	Γ,	Γ.	ï,	, v				
Muler Sec. 2	(Brit)	-	275	-	-		-	-		-	-	-	-	547	-		-	-	-	-	-		-		/6',		מרי	24/10/12	
		87.0-	00''''	.99'00	.9200	00''''	.99'00	00'77	0.0_{cor}	.92'00	0.0_{cor}	0.0_{ee}	.22'00	.99'00	.22'00	00''''	.99'00	. ⁹⁹ 00	.99'00	.9200	. ⁹⁹ 00	00''''	.9900	0.0_{ccc}	00,66		-	24	
A.nus December	ргада (пн.)		2007	1					•		-			2007	-		-	-					-	•	2,0, 2,0,	1 KP			
Dae na Dae na c	a raa	-	2007	-	-		-	-		-	-	-	-	200.	-		-	-	-	-	-		-		20, 20, 20, 1		Se pa cupo		
Su é X ne	a' Mariang Jeunsedine)	5005 (X 4	03103212	E nees	20 0000	00.0001	100 VOC	120,6005	130, 5005	240.6005	300 0000	300 0000	420-0000	11/16/2012	E aces	20 0000	00 5005	20 4005	120 6005	130 5005	240 6005	300.6005	300-5005	420 5005	1000/2012				Carraci
htsu u.a.t Vera	(Bru)	Ι	121	Ι	Ι	I	Ι	Ι	I	Ι	Ι	Ι	I	25712	Ι	I	I	Ι	Ι	Ι	Ι	I	-	Ι			nmert Ltd	ore Road	mpstead Ishire
Burn ruh) Duri of		,	2 (2)	2 (2)	2 (2)	2 (2)	2.12)	2 (2)	2 (2)	2.12)	2 (2)	2 (2)	2 (2)	121 2	10) P	<u> (</u> 2 2	(2) P	(C) 2	(C) 2	(C) C	(2) P	<u> (</u> 2 2	(C) 2	50.0	, e	00.00-	RSK Environment Ltd	18 Frogmore Road	Hemel Hempstead Hertfordshine
Tauray Do un	-av. a.	сня	Сня	сня	сня	рня	лня	лня	BHC	лня	BHC	BHC	рня	рня	Сня	ОНЯ	СНЯ	сня	лня	сня	лня	ОНЯ	лня	BHC	EHK		α̈́		

IN-SITU GAS MONITORING RESULTS

-A REPUISION TO THE PART AND THE SAME AND AN ADDRESS AND ADDRESS A

																													25459		6 of 11
	aptor Surus (n.c.)	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00						Carrier Ref:		:aßr _e	
	Curson Maraxda (auni)	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	-					2			
		0.0	0.0	0.0	0.0	0.0	0.0	0'0	0'0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0'0	0.0	0.0	0.0	0.0	-			'		an:			
S	Чĕ	a,	a,	ō,	ġ,	Q,	a,	ō,	c,	ā,	ġ,	•	'	•	'	•	•	'	'	•	•	'	00	00	00	00					
SUL	(av.)%)	96,	95.	96,	93.	96.	96.	Рō,	26,	26,	26,	202	26,	,ö,	,ö,	, ö	,ö,	,ö,	,ö,	, ö,	,ö,	,ö,	777	207	121	18.2		C booking			
MONITORING RESULTS	Maturia (Network)	ò	à	. 'O	, ij	ò	ò	. 10	, ji	. 10	Э	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		ă. C			-
IORI	5955 1975	2.	V_{2}	2.	, 2	V,	ч, ,	Γ.	2.	2.	2.	02	775	2.	2.	2,	2,	ς,	2,	27	27	12	.70	32	33	3.3				_	NAB - Phase 1
MON	n na Ninac Ninac	•	•	•	•	'	•	•	'	'	•	206	'	'	'	•	•		'	•	•	'	232	•	'	'		Sue	24/10/12		NIAB
	9 ,875	0.0,667	0.0,667	0.0_{46}	00'77	0.0_{46}	0.0_{ctr}	00'00	00'77	00'''''	0.0_{22}	0.2_{26}	0.2_{66}	02,66	0.2_{co}	02,66	0.2_{cc}	0.2_{20}	02_{cc}	02,66	02_{66}	0.2_{60}	57.70-	-07,46	-07,40	-0.7 40			77	_	
IN-51 IU GAS	Autor Presure (111)	•	•		•	•	•	•	·	1		2007	•	•		•				•		ı	900.		ı	'	- 11. – <i>3</i> % viv.		e		
Ż	parano Decano Decano	•	•	•	'	'	'	'	'	'	•	655.	'	•	•	•	'	'	'	•	'	'	'	'	'	'	ימאה. בייז מציאה ר	Complete Dy			
	Suiz & The d' Murian g jeutsediniej	E acci	X0.000	00 0000	2002.00	120 6005	130-5005	240-6005	300-6005	200-000	420-2002	001002012	E 6003	20.600	00-000	00,000	120 6005	130,5005	240 6005	300-5005	300 6006	4 2 0 6006	11/16/2012	E acco	30 GOG	00-000	איז איני דביי – המאיק.			Contract	
	hterr under Debrin (1991)	I	I	Ι	I	I	I	I	I	I	I	101	I	I	Ι	I	I	I	I	I	I	I	4.20	I	I	I			re Road	npstead	ыле АТ
	րտոչ Յատությ					`		,	,	,		2 (Z)	(Z) Z	(Z) Z	2 (2)	2 (2)	Z) Z	2 (2)	2,2	2 (2)	2 (2)	2 (2)	(C) C	3 (2)	3 (2)	3 (3)	2 - SS - Mae -	DSK Emiliarianisti I td	18 Frogmore Road	Hemel Hempstead	Hertfordshire HP3 0RT
	Econory Postor Cl	EHK	EHK	EHK	ВНК	EHK	EHK	EHK	EHK	EHK	EHK	EHK	EHK	EHK	EHK	EHK	EHK	EHK	КНК	EHK	EHK	EHK	EHK	EHK	EHK	EHK	√ας I= h.u. P= Peus.33= 3.αιάγβμια.	ă		5	

AN MERI ZUMAZ MUM TRANI MAN 2002 YARAMATANAN MENANDATI ADMINI MENANDATI ADMINI MUM

																														٩ <u></u>
																												25459		7 of 11
	hdrogen Su pride (1010)				-		00	00	00	00	00	00	00	00	00	00	00		-				'		'		Contract Ref:		aßr _e	
	Curtan Maravde (Jani)			•		'	00	00	00	00	00	00	00	00	00	00	00	'					•		'		2			
		•	•	'	'	'	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	'	'		'		•	'	'		an:			
S	计图	00	00	00	00	00	00	ø,	ø,	Ő,	Q,	Ø,	Ő,	ō,	Q,	ø,	đ,						•		'					
MONITORING RESULTS	(ne / %)	રુ	રુ	02.	02.	02.	20.3	202	202	20.2	202	20.2	20.3	202	2014	202	202	96,	96,	96.	96.	96.	РБ,	96.	96,		C posau j			
NG RE	Metrurie (Metrurie	0.0	0.0	0.0	0'0	0.0	0.7		0.7	0.7	0.7	0.7	0.7	. ⁷ 0	ò	. 10	, 'O	0.0	0'0	0.0	0.0	0.0	0.0	0.0	0.0		oa.c			-
TORIN	Darter Darter Marter	3.4	3.4	3,5	92	3.5	00	60	715	20	775	70	60	90	90	$V\bar{0}$	140		22	<i></i>	27	Ζ,		Ū,	60				i	NAB - Phase 1
NOM	Muller Death Diag (•	•			,	υHγ	ı	'	•		•	•		•			292				•	•		'		onc Cure	24/10/12		NIAB
		-07,65	-07,90	-07,85	-07,92	-07,66	0.2_{60}	0.2_{60}	0.2_{66}	0.2_{20}	0.2_{20}	0.2_{66}	0.2_{66}	0.2_{26}	$0.2_{cc'}$	0.2_{co}	$0.2_{cc'}$	0.2_{cc}	0.2_{ccc}	0.2_{ccc}	0.2_{ccc}	0.2_{co}	$0.2_{cc'}$	0.2_{ccc}	0.2_{cor}	4		42	-	
IN-SITU GAS	ansa.c ansa.c	•	•			'	2.0.	ı	'									2007	-				'		'	1 5% s				
Ľ)nu/ ankolo anang					'	2.0.	•	•	•		•	•	-	•	-	-	1000	-					-	'	ימאהו <u>המומצעה היווי - 3% א</u> איי	Consided Sys			
	Suiz & The d' Muriang Jeursed, ne	00 SOCS	120,000	130 5005	240 6005	300,5005	1000/2012	E sees	X0.000	00-3005	10-11-C	120-0005	130, 5005	240 0000	300-5005	300-6005	4 3 0 0000	02103212	E neer	20 5005	00-1005	30-30CS	120-0005	130-5005	240 0000	.ava: - <u>-</u> ava.	ŭ		Carrace	
	frau u.a. Dean Cean	I	I	I	-	I	3.27	Ι	Ι	Ι	Ι	Ι	Ι	Ι	I	Ι	Ι	272	-	Ι	Ι	Ι	Ι	Ι	I			ore Road	mpstead	BRT BRT
	purn <u>e</u> Burn uny,	222	222	<u>S</u> 2	2(2)	222	,	`	,	,		,	,	,	`	,		2 (2)	2 (2)	2 (2)	2 (2)	2 (2)	2 (2)	2.(2)	2 (2)	/αν. 1 - 11. μ. 2 - 2αμγ.33 - 3. αιάγ 3μα.	DCK Environment I td	18 Frogmore Road	Hemel Hempstead	HP3 9RT
	Dagaay Sey, an D	КНК	КНК	КНК	КНК	КНК	WS3	2SW	WS3	2SW	2SW	WS3	2SW	WS3	WS3	WS3	WS3	2500	25M	kay le huu a	٥									

CREATER WARDER LOOK AND CONTRACTORS OF AN 25568 RANDOM VARIANCE 2018 15-

																											1			3
																											e':	25459	8 of 11	
	habagen Su unde (nuur)	ı	·		1	,		,	ı	·					ı	ı	ı	ı	ı	ı	ı		•	ı	1		Contract Ref:		:a6n _e	
	Cursan Maraada (aani)		-		•	'		-					•			•	•	•	•	•	•	•	•	•	•		2			
			,		'	,		'	ı	'		'				ı	ı	ı	'		ı	'	•	ı	'		Due			
S	可义	•	-	•	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	ο,	20	20	20	20	20					
IN-SITU GAS MONITORING RESULTS	(nv.) vý Lokikoj	96,	95,	95,	7777	ōō,	26.	25.	25.	26,	2.07	26,	26,	2.07	507	96,	96,	19.2	.5,	00,	52.	121	32,	32,	32,		C tecked Dy			
NG RE	Metrurio (% / vol.)	0.0	0.0	0.0	0.0	0.0	0.0	0'0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		, io	0.7	ò	, io	, io		C'ec		Ţ	
TORIN	Dener Dener Merer	60	20	20	20	Ņ,	22	22	22	22	22	22	22	22	22	Γ.	Γ.	27	20	2.7	2.4	2.7	2.0	2.9	2.9				NAB - Phase 1	
NON	nuer Nuer Benn	•	'	•	22/	'	•		•	•	•	•	•	•	•	ънч	•	•	•	•	•	•	•	•	'		Due	24/10/12	NAB	
GASI	96 86 91	0.2_{66}	22'775	0.2_{co}	.99 ⁰ 00	00'00	00''''	. ⁹⁹⁷ 010	.99 ⁰ 00	.99 ⁰ 00	00'00	.22/010	.99'0'0	00'00	0.0_{cor}	$0.7_{-0.07}$.92,75	$0.7_{-0.07}$	$0.7_{-0.07}$	0.7 460	$0.7_{-0.07}$	$0.7_{-0.07}$	07,667	$0.7_{-0.07}$.92 (20)			1 2		
SITU	Autor Pressore (nut)		·		955.	'			•	'						\overline{OZO} ,	ı	1	'	•	ı	•	•	ı	'	1 <i>5</i> % -				
Ż	ри, раслас Савлас		'		•	'		'	'	•		•				020	•	ı	'	•	•	•	•	ı	'	ימאה בינים מאיזה ביווי ב- <u>א</u> נאיזיי	Consided Sy			
	ды & Т те di Man an 19 (cursed me)	300-6005	300 6005	420,6006	11/16/2012	E sees	30 ACC	00 1005	20 2002	120,0000	130, 5005	240-6005	300-0000	300-6005	420,6005	1000/2012	Escer	20.4005	00.4005	20.4005	120,0000	130, 5005	240 5005	300 0000	300-0005	אמיני דבי – המאה.	ŭ		Can ue:	
	hterr under Desch (1981)	I	I	Ι	544	I	Ι	1	Ι	Ι	Ι	I	I	Ι	Ι	2.96		Ι	I	I		I	I		I		nment td	ore Road	mpstead dshire 9RT	
	թերք Յես ութի	2 (2)	2 (2)	2 (2)	3 (2)	<u>(</u>) 20	1212	621.22	0120	3 (2)	3 (3)	3 (3)	3 (3)	3 (3)	3 (3)	,			,				•		,	.а пе Арта 28-38-30 год - с 1 год - 1 Хау	RSK Environment I td	18 Frogmore Road	Hemel Hempstead Hertfordshire HP3 9RT	
	Dalau ay Davian D	2SW	2SW	WS3	WS3	2SW	25M	25M	25M	25M	WS3	WS3	WS3	WS3	WS3	WS-7	WS-7	WS-7	1.SW	WS//	WS//	WS-7	WS11	WS11	1.SM	kes In India.	ď		4	

-X 802, 2.20-5, 610, TAMUMA SECTOR OF ITAMINE MARKET MORE AS AND RELEASED.

																											3e':	25459		9 cf 11 4GS
	lydrogen Su ande (aant	•	00	00	00	00	00	00	00	00	00	00	00	•	•	'	•	-	'	'	'	'	'	00	00		Carrier Ref		:::6n _c	
	Curran Maraxde (arn)	•	00	00	00	00	00	00	00	00	00	00	00	•	•	'	•	'	'	'	ı	'	'	00	93		2			
		•	00	•	-		-	-	-	'	•	'	-	•	•	-	•	-	-	-	•		'	0.7	0.0		2nc			
S	可义	20	00	00	00	00	00	00	00	00	00	00	00	•	•		•	-			•		'	ġ,	ei V					
SULT	(ne.)«J lođeo	92,	202	202	202	75,	95,	76,	62,	22,	22,	62,	62,	$\Sigma'Z$	90Z	202	102	202	20.02	96,	90,	26,	26,	,ö,	05,		C tecked Dy			
IG RE	Metrurie (Ski trad	0.1	0.0	0.0	0'0	0.0	0.0	0'0	0.0	0.0	0.0	0.0	0.0	-				-		-	-	-	-	0.1	0.1		C'RC			-
IORIN	produce abye (My with	2.9	97	0.3	V0	02	60	5.	V,	ς δ	ς,	ν,	2.	02	60	66	07	60	•••	V_{2}	15	Ë,	11	2.7	22					NIAB - Phase 1
MONITORING RESULTS	Muler Deuri Mag (1.22	-		-	-	-		-			-	1.25				-		-	-	-	-	DH"			Due	24/10/12		NAB
_	9 ,85	0.7 467	0.0,00	0.0_{ctr}	0.0_{cor}	0.0_{co}	0.0_{cc}	0.0_{120}	0.0_{66}	0.0_{co}	0.0_{22}	0.0_{121}	0.0_{66}	$0.0_{co^{-1}}$	0.0_{cor}	0.0_{ccc}	$0.0_{cd'}$	00'00	0.0_{ccc}	0.0_{cc}	0.0_{22}	0.0_{cc}	0.0_{cor}	0.0_{ccc}	0.0_{20}			742		
IN-SITU GAS	Anna Prasaro (101)		ā35,				-		'	,		•	-	900.		'							•	1012		11. – <u>5</u> % att.				
N-N	Suerae Secure (III)	•	.323	•	-		-	-		'	-		-	-	•			-	-			-		1012	'	ימאה. בית מצוגה י	ýC po nubo			
	Suiz & The d' Namarng (eursedthe)	420-5005	001002012	Eace	30 GOCI	00-1000	10-00C	120,6006	130,5005	240 6006	300-5005	300-6005	420,6006	11/16/2012	E nees	20 6005	00-000	00 4005	120 6005	130 5005	240 6006	300-6006	300-6006	10002012	Esce	- ακαι <u></u> ακα.	Da		Contract	
	no u usat noso noso	1	2.96	I	Ι	I	Ι	Ι	I	I	Ι	I	I	2.90	I	Ι	I	Ι	Ι	I	Ι	Ι	I	2.33	Ι		nment tr	ire Road	mpstead tehira	JRT 1
	թերք Յեր եր	`	2 (2)	2 (2)	Z) Z	2 (2)	2.12	(Z) Z	2.12	2 (2)	2 (2)	(Z) Z	2 (2)	2 (2)	1212	(C) 2	<u> </u>	(C) C	(C) 2	(C) 2	3 (2)	(C) 2	3 (3)		•	.» – Реду. 88 – 8. онду 8. и о	RSK Environment I tri	18 Frogmore Road	Hemel Hempstead Hertfordshine	HP3 9RT
	Daaray Pav.ar D	WS17	WS17	1.SW	1.SM	1.SW	1.SM	1.SM	1.SM	WS77	7.SW	77SW	77SW	7.SW	7.SW	1.SW	7.SW	1.SM	1.SW	1.SM	WS-7	1.SM	WS-7	WSH	HSW	key le huu o	ă			

-A 302 JUNE AD, TRHING SEE WHITE DURING WARDED NOT STREET ADDING NO

	5.0																											3e':	25459		10 of 11 468
	n hydragen Ie Sulande (aan)	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	'	'	'	'	'		Carrier 7e [°]		ამიე	
	Curtaun Martaxde Data)	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	'	'	'	'	'		Sue			
		0.0	0.0	0.0	0'0	0.0	0'0	0'0	0.0	0'0	0.0	•	•	•	'			-	•		-		'	1	•	•		ń			
S	计图	Q,	a,	Ő,	ō,	o,	Ø,	ō,	¢,	Ø,	•	•	•	•	'	'	'		•	'		00	00	00	00	00					
SULT	(m//s) (a6860	22,	22,	22,	12.	52,	62,	62,	06,	06,	ōō,	.6,	12.	121	121	12,	127	127	121	127	127	202	207	92,	121	22,		vic po			
IG RE	Metrurie (% / vel)	0.7	, ji	0.7	0.7	0.7	01	0.7	, ij	01	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		C record			-
ORIN	Dene Dene Servel	ò	3.4	3.5	3.6	35	3.5	33	33	32	00	ε,	2.9	3.3	3.4	3.4	3.4	33	3.4	3.3	33	, G	3.5	3.5	3.7	40				Ē	NIAB - Phase 1
MONITORING RESULTS	Nuller Death Deag				-		-			-	NU	-	-			-	-	-			-	ън ^с		•				Due	24/10/12		NIAB
_	95 89 11	0.0,467	0.0,00	0.0_{460}	0.0_{100}	0.0_{460}	0.0_{100}	0.0_{66}	0.0_{46}	0.0_{100}	0.0_{120}	0.0_{121}	0.0,667	0.0_{66}	0.0_{46}	0.0_{46}	0.0_{100}	00''''	0.0_{100}	0.0_{66}	00''''	0.0,22	0.0_{22}	0.0_{22}	0.0_{100}	0.0_{66}			240		
IN-SITU GAS	Auros Prosecto (101)		,		,				,	-	2007					,	,	,	,	-	,	900.			,		11 - 25 M				
S-NI	nii) paraoo galang				-		-	-		-	-		•	•		-	-	-		-	-	1007		'			ימאה <u>ה</u> מומצאה היווי ב-2% איזיי	Conaled Dy			
	Suiz & The Brink The Brink (Minuc) (eursed The)	X0.00CC	00,000	30 accs	120,6005	130-5005	240-6006	300-6005	300-6005	420,6000	00710/2012	E aces	30,6005	00-5005	20 5005	120 6000	130 6005	240 0000	300 6005	300-6005	430 A00A	11/16/2012	E aces	30 aces	00-0000	70 5005	Valid: To To Tabler	ů		Canaci	
	htsar ar an Dearn (110g (1	1	Ι	I	I	Ι	I	1	I	2.39	I	I	I	I	I	I	I	I	I	I	2./0	I	I	I	I		ht trame	re Road	npstead Ichim	BT IC
	րտոչ Յատությ	•			,		,		`		(Z) Z	Z) Z	(Z) Z	2 (Z)	2 (2)	Z) Z	Z) Z	(Z) Z	2 (Z)	Z) Z	(Z) Z	22	(c) c	3 (2)	2.130	(2) (2) (2)	- Peuk. 66 - 6	RSK Environment I td	18 Frogmore Road	Hemel Hempstead Hertfordshim	
	Daaray Pav.ar D	HSW.	HSW.	HSW	HSM	HSM	HSM	HSM	HSM	HSM	HSW.	HSW.	HSW.	HSW.	HSW	HSW	HSM	HSW.	HSW	HSM	HSW.	HSW	HSM	HSW	HSM	HSW	/ws/1=11.4.5=2eux.33=3.euy3.4.2.	ă			

AS 802, 2.2028. DOI: TOTHIND SECTION OF DUMINICATION TO SUBJECT NO.

				e':	25459	
nagerbri Su unde (unu)	'	'	ı	Carriaci 3a'		
Curtan Manaxda (aun)	'	'	'	2		
Clo (11.75	,			and		
Ч X	00	00	90			
(nv. / sg.) Loftière)	, N,	02.	02,	C becod Dv		
Maturia (Netral)	0.0	0.0	0.0	0.60		
(n// %) ap vn ((n// n)	4.7	42	42			-
l feut Nace Dang		-		ang	24/10/12	
Sec. (1977) Sec. (1977)	0.0_{ctr}	0.0_{ctr}	0.0_{20}		2	
(niit) annsan-c				5. 28. 29. 1	÷.,	
ansac Janang Janang		-		n Lawer Double Linu T 5% ww. Canaled 24		
дые & Тіпе di Marianing al Marianing al Marianing	120 6005	130 6006	240 6005	- 700 - 100 - 10000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1		
no a uran no a (Bout	I	I	I	Study Suite. 7	menten un	
թերը Յեր երչ	<u> </u>	3 (2)	3 (2)	- 50° mae - 1	18 Frogmore Road	•
Tauray Sustan Cl	HSW	HSW	HSW.	Key I = In.u. ³ = 2eut.33 = 3.auty3.u.e. Vez:		

CALERIAN STOCKED INCOMENDATION (SEE 18-18) (SEE 19-19) (SEE 19-19) (SEE 19-19)

APPENDIX - Results of Gas Monitoring (date 16/01/2013)

Atmospheric Pressure (mb): 1009

AP Conditions (BBC Website): Rising

Equipment Used GA2000+

Temperature: 1C

Weather Conditions: Clear, recent snow fall

Observation								
Product								
(wdd) Cld								
Hydrogen Sulphide (ppm)	0	0	0	0	0	0	0	0
Carbon Monoxide (ppm)	0	0	0	0	0	0	0	0
(%)	0	0	0	0	0	0	0	0
Oxygen (%/vol)	21.4	21.1	21.0	21.0	21.0	21.0	21.0	21.0
Carbon Dioxide (%/vol)	0.1	0.7	0.7	0.7	0.7	0.7	0.7	0.7
Methane (%/vol)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Flow (I/hr)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Time (secs.)	0	15	30	60	06	120	180	240
Differential Pressure (mb)								
Depth to base of well (m bgl)	4.27							
Depth to water (m bgl)	0.80							
Location	BH1							

Observation								
Product								
(mqq) Clq								
Hydrogen Sulphide (ppm)	0	0	0	0	0	0	0	0
Carbon Monoxide (ppm)	0	0	0	0	0	0	0	0
(%) Lel	0	0	0	0	0	0	0	0
Oxygen (%/vol)	20.7	19.5	18.0	18.0	18.2	18.2	18.2	18.2
Carbon Dioxide (%/vol)	0.1	6.0	6.0	6.0	0.9	0.9	6.0	0.9
Methane (%/vol)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Flow (I/hr)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Time (secs.)	0	15	30	60	06	120	180	240
Differential Pressure (mb)								
Depth to base of well (m bgl)	4.34							
Depth to water (m bgl)								
Location	BH2							

2	7.	
2		

Observation									Observation									
Product									Product									
(udd) Clid									DID	(ppm)								
Hydrogen Sulphide (ppm)	0	0	0	0	0	0	0	0	Hydrogen	Sulphide (ppm)	0	0	0	0	0	0	0	0
Carbon Monoxide (ppm)	0	0	0	0	0	0	0	0	Carbon	Monoxide (ppm)	0	0	0	0	0	0	0	0
(%)	0	0	0	0	0	0	0	0	LEL	(%)	0	0	0	0	0	0	0	0
Oxygen (%/vol)	21.2	20.2	18.9	17.71	17.7	17.71	17.7	17.7	Oxygen	(10/%)	21.4	21.3	20.8	20.8	20.8	20.8	20.8	20.7
Carbon Dioxide (%/vol)	0.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	Carbon	Dioxide (%/vol)	0.1	0.9	0.9	0.9	0.4	0.4	0.4	0.4
Methane (%/vol)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Methane	(10/%)	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Flow (I/hr)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Flow	(I/hr)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Time (secs.)	0	15	30	60	06	120	180	240	Time	(secs.)	0	15	30	60	06	120	180	240
Differential Pressure (mb)									Differential	Pressure (mb)								
Depth to base of well (m bgl)	3.22								Depth	to base of well (m bgl)	4.30							
Depth to water (m bgl)									Depth	to water (m bgl)	0.95							
Location	BH3								Location		BHG							

	1		
•	1		1
	K	1	
	ł	ſ	

Observation								
Product								
(mqq) CIIA								
Hydrogen Sulphide (ppm)	0	0	0	0	0	0	0	0
Carbon Monoxide (ppm)	0	0	0	0	0	0	0	0
(%) Lel	0	0	0	0	0	0	0	0
Oxygen (%/vol)	20.7	20.6	17.5	17.5	17.5	17.5	17.5	17.5
Carbon Dioxide (%/vol)	0.1	0.6	0.6	0.6	0.6	0.5	0.5	0.6
Methane (%/vol)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Flow (I/hr)	0	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1
Time (secs.)	0	15	30	60	06	120	180	240
Differential Pressure (mb)								
Depth to base of well (m bgl)	4.3							
Depth to water (m bgl)	1.96							
Location	ЯНВ							

Observation								
Product								
(mqq)								
Hydrogen Sulphide (ppm)	0	0	0	0	0	0	0	0
Carbon Monoxide (ppm)	0	0	0	0	0	0	0	0
(%)	0	0	0	0	0	0	0	0
Oxygen (%/vol)	21.0	20.5	19.4	18.8	18.8	18.8	18.8	18.8
Carbon Dioxide (%/vol)	0.1	2.2	2.2	2.1	2.1	2.1	2.1	2.1
Methane (%/vol)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Flow (I/hr)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Time (secs.)	0	15	30	60	06	120	180	240
Differential Pressure (mb)								
Depth to base of well (m bgl)	3.20							
Depth to water (m bgl)								
Location	WS3							

	1		
•	1		1
	K	1	
	ł	ſ	

Observation								
Product								
(mqq)								
Hydrogen Sulphide (ppm)	0	0	0	0	0	0	0	0
Carbon Monoxide (ppm)	0	0	0	0	0	0	0	0
(%) Lel	0	0	0	0	0	0	0	0
Oxygen (%/vol)	21.2	21.1	21.3	21.3	21.3	21.3	21.3	21.3
Carbon Dioxide (%/vol)	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Methane (%/vol)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Flow (I/hr)	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Time (secs.)	0	15	30	60	06	120	180	240
Differential Pressure (mb)								
Depth to base of well (m bgl)	2.90							
Depth to water (m bgl)	0.83							
Location	71SW							

Observation								
Product								
(mqq)								
Hydrogen Sulphide (ppm)	0	0	0	0	0	0	0	0
Carbon Monoxide (ppm)	0	0	0	0	0	0	0	0
(%)	0	0	0	0	0	0	0	0
Oxygen (%/vol)	21.3	20.5	20.1	20.0	20.0	20.0	20.0	20.0
Carbon Dioxide (%/vol)	0.1	1.2	1.2	1.2	1.2	1.2	1.2	1.2
Methane (%/vol)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Flow (I/hr)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Time (secs.)	0	15	30	60	06	120	180	240
Differential Pressure (mb)								
Depth to base of well (m bgl)	2.32							
Depth to water (m bgl)	1.30							
Location	HSW							

APPENDIX - Results of Gas Monitoring (date 18/04/2013)

Atmospheric Pressure (mb): 1006

AP Conditions (BBC Website): Rising

Equipment Used GA2000+

Temperature: 11C

Weather Conditions: Overcast, dry

	Observation								
	Product								
	(udd) Clid								
	Hydrogen Sulphide (ppm)	0	0	0	0	0	0	0	0
	Carbon Monoxide (ppm)	0	0	0	0	0	0	0	0
	(%)	0	0	0	0	0	0	0	0
	Oxygen (%/vol)	21.4	21.2	21.2	21.2	21.2	21.2	21.2	21.2
	Carbon Dioxide (%/vol)	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.2
	Methane (%/vol)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Flow (I/hr)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Time (secs.)	0	15	30	60	06	120	180	240
	Differential Pressure (mb)								
	Depth to base of well (m bgl)	4.27							
	Depth to water (m bgl)	0.89							
	Location	BH1							

Observation								
Product								
(mqq) CIq								
Hydrogen Sulphide (ppm)	0	0	0	0	0	0	0	0
Carbon Monoxide (ppm)	0	0	0	0	0	0	0	0
(%)	0	0	0	0	0	0	0	0
Oxygen (%/vol)	20.7	19.5	19.5	19.5	19.5	19.5	19.5	19.5
Carbon Dioxide (%/vol)	0.1	0.7	0.7	0.7	0.7	0.7	0.7	0.7
Methane (%/vol)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Flow (I/hr)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Time (secs.)	0	15	30	60	06	120	180	240
Differential Pressure (mb)								
Depth to base of well (m bgl)	4.34							
Depth to water (m bgl)								
Location	BH2							

		Ś	2	
7	7			
		4		
		ſ		

Observation										Observation										
Product										Product										
(mqq)										DID	(mdd)									
Hydrogen Sulphide (ppm)	0	0	0	0	0	0	0	0		Hydrogen	Sulphide (ppm)	. c	þ	0	0	0	0	0	0	0
Carbon Monoxide (ppm)	0	0	0	0	0	0	0	0		Carbon	Monoxide (ppm)	. c	þ	0	0	0	0	0	0	0
(%)	0	0	0	0	0	0	0	0		LEL	(%)	c	>	0	0	0	0	0	0	0
Oxygen (%/vol)	21.2	20.1	19.8	19.8	19.8	19.8	19.8	19.8		Oxygen	(Iov/%)	L	C: 1 7	21.5	51.4	21.5	21.5	21.5	21.5	21.5
Carbon Dioxide (%/vol)	0.1	5.0	0.5	5.0	0.5	5.0	0.5	0.5		Carbon	Dioxide (%/vol)		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Methane (%/vol)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		Methane	(0^/%)		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Flow (I/hr)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		Flow	(I/hr)		0	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Time (secs.)	0	15	30	60	06	120	180	240		Time	(secs.)	d	5	15	30	60	06	120	180	240
Differential Pressure (mb)										Differential	Pressure (mb)						-			
Depth to base of well (m bgl)	3.22									Depth	to base of well	(16a m)	4. 00							
Depth to water (m bgl)										Depth	to water	(iba m)	0.1							
Location	BH3	ድ								Location			2							

Page 3 of 5

2	7		
		1	

Observation								
Product								
(mqq) CIIA								
Hydrogen Sulphide (ppm)	0	0	0	0	0	0	0	0
Carbon Monoxide (ppm)	0	0	0	0	0	0	0	0
(%) Lel	0	0	0	0	0	0	0	0
Oxygen (%/vol)	20.0	20.0	20.9	21.0	21.0	21.0	21.0	21.0
Carbon Dioxide (%/vol)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Methane (%/vol)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Flow (I/hr)	0	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1
Time (secs.)	0	15	30	60	06	120	180	240
Differential Pressure (mb)								
Depth to base of well (m bgl)	4.3							
Depth to water (m bgl)	1.75							
Location	ЯНВ							

Observation								
Product								
(mqq)								
Hydrogen Sulphide (ppm)	0	0	0	0	0	0	0	0
Carbon Monoxide (ppm)	0	0	0	0	0	0	0	0
(%)	0	0	0	0	0	0	0	0
Oxygen (%/vol)	21.0	20.5	19.5	19.5	19.5	19.5	19.5	19.5
Carbon Dioxide (%/vol)	0.1	1.2	1.2	1.2	1.2	1.2	1.2	1.2
Methane (%/vol)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Flow (I/hr)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Time (secs.)	0	15	30	60	06	120	180	240
Differential Pressure (mb)								
Depth to base of well (m bgl)	3.20							
Depth to water (m bgl)								
Location	WS3							

Page 4 of 5

	1		
•	1		1
	K	1	
	ł	ſ	

Observation								
Product								
(mqq)								
Hydrogen Sulphide (ppm)	0	0	0	0	0	0	0	0
Carbon Monoxide (ppm)	0	0	0	0	0	0	0	0
(%) Lel	0	0	0	0	0	0	0	0
Oxygen (%/vol)	21.2	21.1	21.3	21.3	21.3	21.3	21.3	21.3
Carbon Dioxide (%/vol)	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Methane (%/vol)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Flow (I/hr)	0	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Time (secs.)	0	15	30	60	06	120	180	240
Differential Pressure (mb)								
Depth to base of well (m bgl)	2.90			_	_		_	
Depth to water (m bgl)	0.83							
Location	WS17							

ion								
Observation								
Product								
(mqq) Olq								
Hydrogen Sulphide (ppm)	0	0	0	0	0	0	0	0
Carbon Monoxide (ppm)	0	0	0	0	0	0	0	0
(%)	0	0	0	0	0	0	0	0
Oxygen (%/vol)	18.9	21.4	21.4	21.4	21.4	21.4	21.4	21.4
Carbon Dioxide (%/vol)	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Methane (%/vol)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Flow (I/hr)	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Time (secs.)	0	15	30	60	06	120	180	240
Differential Pressure (mb)								
Depth to base of well (m bgl)	2.32							
Depth to water (m bgl)	1.57							
Location	HSW							

Page 5 of 5

APPENDIX - Results of Gas Monitoring (date 30/04/2013)

Atmospheric Pressure (mb): 1022

AP Conditions (BBC Website): Rising

Equipment Used: GA 2000 +3

Temperature: 15C

Weather Conditions: Sunny spells, dry

Observation								
Product								
(wdd) Old								
Hydrogen Sulphide (ppm)	0	0	0	0	0	0	0	0
Carbon Monoxide (ppm)	0	0	0	0	0	0	0	0
(%)	0	0	0	0	0	0	0	0
Oxygen (%/vol)	20.8	20.4	20.3	20.2	20.1	20.1	20.1	20.1
Carbon Dioxide (%/vol)	0.1	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Methane (%/vol)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
F low (I/hr)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Time (secs.)	0	15	30	60	06	120	180	240
Differential Pressure (mb)								
Depth to base of well (m bgl)	4.27							
Depth to water (m bgl)	1.70							
Location	BH1							

Observation								
Product								
(mqq) CIq								
Hydrogen Sulphide (ppm)	0	0	0	0	0	0	0	0
Carbon Monoxide (ppm)	0	0	0	0	0	0	0	0
(%)	0	0	0	0	0	0	0	0
Oxygen (%/vol)	20.4	19.9	19.9	19.9	19.9	20.0	20.0	20.0
Carbon Dioxide (%/vol)	0.0	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Methane (%/vol)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Flow (I/hr)	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1
Time (secs.)	0	15	30	60	90	120	180	240
Differential Pressure (mb)								
Depth to base of well (m bgl)	4.34							
Depth to water (m bgl)	1.86							
Location	BH2							

		Ś		Į.
Ľ,	2			
6	ľ	1	1	
2		4		
	-	1		

Observation									Observation									
Product									Product									
(mqq)									DID	(mqq)								
Hydrogen Sulphide (ppm)	0	0	0	0	0	0	0	0	Hydrogen	Sulphide (ppm)	0	0	0	0	0	0	0	0
Carbon Monoxide (ppm)	0	0	0	0	0	0	0	0	Carbon	Monoxide (ppm)	0	0	0	0	0	0	0	0
(%)	0	0	0	0	0	0	0	0	LEL	(%)	0	0	0	0	0	0	0	0
Oxygen (%/vol)	20.8	20.7	20.7	20.7	20.8	20.8	20.8	20.8	Oxygen	(Iov/%)	20.7	19.4	19.4	19.4	19.4	19.4	19.4	19.4
Carbon Dioxide (%/vol)	0.0	0.2	0.2	0.2	0.2	0.2	0.2	0.2	Carbon	Dioxide (%/vol)	0.5	1.4	1.4	1.4	1.4	1.4	1.4	1.4
Methane (%/vol)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Methane	(lov/%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Flow (I/hr)	0.0	-0.1	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	Flow	(I/hr)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Time (secs.)	0	15	30	09	06	120	180	240	Time	(secs.)	0	15	30	60	06	120	180	240
Differential Pressure (mb)									Differential	Pressure (mb)								
Depth to base of well (m bgl)	3.22								Depth	to base of well (m bgl)	4.30							
Depth to water (m bgl)	1.78								Depth	to water (m bgl)	1.14							
Location	BH3								Location		BHG							

Page 3 of 5

	1		
•	1		1
	K	1	
	ł	ſ	

t Observation								
Product								
(mqq) Olq								
Hydrogen Sulphide (ppm)	0	0	0	0	0	0	0	0
Carbon Monoxide (ppm)	0	0	0	0	0	0	0	0
(%) Lel	0	0	0	0	0	0	0	0
Oxygen (%/vol)	20.9	20.0	20.0	20.0	19.9	19.9	19.9	19.9
Carbon Dioxide (%/vol)	0.0	0.9	0.9	0.9	1.0	1.0	1.0	1.0
Methane (%/vol)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Flow (I/hr)	0.01	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Time (secs.)	0	15	30	60	06	120	180	240
Differential Pressure (mb)								
Depth to base of well (m bgl)	4.3							
Depth to water (m bgl)	1.35							
Location	ЯНВ							

Observation								
Product								
OId (mdd)								
Hydrogen Sulphide (ppm)	0	0	0	0	0	0	0	0
Carbon Monoxide (ppm)	0	0	0	0	0	0	0	0
(%)	0	0	0	0	0	0	0	0
Oxygen (%/vol)	20.9	19.8	19.8	19.9	20.0	20.1	20.2	20.3
Carbon Dioxide (%/vol)	0.4	1.4	1.4	1.4	1.3	1.3	1.2	1.1
Methane (%/vol)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Flow (I/hr)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Time (secs.)	0	15	30	60	06	120	180	240
Differential Pressure (mb)								
Depth to base of well (m bgl)	3.20							
Depth to water (m bgl)	1.55							
Location	WS3							

	-	6	
	•	1	
C	l	þ	
2	5		J
ь	ť	6	

Observation	Could not locate position
Product	
(wdd) Cld	
Hydrogen Sulphide (ppm)	
Carbon Monoxide (ppm)	
(%)	
Oxygen (%/vol)	
Carbon Dioxide (%/vol)	
Methane (%/vol)	
Flow (I/hr)	
Time (secs.)	
Differential Pressure (mb)	
Depth to base of well (m bgl)	
Depth to water (m bgl)	
Location	VIS17

Observation								
Product								
(mqq)								
Hydrogen Sulphide (ppm)	0	0	0	0	0	0	0	0
Carbon Monoxide (ppm)	0	0	0	0	0	0	0	0
(%)	0	0	0	0	0	0	0	0
Oxygen (%/vol)	19.5	19.2	19.2	19.1	19.1	1.61	19.1	19.2
Carbon Dioxide (%/vol)	2.0	2.1	2.1	2.2	2.3	2.3	2.2	2.2
Methane (%/vol)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Flow (I/hr)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Time (secs.)	0	15	30	60	06	120	180	240
Differential Pressure (mb)								
Depth to base of well (m bgl)	2.32							
Depth to water (m bgl)	1.6							
Location	HSM							

RSK GAC FOR RESIDENTIAL LAND USE WITH PATHWAYS FOR PLANT UPTAKE

Generic assessment criteria for human health: residential scenario – private gardens

The human health generic assessment criteria (GAC) have been developed during a period of regulatory review and updating of the Contaminated Land Exposure Assessment (CLEA) project. Therefore, the Environment Agency (EA) is in the process of publishing updated reports relating to the CLEA project and the GAC presented in this document may change to reflect these updates. This issue was prepared following the publication of soil guideline value (SGV) reports and associated publications⁽¹⁾ for mercury, selenium, benzene, toluene, ethylbenzene and xylene in March 2009, arsenic and nickel in May 2009, cadmium and phenol in June 2009, dioxins, furans and dioxin-like polychlorinated biphenyls (PCBs) in September 2009. It was also produced following publication of GAC by LQM⁽⁶⁾. Where available, the published soil guideline values (SGV)⁽¹⁾ were used as the GAC. The GAC for lead is discussed separately below owing to it not being derived using the same approach as other compounds.

Lead GAC derivation

The Environment Agency SGV and Tox reports for lead were withdrawn in 2009. In addition, the provisional tolerable weekly intake data published in the Netherlands were withdrawn in 2010 owing to concerns that they were not suitably protective of human health. The withdrawn SGVs were based on a target blood lead concentration of 10µg/dl. In the absence of current guidelines many consultants continue to use the withdrawn SGV. However, as this is not considered sufficiently protective of human health, after attendance at the SOBRA summer workshop June 2011, RSK has revised its GAC and is currently undertaking a review of recent toxicological developments that will be used to refine this GAC further in the coming months. In the meantime, RSK has undertaken sensitivity analysis using the Society of Environmental Geochemistry and Health (SEGH) equation and the CLEA model to produce an interim GAC value. The results are summarised below:

- Using CLEA with the former provisional tolerable weekly intake (PTWI) (25 μ g/kg bw), assuming 100% lead is bioavailable, produces a GAC of 212 mg/kg
- Using CLEA with the former PTWI, assuming 50% lead is bioavailable, produces a GAC of 478 mg/kg
- Using the SEGH equation amended for a blood target concentration of 5.6 µg/dl (equal to the LOAEL for IQ defects) gives a negative GAC number unless other factors such as child background blood concentration or delta are amended. Without undertaking further research into these numbers, RSK can present sensitivity analysis to demonstrate the sensitivity of these input parameters but cannot justify one parameter over another. The results are:
 - GAC between 39mg/kg and 99mg/kg if the value of delta (the slope or response of blood Pb versus soil and dust Pb relationship) only is amended from 5 to 2µg/dl/1000µg/g. The value of 2 was chosen as it is within the reasonable range quoted in the former SGV report
 - GAC between 244mg/kg and 610mg/kg if the geometric mean of blood lead concentration in young children is reduced from 3.4µg/dl to 2µg/dl. This decrease has been simulated on the basis that blood concentrations are likely to decrease over time across the UK owing to a ban on lead in petrol, lead within paint used internally and water pipe replacement. This decrease is considered reasonable as the site is a new development

so lead-based paints will not be used internally and lead water supply pipelines will be absent.

Therefore, given the results above RSK proposes to use a GAC of **300mg/kg** for a residential end use. This value is broadly in the middle of the range of sensitivity modelling results quoted above when background mean blood lead concentrations in children are reduced to reflect a new development. The value is also broadly in the middle of the range of sensitivity modelling results for a range of bioavailability of lead between 50% and 100%. This number is considered reasonably protective of human health while being practical for use.

GAC derivation for other metals and organic compounds

Model selection

Soil assessment criteria (SAC) were calculated using CLEA v1.06 and the supporting UK guidance⁽¹⁻⁶⁾. Groundwater assessment criteria (GrAC) protective of human health via the inhalation pathway were derived using the RBCA 1.3b model. RSK has updated the inputs within RBCA to reflect the UK guidance⁽¹⁻⁵⁾. The SAC and GrAC collectively are termed GAC.

Conceptual model

In accordance with EA Science Report SC050221/SR3⁽³⁾, the residential with private garden scenario considers risks to a female child between the ages of 0 and 6 years old. In accordance with Box 3.1, SR3⁽³⁾, the pathways considered for production of the SAC in the residential with gardens scenario are:

- direct soil and dust ingestion;
- consumption of home-grown produce;
- consumption of soil attached to home-grown produce;
- dermal contact with soil and indoor dust, and
- inhalation of indoor and outdoor dust and vapours.

Figure 1 is a conceptual model illustrating these linkages.

The pathway considered in production of the GrAC is the volatilisation of compounds from groundwater and subsequent vapour inhalation by residents while indoors. Figure 2 illustrates this linkage. Although the outdoor air inhalation pathway is also valid, this contributes little to the overall risks owing to the dilution in outdoor air. Within RBCA, the solubility limit of the determinant restricts the extent of volatilisation, which in turn drives the indoor air inhalation pathway. While the same restriction is not built into the CLEA model, the CLEA model output cells are flagged red where the soil saturation limit has been exceeded.

An assumption used in the CLEA model is that of simple linear partitioning of a chemical in the soil between the sorbed, dissolved and vapour phase⁽⁴⁾. The upper boundaries of this partitioning are represented by the aqueous solubility and pure saturated vapour concentration of the chemical. The CLEA software uses a traffic light system to identify when individual and/or combined assessment criteria exceed the lower of either the aqueous-based or the vapour based

saturation limits. Where model output cells are flagged red the soil or vapour saturation limit has been exceeded and further consideration of the SAC to be used within the assessment is required. One approach that could be adopted is to use the 'modelled' solubility saturation limit or vapour saturation limit of the compound as the SAC. However, as stated within the CLEA handbook⁽⁴⁾ this is likely to not be practical in many cases because of the very low limits and, in any case, is highly conservative. Unless free-phase product is present, concentrations of the chemical are unlikely to be present at sufficient concentration to result in an exceedance of the health criteria value (HCV).

RSK has adopted an approach for petroleum hydrocarbons in accordance with LQM/CIEH⁽⁶⁾ whereby the concentration modelled for each petroleum hydrocarbon fraction has been tabulated as the SAC with the corresponding solubility or vapour saturation limit given in brackets. Therefore, when using the SAC to screen laboratory analysis the assessor should take note if a given SAC has a corresponding solubility or vapour saturation limit (in brackets), and subsequently incorporate this piece of information within the screening analytical discussion. If further assessment is required following this process then an additional approach can be utilised as detailed within Section 4.12 of the CLEA model handbook⁽⁴⁾, which explains how to calculate an effective assessment criterion manually.

Input selection

Chemical data was obtained from EA Report SC050021/SR7⁽⁵⁾ and the health criteria values (HCV) from the UK TOX⁽¹⁾ reports where available. For SAC for total petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAH), toxicological and chemical specific parameters were obtained from the LQWCIEH report⁽⁶⁾. Similarly, toxicological and specific chemical parameters for the volatile organic compound 1,2,4-trimethylbenzene were obtained from EIC/AGS/CL:AIRE⁽⁷⁾.

For total petroleum hydrocarbons (TPH), aromatic hydrocarbons C_5 - C_8 were not modelled since benzene and toluene are being modelled separately. The aromatic C_8 - C_9 hydrocarbon fraction comprises ethylbenzene, xylene and styrene. Since ethylbenzene and xylene are being modelled separately, the physical, chemical and toxicological data for this band has been taken from styrene.

Owing to the lack of UK-specific data, default information in the RBCA model was used to evaluate methyl tertiary butyl ether (MTBE). No published UK data was available for 1,3,5-trimethylbenzene, so information was obtained from the US EPA as in the RBCA model. RBCA uses toxicity data for the inhalation pathway in different units to the CLEA model and cannot consider separately the mean daily intake (MDI), occupancy periods or breathing rates. Therefore, the HCV in RBCA was amended to take account of:

- amendments to the MDI using Table 3.4 of SR2⁽²⁾
- a child weighing 13.3kg (average of 0–6 year old female in accordance with Table 4.6 of SR3⁽³⁾) and breathing 11.85m³ (average daily inhalation rate for a 0–6-year old female in accordance with Table 4.14 of SR3⁽³⁾

1. The 50% rule (for petroleum hydrocarbons, trimethylbenzenes and MTBE)⁽²⁾ where MDI data is not available but background exposure is considered important in the overall exposure.

Physical parameters

For the residential with private gardens scenario, the CLEA default building is a small two-storey terrace house with concrete ground-bearing slab. The house is assumed to have a 100m² private garden consisting of lawn, flowerbeds and incorporating a 20m² plot for growing fruit and vegetables consumed by the residents. SR3⁽³⁾ notes this residential building type to be the most conservative in terms of protection from vapour intrusion. The building parameters are outlined in Table 5.

The parameters for a sandy loam soil type were used in line with SR3⁽³⁾. This includes a value of 6% for the percentage of soil organic matter (SOM) within the soil. In RSK's experience, this is rather high for many sites. To avoid undertaking site-specific risk assessments for this parameter, RSK has produced an additional set of SAC for an SOM of 1% and 2.5%. For the GrAC, the depth to groundwater was taken as 2.5m based on RSK's experience of assessing the volatilisation pathway from groundwater.

GAC

The SAC were produced using the input parameters in Tables 1 to 5 and the GrAC using input parameters in Table 6. The final selected GAC are presented by pathway in Table 7 and the combined GAC in Table 8.

Figure 1: Conceptual model for CLEA residential scenario - private gardens

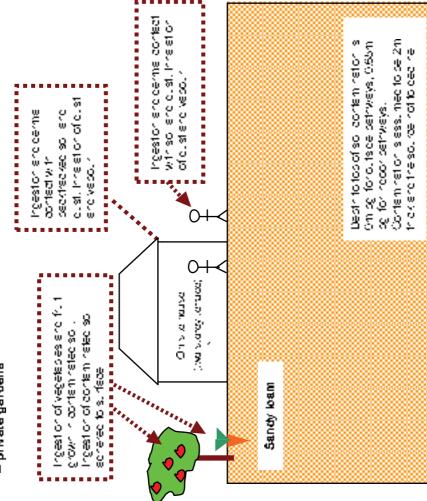


Table 1: Exposure assessment parameters for residential scenario private gardens – in puts for CLEA model

land see	Residenta with nonegrown produce	Crosen and ise
Recedor	Fenseon dage 11o6	Kay genercaa≋un tolon gven i Box 5.1, e zod SC050021/SR3™
£, p rg	estor becervet errS	Key generic assumption gren in Box 3.1, exort SC050021/SR3. Two storey strate to social notes crosen as 1 stration concorrection as tetration concorrection estants outing type interne of protection front recorrithment (Section 3.4.6, recorr SC050021/SR3 j th
So type	Sandy Loan	Most contrion UK sol type (Section 4.5.1, Front Tape 5.1, record Sc000.021/SR5 (%
Slari A.C (age case)	1	Range of age casses corresconding to key genericass unbion that the
End AC (age case)	9	ortcarecentor ∈a young farnae on daged zeroto∈x. Fon Box 5.1, ecot SC050021/SR5*
(%) HOS	9	Representative of sandy centy so eccordingto EA guidance note dated January 2000 entited Cranges Wire Have Made to the CLEA Franework Documents ^M
	-	To arou de SAC for stes where SOM 165% as often accented ay
	2.5	RSK
Ы	7	Mode defaul

			on rate e clas	e (g FW s	/ kg ⁻¹ ∣	BW	Dry weight conversion factor	Home-grown fraction (average)	Home-grown fraction (high end)	Soil Ioading factor	Preparation correction factor
Name	1	2	3	4	5	6	g DW g⁻¹ FW	-	-	g g⁻¹ DW	-
Green vegetables	7.12	6.85	6.85	6.85	3.74	3.74	0.096	0.05	0.33	1.00E-03	2.00E-01
Root vegetables	10.69	3.30	3.30	3.30	1.77	1.77	0.103	0.06	0.4	1.00E-03	1.00E+00
Tuber vegetables	16.03	5.46	5.46	5.46	3.38	3.38	0.21	0.02	0.13	1.00E-03	1.00E+00
Herbaceous fruit	1.83	3.96	3.96	3.96	1.85	1.85	0.058	0.06	0.4	1.00E-03	6.00E-01
Shrub fruit	2.23	0.54	0.54	0.54	0.16	0.16	0.166	0.09	0.6	1.00E-03	6.00E-01
Tree fruit	3.82	11.96	11.96	11.96	4.26	4.26	0.157	0.04	0.27	1.00E-03	6.00E-01
Justification	Table	4.17, 8	SR3 ⁽³⁾				Table 6.3, SR3 ⁽³⁾	Table 4.19, SF	R3 ⁽³⁾	Table 6.3,	SR3 ⁽³⁾

Table 2: Residential with private gardens -home-grown produce data for CLEA model

Demonster	11 24	Age class					
Parameter	Unit	1	2	3	4	5	6
EF (soil and dust ingestion)	day yr ⁻¹	180	365	365	365	365	365
EF (consumption of home-grown produce)	day yr ⁻¹	180	365	365	365	365	365
EF (skin contact, indoor)	day yr ⁻¹	180	365	365	365	365	365
EF (skin contact, outdoor)	day yr ⁻¹	180	365	365	365	365	365
EF (inhalation of dust and vapour, indoor)	dayyr ⁻¹	365	365	365	365	365	365
EF (inhalation of dust and vapour, outdoor)	day yr ⁻¹	365	365	365	365	365	365
Justification		Table 3.1,	SR3 ⁽³⁾				
Occupancy period (indoor)	hr day⁻¹	23	23	23	23	19	19
Occupancy period (outdoor)	hr day ⁻¹	1	1	1	1	1	1
Justification		Table 3.2,	SR3 ⁽³⁾				
Soil to skin ad here nce factor (indoor)	mg cm ⁻² day ⁻¹	6.00E-02	6.00E-02	6.00 E-02	6.00E-02	6.00E-02	6.00E-02
Soil to skin ad here nce factor (outdoor)	mg cm ⁻² day ⁻¹	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00
Justification		Table 8.1,	SR3 ⁽³⁾				
Soil and dust ingestion rate	g day ⁻¹	1.00E-01	1.00E-01	1.00E-01	1.00E-01	1.00E-01	1.00E-01
Justification		Table 6.2,	SR3 ⁽³⁾				

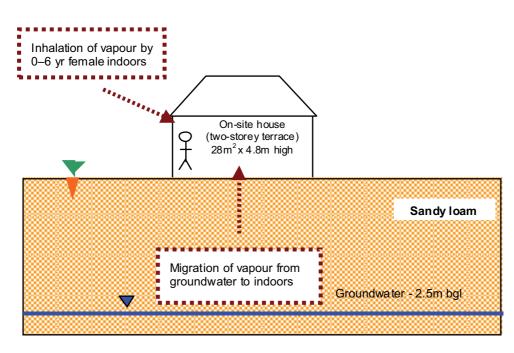
Table 3: Residential with private gardens - land use data for CLEA model

Of note, for **cadmium**, the exposure assessment for a residential land use is based on estimates representative of lifetime exposure AC1-18. This is because the TDI_{oral} and TDI_{inh} – are based on considerations of the kidney burden accumulated over 50 years. It is therefore reasonable to consider exposure not only in childhood but averaged over a longer time period. See the Environment Agency Science report: SC05002 / TOX 3 ⁽¹⁾ and Science Report SC050021/Cadmium SGV ⁽¹⁾ for more information.

		Age (Class					
Parameter	Unit	1	2	3	4	5	6	Justification
Body weight	kg	5.6	9.8	12.7	15.1	16.9	19.7	Table 4.6 $OD2^{(3)}$
Body height	m	0.7	0.8	0.9	0.9	1	1.1	Table 4.6, SR3 ⁽³⁾
Inhalation rate	m ³ day ⁻¹	8.5	13.3	12.7	12.2	12.2	12.2	Table 4.14, SR3 ⁽³⁾
Max exposed skin fraction (indoor)	m ² m ⁻²	0.32	0.33	0.32	0.35	0.35	0.33	
Max exposed skin fraction (outdoor)	m ² m ⁻²	0.26	0.26	0.25	0.28	0.28	0.26	Table 4.8, SR3 ⁽³⁾

Table 4: Residential with private gardens – receptor data for CLEA model

See cadmium note as per Table 3 above.


Table 5: Residential with private gardens - soil and building inputs for CLEA model

Pa ra mete r	Unit	Value	Justification
Soil properties for sandy loam			
Porosity, total	cm ³ cm ⁻³	0.53	
Porosity, air filled	cm ³ cm ⁻³	0.20	
Porosity, water filled	cm ³ cm ⁻³	0.33	Default soil type is sandy loam, Section 4.3.1,
Residual soil water content	cm ³ cm ⁻³	0.12	SR3 ⁽³⁾
Saturated hydraulic conductivity	cm s⁻¹	3.56E-03	Parameters for sandy loam from Table 4.4, SR3 ⁽³⁾
van Genuchten shape parameter (<i>m</i>)	-	3.20E-01	
Bulk density	g cm ⁻³	1.21	
Threshold value of wind speed at 10m	m s⁻¹	7.20	Default value taken from Section 9.2.2, SR3 ⁽³⁾
Empirical function (F _x) for dust model	-	1.22	Value taken from Section 9.2.2, SR3 $^{(3)}$
Ambient soil temperature	к	283	Annual average soil temperature representative of UK surface soils. Section 4.3.1, SR3 ⁽³⁾
Air dispersion model	_	_	
Mean annual wind speed (10m)	m s⁻¹	5.00	Default value taken from Section 9.2.2, SR3 ⁽³⁾
Air dispersion factor at height of 0.8m	g m ⁻² s ⁻¹ per kg m ⁻ 3	2400	Values for a 0.01 ha site, appropriate to a residential land use in Newcastle (most representative city for UK). (from Table 9.1,
Air dispersion factor at height of 1.6m	g m ⁻² s ⁻¹ per kg m ⁻ 3	0	SR3) ⁽³⁾ Assumed child of 6 is not tall enough to rea <i>c</i> h 1.6m
Fraction of site with hard or vegetative cover	m ² m ⁻²	0.75	Section 3.2.6, SR3 ⁽³⁾ based on residential land use

Parameter	Unit	Value	Justification
Building properties for small to	errace hous	ewith ground	bearing floor slab
Building footprint	m ²	28	
Living space air exchange rate	hr⁻¹	0.50	From Table 3.3 and 4.21, SR3 ⁽³⁾
Living space height (above ground)	m	4.8	
Living space height (below ground)	m	0.0	Assumed no basement
Pressure difference (soil to enclosed space)	Ра	3.1	(2)
Foundation thickness	m	0.15	From Table 3.3, SR3 ⁽³⁾
Floor crack area	cm ²	423	
Dust loading factor	Jg m⁻³	50	Default value for a residential site taken from Section 9.3, SR3 $^{(3)}$
Vapour model			
Default soil gas ingress rate	cm ³ s ⁻¹	25	Generic flow rate, Section 10.3, SR3 ⁽³⁾
Depth to top of source (be neath building)	cm	50	Section 3.2.6, SR3 ⁽³⁾ states source is 50cm below building or 65cm below ground surface
Depth to top of source (no building)	cm	0	Section 10.2, SR3 ⁽³⁾ assumes impact from 0m to 1m for outdoor inhalation pathway
Thickness of contaminant layer	cm	200	Model default for indoor air, Section 4.9, $SR4^{(4)}$
Time average period for surface emissions	years	6	Time period of a 0 to 6 year old, Box 3.5, $SR3^{(3)}$
User-defined effective air permeability	cm ²	3.05E-08	Calculated for sandy loam using equations in Appendix 1, SR3 $^{\left(3\right) }$

Figure 2: GrAC conceptual model for RBCA residential with private gardens scenario

Table 6: Residential with private gardens - RBCA inputs

Parameter	Unit	Value	Justification
Receptor			
Averaging time	Years	6	From Box 3.1, SR3 ⁽³⁾
Receptor weight	kg	13.3	Average of CLEA 0–6 year old female data, Table 4.6, ${\rm SR3}^{\rm (3)}$
Exposure duration	Years	6	From Box 3.1, report, SR3 ⁽³⁾
Exposure frequency	Days/yr	350	Weighted using occupancy period of 23 hours per day for 365 days of the year
Soil type – sandy loam			
Total porosity	-	0.53	
Volumetric water content	-	0.33	CLEA value for sandy loam. Parameters for sandy loam
Volumetric air content	-	0.20	from Table 4.4, SR3 ⁽³⁾
Dry bulk density	g cm ⁻³	1.21	
Vertical hydraulic conductivity	cm s ⁻¹	3.56E-3	CLEA value for saturated conductivity of sandy loam, Table 4.4, SR3 $^{\rm (3)}$
Vapour permeability	m ²	3.05E-12	Calculated for sandy loam using equations in Appendix 1, SR3 $^{\rm (3)}$
Capillary zone thickness	m	0.1	Professional judgement

Parameter	Unit	Value	Justification
Fraction organic carbon	%	(i) 0.0348	Representative of san dy loam according to EA guidance note dated January 2009 entitled 'Changes We Have Made to the CLEA Framework Documents' ⁽⁸⁾
		(ii) 0.0058	To provide SAC for sites where SOM < 6% as often observed by RSK
Building	_	_	
Building volume/area ratio	m	4.8	Table 3.3, SR3 ⁽³⁾
Foundation area	m ²	28	
Foundation perimeter	m	22	Calculated assuming building measures $7 \text{ m x } 4 \text{ m to give}$ 28 m^2 foundation area
Building air exchange rate	d ⁻¹	12	
Depth to bottom of foundation slab	m	0.15	Table 3.3, SR3 ⁽³⁾
Foundation thickness	m	0.15	
Foundation crack fraction	-	0.0151	Calculated from floor crack area of 423 cm^2 and building footprint of 28m ² in Table 4.21, SR3 ⁽³⁾
Volumetric water content of cracks	-	0.33	Assumed equal to underlying soil type in assumption that
Volumetric air content of cracks	-	0.2	cracks become filled with soil over time. Parameters for sandy loam from Table 4.4, $SR3^{(3)}$
Indoor/outdoor differential pressure	Pa	3.1	From Table 3.3, SR3 ⁽³⁾

References

- Environment Agency (2009), 'Science Report SC050021/benzene SGV, toluene SGV, ethylbenzene SGV, xylene SGV, mercury SGV, selenium SGV, nickel SGV, arsenic SGV, cadmium SGV, phenol SGV, dioxins, furans and dioxin like PCBs SGVs', 'Supplementary information for the derivation of SGV for: benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel, arsenic, cadmium, phenol, dioxins, furans and dioxin- like PCBs', and 'Contaminants in soil: updated collation of toxicological data and intake values for humans: benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel, arsenic, cadmium, phenol, dioxins, furans and dioxin- like PCBs', March 2009, May 2009 and September 2009.
- 2. Environment Agency (2009), *Human health toxicological assessment of contaminants in soil. Science Report Final SC050021/SR*2, January (Bristol: Environment Agency).
- 3. Environment Agency (2009), Science Report SC050021/SR3. Updated technical background to the CLEA model (Bristol: Environment Agency).
- 4. Environment Agency (2009), Contaminated Land Exposure Assessment (CLEA) software, version 1.06.
- 5. Environment Agency (2008), *Science Report SC050021/SR7. Compilation of Data for Priority Organic Pollutants for Derivation of Soil Guideline Values* (Bristol: Environment Agency).
- 6. Chartered Institute for Environmental Health and Land Quality Management (2009), 'The LQM/CIEH Generic Assessment Criteria for Human Health', second edition.
- 7. CL:AIRE (2009), Soil Generic Assessment Criteria for Human Health Risk Assessment (London: CL:AIRE).
- 8. Changes made to the CLEA framework documents after the three-month evaluation period in 2008, released January 2009 by the Environment Agency.

3ARD ENS	
ITH PRIVATE G	
WITH	
RE SIDE NTI A L	
HUMAN HEALTH - RE	
CRITERIA FOR HUMAN	
RIC ASSE SS MENT (
GENERIC .	

Table 7

SAC Appropriate to Pathway SOM 1% (mg/kg) Soil Saturation SAC Appropriate to Pathway SOM 2% (mg/kg) Soil Saturation SAC Appropriate to Pathway SOM 8% (mg/kg) Soil Saturation Oral Inhibition Combined Limit (mg/kg) Oral Inhibition Combined Limit (mg/kg) uman Health Generic Assessment Criteria by Pathway for Residential Scenario - Private Gardens GrAC (mg/l) Notes

Metals														
Arsenic	(b)(c)		324E+01	8.50E+01		NR	3.24E+01	8.50E+01		NR	3.24E +01	8.50E+01		R
Cadmium	(p)		1.12E+01	1.85E+02	1.10E+01	NR	1.12E+01	1.8壬+02	1.10E+01	NR	1.1 无 +01	1.85E+02	1. 10E+01	NR
Chromium (III) - akide			1.84E+04	3.5Æ +03	2.98E+03	NR	1.84E+04	3.55E+03	2.98E +03	NR	1.84E+04	3 55E+03	2.98E+03	NR
Chromium (VI) - hexavalent			1.02E+01	4.25E+00	3.21E+00	NR	1.02E+01	4.2 1 +00	3.21E+00	NR	1.0 2 E +01	4.25E+00	3.21E+00	NR
Caper			2.66E+03	1.04E+04	2.33E+03	NR	2.66E+03	1.04E +04	2.33E+03	NR	2.6Œ +œ	1.04E+04	2.33E+03	NR
Lead	(a)		3.00E+02			NR	3.00E+02			NR	3.00E +02			NR
Elemental Mercury (Ha ³)	(p)(q)	9.40E-03		1.70E-01		4.31E+00		4.24E-01		1.07E+01		1.02E+00		2.58E+01
Inomanic Mercurv (Ha ²⁺)	(q)		1.81E+02	2.55E+03	1.69E+02	NR	1.81E+02	2 5Æ +03	1.69E+02	NR	1.81E+02	2.55E+03	1.69E+02	NR
Methyl Mercury (Hg ⁴⁺)	(q)	2.00E+01	1.39E+01	1.59E+01	7.40E+00	7.33E+01	1.39E+01	3.08 +01	9.55E+00	1.42E+02	1.39E+01	6.53E+01	1.14E+01	3.04E+02
N ick el	(p)(q)	,	5.31E+02	1.27E+02	,	NR	5.31E+02	1.2	,	NR	5.31E+02	1.27E+02	,	NR
Selenium	(p)(c		3.50E+02			NR	3.50E+02	NR		NR	3.50E+02			NR
Zinc	(c)		3.75E+03	2.55E+07		NR	3.75E+03	25年+07		NR	3.75E+03	2.55E+07	'	NR
C yari de			2.66E+01	3.97E+00	3.68E+00	NR	2.66E+01	39万+00	3.68E+00	NR	2.66E+01	3.97E+00	3.68E+00	NR
Volatile Organic Compounds														
Benzene	(q)	7.20E+00	1.12E-01	2.69E-01	7.92E-02	122E+03	2.28E-01	4,99E-01	1.57E-01	2.26E+03	4.89E-01	1.04 00	3.32E-01	4.71E+03
Toluene	(q)	1.90E+03	1.47E+02	6.26E+02	1.19E+02	8.69E+02	3.35E+02	1. 38E+03	2.70E +02	1.92E+03	7.59E+02	3.14E+03	6.11E+02	4.36E+03
Ethylbenzene	(q)	2.60E+02	1.06E+02	1.70E+02	6.52E+01	5.18E+02	2.51E+02	3.98E+02	1.54E+02	1.22E+03	5.70E+02	9.32E+02	3.54E+02	2.84E+03
Xylere - m		8.40E+01	2.02E+02	5.56E+01	4.36E+01	6.25E +02	4.80E+02	1.31E+02	1.03E +02	1.47E+03	1.09E+03	3.07E+02	2.40E+02	346 = + 03
Xylere - o	(q)	1.00E+02	1.85E+02	5.98E+01	4.52E+01	4.78E+02	4.38E+02	1.40E +02	1.06E+02	1.12E+03	9.96E+02	3.27E+02	2.46E+02	2.62E+03
Xylene - p		8.70E+01	1.91E+02	5.34E+01	4.17E+01	5.76E+02	4.51E+02	1.2低+位	9.82E+01	1.35E+03	1.02E+03	2.94E+02	228E+02	3.17E+03
Totalxylene		8.40E+01	2.02E+02	5.56E+01	4.36E+01	625E+02	4.80E+02	1.31E+02	1.03E+02	1.47E+03	1.09E+03	3.07E+02	2.40E+02	3,46E+03
Methyl + Butyl ether		2.20E+03	1.75E+00	1.84E+02	1.75E+00	1.66E +04	3.68E+00	2 40E +02	3.67E+00	2.16E+04	7.41E+00	3.70E+02	7.37E+00	3.34E+04
Trichloroethene		1.80E+00	2.83E+00	1.10E-01	1.06E-01	1.54E +03	6.25E+00	2.30E-01	2.2 Æ -01	3.22E+03	1.40E+01	5.11E-01	4.9 至 -01	7.14E+03
Tetrachloroethene		3.60E+00	1.06E+01	1.03E+00	9.36E-01	4 2 4E +02	2.44E+01	2.30E +00	2.10E+00	9.51E+02	5.55E+01	5.28E+00	4.82E+00	2.18E+03
1.1.1-Trich croethane		2.60E+01	320E+02	6.33E+00	6.21E+00	1.43E+03	6.97E+02	1.2Œ 1 01	1.27E+01	2.92E+03	1.55E+03	2.84E+01	2.79E+01	6.39E+03
1.1.1.2 Tetrachloroethane		1.40E+01	5.19E+00	1.08E+00	8.93E-01	2.60E+03	1.22E+01	2.50E +00	2.08E+00	6.02E+03	2.78E+01	5.83E+00	4.82E+00	1.40E+04
1.12.2-Tetrachlorcethane		1.40E+01	2.70E+00	2.76E+00	1.37E+00	2.67E +03	5.85E+00	5.6年+00	2.87E+00	5.46E+03	1.30E+01	1.24E+01	6.34E+00	120E+04
Carbon Tet rachlori de		5.50E-02	1.05E+00	1.81E-02	1.79E-02	1.52E+03	2.41E+00	3.97E-02	3.9€ 402	3.32E+03	5.44E+00	8.99E-02	8.9Æ-02	7.54E+03
1,2-DicHorœthane		3.00E-01	3.06E-02	6.46E-03	5.34E-03	3.41E+03	5.53E-02	9.32E-03	7.98E-03	4.91E+03	1.05E-01	1.60E-02	1.39E-02	8.43E+03
VinyICHoride		1.90E-02	3.69E-03	5.43E-04	4.73E-04	1.36E+03	6.64E-03	7.02E-04	6.35E-04	1.76E+03	1.21E-02	1.07E-03	9.86E-04	2.69E+03
1,2,4-Trimethylbenzene		7.50E-02		3.51E-01		5.57E+02		8.55E-01		1.36E+03		2.10E+00		3.25E+03
1,3,5-Tiimethylbenzene		4.70E-02	1.45E+01	4.60E-01	4.56E-01	9.47E+01	3.47E+01	1.10E+00	1.09E+00	2.26E+02	7.94E+01	2.59E+00	2.56E+00	5.33E+02
Semi-Volatile Organic Compounds														
Acenaphthene		3.20E+00	2.18E+02	3.46E+03	2.05E+02	5.70E+01	5.08E+02	8 54E +03	4.79E+02	1.41E+02	1.06E+03	2.03E+04	1.01E+03	3.36E+02
Acenaphthylene		4.20E+00	1.78E+02	3.27E+03	1.68E+02	8.61E+01	4.17E+02	8 03E +03	3.97E+02	2.12E+02	8.90E+02	1.91E+04	8.51E+02	5.06E+02
					00 100									

Semi-Volatile Organic Compounds													
Acenaphthene	3.20E+00	2.18E+02	3.46E+03	2.06E+02	5.70E+01	5.08E+02	8 54E +03	4.79E+02	1.41E+02	1.06E+03	2.03E+04	1.01E+03	3.36E+02
Acenaphthy lene	4.20E+00	1.78E+02	3.27E+03	1.68E+02	8.61E+01	4.17E+02	8 03E +03	3.97E+02	2.12E+02	8.90E+02	1.91E+04	8.51E+02	5.06E+02
Anthracene	2.10E-02	2.31E+03	1.08E+05	2.26E+03	1.17E+00	5.03E+03	261 +05	4.93E+03	2.91E+00	9.33E+03	6.15E+05	9.19E+03	6.96E+00
Benzo(a)antin acene	3.80E-13	7.00E+00	5.55E+00	3.10E+00	1.71E+00	8.98E+00	6 83E +00	4.69E+00	4.28E+00	1.01E+01	1.41E+01	5.88E+00	1.03E+01
Benzo(b)fluoranthere	2.00E- B	8.06E+00	1.79E+01	5.56E+00	1.22E +00	9.78E+00	1.9 元 +01	6.53E+00	3.04E+00	1.07E+01	2.05E+01	7.02E+00	729E+00
Benzo(gh,i)perylene	2.60E-04	6.68E+01	1.27E+02	4.38E+01	1.54E-02	7.04E+01	1.3 2 +0 2	4.59E+01	385E-02	7.19E+01	1.34E+02	4.68E+01	9.23E-02
Benzo(k)flucranthene	8.00E-14	125E+01	2.66E+01	8.51E+00	6.87E-01	1.44E+01	283E+01	9.56E+00	1.72E+00	1.53E+01	2.91E+01	1.00E+01	4.12E+00
Chrvsene	2.00E-03	8.76E+00	1.95E+01	6.00E+00	4.40E-01	1.20E+01	24年+01	8.04E+00	1.10E+00	1.41E+01	2.72E+01	9.27E+00	2.64E+00
Dibenzo(a,h)arthracene	6.00E-14	1.19E+00	2.13E+00	7.62E-01	3.93E-03	1.33E+00	24 年 + 00	8.5 01	9.82E-03	1.39E+00	2.56E+00	9.0 至-01	2.36E-02
Fluoranthene	2.30E-01	2.59E+02	2.69E+04	2.57E+02	1.89E +01	4.67E+02	62至+04	4.63E+02	4.73E+01	6.78E+02	1.28E+05	6.74E+02	1.13E+02
Fluorene	1.90E+00	1.70E+02	4.35E+03	1.63E+02	3.09E +01	3.91E+02	1.0. 元 +0.4	3.77E+02	7.65E+01	8.00E+02	2.54E+04	7.76E+02	1.83E+02
Indero(1.23-cd)pvrene	2.00E-14	4.58E+00	1.04E+01	3.18E+00	6.13E-02	5.74E+00	1.1 元 +01	3.85E+00	1.53E-01	6.37E+00	1.22E+01	4.19E+00	3.08E-01
Pheranthrene	5.30E-01	9.35E+01	5.04E+03	9.18E+01	3.60E +01	2.04E+02	1.2蛋+04	2.01E+02	8.96E+01	3.81E+02	2.86E+04	3.76E+02	2.14E+02
Pyrene	1.30E-01	5.69E+02	6.18E+04	5.63E+02	220E+00	1.05E+03	1.44E+05	1.04E+03	5.49E+00	1.56E+03	2.97E+05	1.56E+03	1.32E+01
Benzo(a)pyrene	3.80E-03	121E+00	2.62E+00	8.26E-01	9.11E-01	1.42E+00	2.81E+00	9.43E01	2.28E+00	1.5差 +00	2.90E+00	9.98E-01	5.46E+00
Naphthalene	1.90E+01	2.68E+01	1.64E+00	1.54E+00	7.64E+01	6.36E+01	3. 93E+00	3.70E +00	1.83E+02	1.4 3 + 02	9.27E+00	8.71E+00	4.32E+02
/ wiedg	(14)	4.51E+00	3 11F+02	1 84F+02	N 16ELON	9.38E+0	4 20F+02	2 90F +02	0 16E1M		5 01ETM	4.1Ʊ00	1 71 ELOF

PRIVATE GARDENS	
JENTIAL WITH	
ALTH - RE SID	
R HUMAN HE	
CRITERIA FOI	
C ASSE SS MENT	
ENERIC	

Table 7

	GrAC	SAC Approp	SAC Appropriate to Pathway SOM 1% (mg/kg)	0M 1% (mg/kg)	SoilSaturation	SAC Appropria	SAC Appropriate to Pathway SOM 2 5% (mg/kg)	4 2 5% (mg/kg)	Soi IS aturation	SAC Appropria	SAC Appropriate to Pathway SOM 6% (mg/kg)	0M 6% (mg/kg)	Soi IS aturation
C ompound	e (mg/l)	Oral	Inhalation	C ombi ned	Limit (mg/kg)	Oral	Inhalation	Combined	Lim it (mg/kg)	Oral	Inhabtion	Combined	Limit (mg/kg)
Total Petroleum Hvdrocarbons													
Aliphatic hydrocarbons EC 5-EC	1.00E+01	1 4.79E+03	2.98E+01	2.97E+01	3.04E+02	1.08E+04	5.4 元 +0 1	5.46E+01	5.58E+02	2.35E+04	1.13E+02	1.13E+02	1.15E+03
Aliphatic hydrocarbans >EC ₆ -EC ₈	5.40E+00	1.43E+04	7.27E+01	7.26E+01	1.44E+02	3.21E+04	1.62 +02	1.62E+02	3.22E+02	6.36E+04	3.72E+02	3.71E+02	7.36E+02
Aliphatic hydrocarbons >EC ₈ -EC ₁₀	2.30E-01	1.46E+03	1.89E+01	1.88E+01	7.77E +01	2.44E+03	4,60E+01	4.58E+01	1.90E+02	3.30E+03	1.09E+02	1.08E+02	4.51E+02
Aliphatic hydrocarbons >EC10-EC12	3.40E-02	3.52E+03	9.3 4 E+01	9.28E+01	4.75E+01	4.01E+03	2 3 X + 0 2	2.2 <mark>9</mark> E+02	1.18E+02	4.24E+0 3	5.57E+02	5.37E+02	2.83E+02
Aliphatic hydrocarbans >EC ₁₂ -EC ₁₆	7.60E-04	4.37E+03	7.82E+02	7.44E+02	2.37E+01	4.40E+03	1.95 +03	1.69E+03	5.91E+01	4.41E+03	4.68E+03	3.03E+03	1.42E+00
Aliphatic hydrocarbans >EC ₁₆ -EC ₃₅	- (c)	4.51E+04			8.48E+00	6.38E+04	,	'	2.12E+01	7.61E+04			5.09E+01
Wiphatic hydrocarbons $> EC_{35}$ - EC ₄₄	(c) -	4.51E+04			8.48E+00	6.38E+04			2.12E+01	7.61E+04			5.09E+01
romatic hydrocarbons >EC ₈ -EC ₉ (styrene)	7.40E+00	1.66E+02	2.65E+02	1.33E+02	620E+02	3.92E+02	6.4	3.16E+02	1.52E+03	8.50E+02	1.54E+03	7.02E+02	3.61E+03
romatic hydrocarbons >ECg EC₁₀	7.40E+00	5.55E+01	3.33E+01	2.69E+01	6.13E+02	1.31E+02	8 16 +01	6.54E+01	1.50E+03	2.84E+02	1.94E+02	1.51E+02	3.58E+02
Aromatic hydrocarbons >EC ₁₀ EC ₁₂	2.50E+DI	7.97E+01	1.82E+02	6.91E+01	3.64E+02	1.86E+02	4,48E +02	1.62E+02	8.99E+02	3.87E+02	1.07E+03	3.46E+02	2.15E+03
romatic hydrocarbons >EC₁ ∞ EC₁ ₀	5.80E+00		2.00E+03	1.38E+02	1.69E+02	3.13E+02	4 9Œ +03	3.08E+02	4.19E+02	6.01E+02	1.18E+04	5.93E+02	1.00E+03
matic hydrocarbons >EC₁⊕ EC₂₁	(c)	2.47E+02			5.37E+01	4.82E+02	,	,	1.34E+02	7.66 +02			321E+02
omatic hydrocar bons >EC, r EC, r		8.88E+02			4.83E+00	1.11E+03			1.21E+0	1.2 <u>7</u> +03			2 90E +01
romatic hydrocarbons >EC ₃₅ EC₄₄	- (c)	8.88E+02			4.83E+00	1.11E+03	,	,	1.21E+0	1.2. 年 (13			2 90E +01
The CLEA model auput is colour cated depending upan whether the soil saturation limit has been exceeded control of the control	ndng upan whethe	r the soil saturation lir	mit has been exceede	be anticontro of out the	internet al internet a Internet al internet a Internet al internet	onio occupio conce	the contribution of	o hand a share of the second sec	to address to the second	to total occording in			
	Calculated & >10%	Cacutated SAC exceeds soil saturation limit and m >10%. This shading has also been used for th Concident SAC susceds configurations limit herein	been used for the RI	Igniricanity errect th BCA output where t	Cadutation service exceeds sortistaturation mint and may significantly effect the importantion of any exceeds sortist of the innom rank of the operation of the innom rank of the service is >10%. This shadphasals to be used for the REQA approximation solution in the SAC and the service of a claused SAC with the saturation in the set of a Contract software software is not contracted and the contention of the index and accounted calculated SAC with the saturation in the set of a Contract software is not contracted and the saturation of the index and the contracted software is not an intracted so	ity limit has been ex	ceeded. The SAC h	ne indoor and outdo tas been set as the r	oor vapour parnway model calculated SA	to total exposure is .C with the saturation	on limits shown in i	brackets.	
	Calculated S	calculated SAC does not exceed the soil saturation Calculated SAC does not exceed the soil saturation		ellectine oov sig	no erect, the SSV significantly since the controlorion of the moot and outdoor vepour partwey to berrexposurers < 0.7% limit.		ior and outdoor vap.	our partway to lotal (sxposure is < 10%.				
For consistency where the theoretical solubility limit within RBCA has been exceeded in production of the GAC, these cells have also been hat hed red	y limit within RBCA	has been excæded ii	n production of the G	rAC, these cell Is h	ave also been hatched	dred							
The SAC for organic ompounds are dependentupon soliorganic mater (SOM) (%) ontent. To obtain SOM from totalogranic cabon (TCC) (%) divide by 0.86. 1.% SOM is 0.58% TOC. DL Rowell Soll Science: Mathods and Applications, Lo SAC for TPH frætions, pdyoptic arcmaticity droachons, MTBE, BTEX and timethythenzene ompounds were produced using an attenuation factor for the indoor air initialation pathway of 10 to reduce conservatism associated with the vapour initial attion pathway, sedi on 10.1.1, SR3	intupon soilorgani drocarbons, MTBE,	c matter (SOM) %) α BTEX and trimethylb	ontent To obtain SO enzene compounds w	M from total organi vere produced usin	SOM from total organic carbon (TCC) (%) divide by 0.39. 1% SOM is 0.58% TOC. DL Rowell Soll Science: Methods and Applications, Longmans, 1994 Js wee produced using an attenuation fact or for the indoor air inhalation pathway of 10 to reduce conservatismass ociated with the vapour	divide by 0.58. 1% { or for the indcor air	SOM is 0.58% TOC. inhalation pathway c	. DL. Rowell Soil Safe of 10 to reduce conse	ence: Methods and / srvatism associated	A pplications, Longr with the vapour	nans, 1994.		
 (a) Sensitivity analysis undertation or SEGH equation and CLEA model, considered reasonable in dostrice of LK sped to data (b) GAC taken from the Environment Agency SCV reports published 2008. (c) SAC for selentum, alighter and anomatic hythocarbons >EC 16 does not indude inhation pathway owing to absence of toxi dy data. SAC for arsenicisonly based on or al contribution (rather than combined) owing to the relative small contribution in accordance with the SGV report. The same approach has been adopted for zinc. 	aquation and CLEA SGVreports publis iydrocarbons >EC11 Mth the SGV report	(a) Sensitivity analysis undertaken on SEGH equation and CLEA model, considered reasonable in dost (b) GAC taken from the Environment Agency SGV reports published 2009. (c) SAC for selentum, aliphatic and aromatic hydrocarboxis >EC % does not ind ude inhated on pathway contribution from inhalation in accordance with the SGV report. The same approach has been adopt	asonatte in absence idation pathway owin has been adopted fo	of UK specific data ig to absence of to) ir zinc.	a xicity data. SAC for al	ence of UK specific data owing to absence of toxi dy data. SAC for arsenicisonly based on oral contribution (rather than combined) owing b the rela lead for zinc.	on or a contribution	(rather than combin	∋d) owing to the rela	ative small			

GENERIC ASSESSMENT CRITERIA FOR HUMAN HEALTH - RESIDENTIAL WITH PRIVATE GARDENS

Table 8 Human Health Generic Assess ment Criteria for Residential Scenario - Private Garden s

/letals	(mg/l)	(mg/kg)	SAC for Soil SOM 2.5% (mg/kg)	SAC for Soil SOM (mg/kg)
nsenic	-	32	32	32
admium	-	10	10	10
hormium (III) - oxide		3.000	3.000	3.000
Chromium (VI) - hexavalent Copper		4.3 2,3 00	4.3 2,300	4.3 2,300
ead	-	300	300	300
lemental Mencury (Hg)	0.009	0.17	0.42	1.0
norga nic Mercury (Ha ²⁺)	_	170	170	170
/lethyl Mercury (Hg ⁴⁺)	20	7.4	9.6	11
lickel	-	130	130	130
elenium	-	350	350	350
linc	-	3,800	3,800	3,800
Syanide	-	3.7	3.7	3.7
olatile Organic Compounds	-	0.070	0.457	0.00
enze ne oluene	1,900	0.079 120	0.157 270	0.33 610
thylbenzene	260	65	154	350
ylene - m	100	44	103	240
(ylene - o	87	45	106	250
(ylene - p	84	42	98	230
otal xylen e	84	44	103	240
1 ethyl tertiary butyl ether (MTBE)	2,200	1.8	3.7	7.4
richloroethene	1.8	0.11	0.2	0.49
etrachloroethene ,1,1-Trichloroethane	3.6 26	0.94 6.2	2.1 12.7	4.8
,1,1,2Tetrachloroe thane	14	0.89	2.1	4.8
,1,2,2-Tetrachloroethane	14	1.4	2.87	6.3
arbon Tetrachloride	0.055	0.018	0.039	0.089
,2-Dichloroethane	0.30	0.0053	0.0080	0.014
/inyl Chloride	0.019	0.00047	0.0006	0.001
.2.4-Trimethylbenzen e .3.5-Trimethylbenzen e	0.075 0.047	0.35	0.85	2.1
Sem i-Volatile Organic Compounds Acenaphthene	3.2	210	480	1,000
œna phthylene	4.2	170	400	850
nthracene	0.021	2,300	4 ,900	9 ,200
Benzo (a) anthracene	0.0038	3.1	4.7	5.9
senzo (b) fluoranthene senzo (a, h, i) pervlen e	0.0020 0.00026	5.6 44	6.5 46	47
enzo (k) fluoranthene	0.00028	8.5	48	47
Chrysene	0.0020	6.0	8.0	9.3
Dibenzo(a,h)anthracene	0.00060	0.76	0.86	0.90
luoranthene	0.23	26 0	460	670
luore ne	1.9	160	380	780
ndeno(1,2,3-cd)pyrene	0.0002	3.2	3.8	4.2
	0.53	92 56.0	200	380
henanthrene				
Phenanthrene Pvrene	0.0038	0.83	0.94	1.0
Phenanthrene Pyrene Benzo (a) pyrene	0.0038 19	0.83 1.5	0.94 3.7	1.0 8.7
Phenanthrene Pwrene Benzo (a) pvrene Japhthalene				
Phenanthrene Pyrene Jerzo (a)ovrene Japhthalene Ihenol		1.5	3.7	8.7
henanthrene		1.5	3.7	8.7
Phenanthrene Venane laphthalene Iaphthalene Phenol To tal Petro leu m Hydro carbo ns Lliphatic hydrocarbons E C ₅ -EC ₆	19 -	1.5 180	3.7 290	8.7 420
thenanthrene vrene (aphthalene henol o tal Petro leu m Hydro carbo ns liphatic hydrocarbons E C ₆ -EC ₆ Liphatic hydrocarbons >E C ₆ -EC ₆	19 - 10	1.5 180 30	3.7 290 5.5	8.7 420 110
henanthrene vrene enzo (a)pvrene laphthalene henol o tal Petro leu m Hydro carbons liphatic hydrocarbons ≥ C ₆ -EC ₈ liphatic hydrocarbons > E C ₆ -EC ₈ liphatic hydrocarbons > E C ₆ -EC ₈	19 - - 10 5.4	1.5 180 30 73	3.7 290 55 160	8.7 420 110 370
henanthrene vrene enzo (alovrene aphthalene henol otal Petro leum Hydro carbons liphatic hydrocarbons >E C ₆ -EC 6 liphatic hydrocarbons >E C ₆ -EC 8 liphatic hydrocarbons >E C ₆ -EC 10 liphatic hydrocarbons >E C ₁₀ -EC 12	19 - - 10 5.4 0.23 0.034	1.5 180 30 73 19 93 (48)	3.7 290 55 160 46 230 (118)	8.7 420 110 370 110 540 (283)
henanthrene vrene aphthalene henol o tal Petro leu m Hydro carbo ns liphatic hydrocarbons E C ₅ -EC 6 liphatic hydrocarbons >E C ₆ -EC 8 liphatic hydrocarbons >E C ₆ -EC 10 liphatic hydrocarbons >E C ₆ -EC 10 liphatic hydrocarbons >E C ₁₀ -EC 12 liphatic hydrocarbons >E C ₁₂ -EC 16	19 - 10 5.4 0.23 0.034 0.00076	1.5 180 30 73 19 93 (48) 744 (24)	3.7 290 55 160 46 230 (118) 1,700 (59)	8.7 420 110 370 110 540 (283) 3,000 (142)
Thenanthrene Thenanthrene Iaphthalene Ia	19 - 10 5.4 0.23 0.034 0.00076 -	1.5 180 30 73 19 93 (48) 744 (24) 45,100 (8.48)	3.7 290 55 160 46 230 (118) 1,700 (59) 64,000 (21)	8.7 420 110 370 110 540 (283) 3.000 (142) 7 6,000
Phenanthrene Varene Isenzo (a) byrene Iaphthalene Phenol To tal Petro leu m Hydro carbo ns Niphatic hydrocarbons E C ₆ -EC 6 Niphatic hydrocarbons >E C ₆ -EC 8 Niphatic hydrocarbons >E C ₆ -EC 10 Niphatic hydrocarbons >E C ₁₀ -EC 12 Niphatic hydrocarbons >E C ₁₀ -EC 12 Niphatic hydrocarbons >E C ₁₂ -EC 16 Niphatic hydrocarbons >E C ₁₂ -EC 16 Niphatic hydrocarbons >E C ₁₆ -EC 35 Niphatic hydrocarbons >E C ₁₆ -EC 35 Niphatic hydrocarbons >E C ₁₆ -EC 35	19 - - - - - - - -	1.5 180 30 73 19 93 (48) 744 (24) 45,100 (8.48) 45,100 (8.48)	3.7 290 55 160 46 230 (118) 1,700 (59) 64,000 (21) 64,000 (21)	8.7 420 110 370 110 540 (283) 3,000 (142) 7 6,000 7 6,000
When an threne Vrene (aph thalene henol otal Petro leum Hydro carbons liphatic hydrocarbons $E C_5 - EC_6$ liphatic hydrocarbons > $E C_6 - EC_8$ liphatic hydrocarbons > $E C_6 - EC_8$ liphatic hydrocarbons > $E C_6 - EC_10$ liphatic hydrocarbons > $E C_{10} - EC_{12}$ liphatic hydrocarbons > $E C_{12} - EC_{16}$ liphatic hydrocarbons > $E C_{12} - EC_{16}$ liphatic hydrocarbons > $E C_{16} - EC_{35}$ liphatic hydrocarbons > $E C_{35} - EC_{44}$ up matic hydrocarbons > $E C_{26} - EC_9$ (styrene)	19 - - - - - - - - - 7.4	1.5 180 30 73 19 93 (48) 744 (24) 45,100 (8.48) 45,100 (8.48) 130	3.7 290 55 160 46 230 (118) 1,700 (59) 64,000 (21) 64,000 (21) 316	8.7 420 110 370 110 540 (283) 3,000 (142) 7 6,000 7 6,000 700
$\label{eq:constraints} \begin{tabular}{lllllllllllllllllllllllllllllllllll$	19 - 10 5.4 0.23 0.034 0.00076 - 7.4 7.4	1.5 180 30 73 19 93 (48) 744 (24) 45,100 (848) 45,100 (848) 130 27	3.7 290 55 160 46 230 (118) 1,700 (59) 64,000 (21) 64,000 (21) 316 65	8.7 420 110 370 110 540 (283) 3.000 (142) 7 6,000 7 6,000 7 00 150
henanthrene wrene apto (a)pvrene (apthtalene henol iiphatic hydrocarbons EC ₅ -EC 6 iiphatic hydrocarbons >EC ₅ -EC 8 iiphatic hydrocarbons >EC ₆ -EC 8 iiphatic hydrocarbons >EC ₆ -EC 10 iiphatic hydrocarbons >EC ₁₀ -EC 12 iiphatic hydrocarbons >EC ₁₂ -EC 16 iiphatic hydrocarbons >EC ₁₂ -EC 16 iiphatic hydrocarbons >EC ₆ -EC 35 iiphatic hydrocarbons >EC ₆ -EC 2 (styrene) no matic hydrocarb ons >EC ₆ -EC 10 no matic hydrocarb ons >EC ₆ -EC 10	19 - 10 5.4 0.23 0.034 0.00076 - 7.4 7.4 25	1.5 180 30 73 19 93 (48) 744 (24) 45,100 (8.48) 45,100 (8.48) 130 27 69	3.7 290 55 160 46 230 (118) 1,700 (59) 64,000 (21) 64,000 (21) 316 65 160	8.7 420 110 370 110 540 (283) 3,000 (142) 7 6,000 7 6,000 7 00 150 346
Thenanthrene Thenanthrene Thenanthrene Thenanthrene Thenanthrene Thenanthrene Thenanthrene Thenanthrene Thenanthrene Theta Thenanthrene Theta Thenanthrene Theta Thenanthrene Theta Thenanthrene Theta Thenanthrene Theta Thenanthrene Theta Thenanthrene Theta Thenanthrene Theta Thenanthrene Theta Theta	19 - 10 5.4 0.23 0.034 0.00076 - 7.4 7.4	1.5 180 30 73 19 93 (48) 744 (24) 45,100 (848) 45,100 (848) 130 27	3.7 290 55 160 46 230 (118) 1,700 (59) 64,000 (21) 64,000 (21) 316 65	8.7 420 110 370 110 540 (283) 3.000 (142) 7 6,000 7 6,000 7 00 150
Thenanthrene Thenanthrene Thenanthrene Thenanthrene Thenanthrene Thenanthrene Thenanthrene Thenanthrene Thenanthrene Theta Thenanthrene Theta Thenanthrene Theta Thenanthrene Theta Thenanthrene Theta Thenanthrene Theta Thenanthrene Theta Thenanthrene Theta Thenanthrene Theta Thenanthrene Theta Theta	19 - 10 5.4 0.23 0.034 0.00076 - 7.4 7.4 25	1.5 180 30 73 19 93 (48) 744 (24) 45,100 (8.48) 45,100 (8.48) 130 27 69	3.7 290 55 160 46 230 (118) 1,700 (59) 64,000 (21) 64,000 (21) 316 65 160	8.7 420 110 370 110 540 (283) 3,000 (142) 7 6,000 7 6,000 7 00 150 346
Phenanthrene Vrene Iaphthalene Iaphthalene Iaphthalene Iaphthalene Inpatic hydrocarbons $E C_5 E C_6$ Iliphatic hydrocarbons >E $C_5 E C_6$ Iliphatic hydrocarbons >E $C_6 E C_6$ Iliphatic hydrocarbons >E $C_6 E C_10$ Iliphatic hydrocarbons >E $C_6 E C_{12}$ Iliphatic hydrocarbons >E $C_1 E C_{12}$ Iliphatic hydrocarbons >E $C_{12} E C_{16}$ Iliphatic hydrocarbons >E $C_{12} E C_{16}$ Iliphatic hydrocarbons >E $C_{16} E C_{35}$	19 - 10 5.4 0.23 0.034 0.00076 - 7.4 7.4 25	1.5 180 30 73 19 93 (48) 744 (24) 45,100 (8.48) 45,100 (8.48) 130 27 69 140	3.7 290 55 160 46 230 (118) 1,700 (59) 64,000 (21) 64,000 (21) 316 65 160 310	8.7 420 110 370 110 540 (283) 3,000 (142) 7 6,000 7 6,000 7 6,000 150 346 593

The SAC has been set as the model calculated SAC with the saturation limit shown in brackets. For consistency where the GAC exceeds the solubility limit, GAC has been set at the solubility limit. The GAC conservatives nice concent alions of the chemical are very unlikely both at sufficient concentration to result in an exceedance of the health criteria value at the point of exposure (i.e. in door air) provided free-phase product is absent.

BDW TRADING LIMITED

NIAB Phase 1, Huntingdon Rd, Cambridge

Report for Main Site Investigation

25459

OCTOBER 2012

RSK GENERAL NOTES

Title: Report for Main Site Investigation: NIAB Phase 1, Huntingdon Road, Cambridge **Client: BDW Trading Limited** 25 October 2012 Date: Office: Hemel Hempstead Status: Final Author **Project Manager** Oliver Pengilly Ben Coulston Signature 25 October 2012 25 October 2012 Date: and Technical reviewer Duncan Sharp Ben Coulston Signature Signature 25 October 2012 25 October 2012 Date: Date:

RSK Environment Limited (RSK) has prepared this report for the sole use of the client, showing reasonable skill and care, for the intended purposes as stated in the agreement under which this work was completed. The report may not be relied upon by any other party without the express agreement of the client and RSK. No other warranty, expressed or implied, is made as to the professional advice included in this report.

Where any data supplied by the client or from other sources have been used, it has been assumed that the information is correct. No responsibility can be accepted by RSK for inaccuracies in the data supplied by any other party. The conclusions and recommendations in this report are based on the assumption that all relevant information has been supplied by those bodies from whom it was requested.

No part of this report may be copied or duplicated without the express permission of RSK and the party for whom it was prepared.

Where field investigations have been carried out, these have been restricted to a level of detail required to achieve the stated objectives of the work.

This work has been undertaken in accordance with the quality management system of RSK Environment Ltd.

CONTENTS

1	INT	RODUC	TION	1
	1.1	Backg	round	1
	1.2	Object	ive and aims	1
	1.3	Scope		2
	1.4	Existin	g reports	2
2	THE	E SITE		3
	2.1	Site lo	cation and description	3
	2.2	Propos	sed development	3
	2.3	Key inf	formation from previous reports	3
		2.3.1	Phase 1 Environmental Risk Assessment, March 2006	4
		2.3.2	Phase 2 Environmental and Geotechnical Site Investigation, September 2006	5
3	PRE	EL IM IN /	ARY RISK ASSESSMENT (PRA)	8
	3.1	Site wa	alkover	8
	3.2	Groun	d conditions	9
		3.2.1	Geology	9
		3.2.2	Cambridge and Peterborough Mineral Safeguarding Area (MSA)	10
		3.2.3	Radon	10
		3.2.4	Mining and quarrying	. 10
		3.2.5	Landfilling and land reclamation	. 11
		3.2.6	Ground gas	.11
	3.3	Hydrog	geology	.11
		3.3.1	Aquifer characteristics	.11
		3.3.2	Vulnerability of groundwater resources	12
		3.3.3	Licensed groundwater abstraction	12
	3.4	Hydrol	ogy	.13
		3.4.1	Surface water courses	13
		3.4.2	Surface water abstractions	
		3.4.3	Site drainage	13
		3.4.4	Preliminary flood risk assessment	13
	3.5	History	/ of site and surrounding area	. 14
	3.6	Sensit	ive land uses	15
	3.7	Licenc	es and permissions	. 16
	3.8		authority environmental health department information	
	3.9	Initial o	conceptual model	
		3.9.1	Summary of potential contaminant sources	16
		3.9.2	Sensitive receptors	. 17
		3.9.3	Summary of plausible pathways	18
		3.9.4	Potentially complete pollutant linkages	
4	SITI	E INVE	STIGATION METHODOLOGY	20
	4.1	Sampl	ing strategy and methodology	
		4.1.1	Health and safety considerations	20

		4.1.2	Investigation locations	20
		4.1.3	Soil sampling, in situ testing and laboratory analysis	22
		4.1.4	Groundwater monitoring and levelling	23
		4.1.5	Ground gas monitoring	23
		4.1.6	In-situ infiltration testing	24
5	GR	OUND	CONDITIONS	25
	5.1	Soil		25
		5.1.1	Topsoil / Made ground	25
		5.1.2	River Terrace Deposits	
		5.1.3	Gault Clay Formation	27
		5.1.4	Groundwater	
		5.1.5	Results of infiltration testing	31
	5.2		d gas regime	
	5.3	Refine	ment of the initial conceptual site model	
	5.4		al Safeguarding Area (MSA)	
6	QU	ANTITA	TIVE RISK ASSESSMENT	34
	6.1	-	jes for assessment	
	6.2	Metho	dology and results	35
		6.2.1	Direct contact with impacted soil by future residents / end users	
		6.2.2	Uptake of contaminants by vegetation potentially inhibiting plant growth	
		6.2.3	Impact of organic contaminants on potable water supply pipes	
		6.2.4	Ground gas	
		6.2.5	Secondary Aquifer	
			nmental assessment conclusions	
7			NICAL SITE ASSESSMENT	
	7.1	•	eering considerations	
	7.2		chnical hazards	
	7.3		lations	
		7.3.1	General suitability	
		7.3.2	Shallow spread foundations	
		7.3.3	Piled foundations	
		7.3.4	Foundation works risk assessment	
		7.3.5	Floor slabs	
		7.3.6	Roads, hardstanding and drainage	
		7.3.7	Chemical attack on buried concrete	
		7.3.8	Soakaways	
8			MATERIALS AND WASTE	
	8.1		nent to meet suitable-for-use criteria	
	8.2		of waste materials	
	8.3		s for landfill disposal	
	8.4 8.5		e acceptance criteria	
	8.5		ll tax	
•	8.6		dwater	
9				
	9.1	COLICI	usions	JZ

9.2	Recommendations	54
BIBLIOG	GRAPHY	55

FIGURES

Figure 1 Site location plan Figure 2 Exploratory hole location plan Figure 3 Existing Site Layout Figure 4 **Geological Section 1** Figure 5 **Geological Section 2** Figure 6 Geological Section 3 Figure 7 **Geological Section 4** Figure 8 Geological Section 5

APPENDICES

Appendix A	Service constraints
Appendix B	Summary of legislation and policy relating to contaminated land
Appendix C	Sitephotographs
Appendix D	Risk assessment methodology
Appendix E	Groundsure reports (including historical mapping)
Appendix F	BGS Borehole Records
Appendix G	Local Authority Correspondence
Appendix H	Investigation Records
Appendix I	Ground gas / groundwater monitoring data
Appendix J	Laboratory certificates for soil analysis
Appendix K	Human health generic assessment criteria
Appendix L	Generic assessment criteria for phytotoxic effects
Appendix M	Water supply pipes

- Appendix N Certificates of geotechnical analysis
- Appendix O In-situ CBR test report
- Appendix P Previous Investigation Reports

1 INTRODUCTION

RSK Environment Limited (RSK) was commissioned by BDW Trading Limited to carry out a geotechnical and contaminated land assessment of a plot of land known as NIAB 1, currently owned by the National Institution of Agricultural Botany (NIAB). It is understood that current proposals include for the redevelopment of the site with a mixed-use development, specifically comprising residential, retail and school infrastructure.

This report is subject to the RSK service constraints given in Appendix A.

1.1 Background

RSK have been provided with two previous reports associated, in part, with the subject site area. The reports were both compiled by Millard Consulting Engineers in 2006 and comprise an initial stand-alone Phase 1 Environmental Risk Assessment and a subsequent follow-on Phase 2 Intrusive Environmental and Geotechnical Site Investigation. A brief summary of these reports is provided in section 2.

1.2 Objective and aims

The objective of the work is to assess the site in relation to the proposed future redevelopment. The scope of investigation and positioning of the exploratory locations was based on the drawing provided by Woods Hardwick (drawing reference 16483/1015, dated January 2011) and a scope of investigation prescribed by Wilson Bowden, specifically associated with the proposed food store and "Centre Point. It is anticipated that this main investigation will support an outline planning submission for the mixed-use redevelopment of the site.

The aims of this assessment are to:

- Enable an assessment of the site and surrounding area in terms of history and environmental setting from which a conceptual model can be collated to inform site investigation works;
- Obtain sufficient information regarding ground conditions from which risks to endusers, the environment and structures can be assessed plus geotechnical issues including the design of foundations and infrastructure; and
- Enable an initial assessment of the potential waste classification implications of soil arisings.

1.3 Scope

The scope of the investigation and layout of this report has been designed with consideration of CLR11 (Environment Agency, 2004a), BS 10175: 2011 (BSI, 2011) and PPS23 (ODPM, 2004), plus guidance on land contamination reports issued by the Environment Agency (2010a).

The project was carried out to an agreed brief as set out in RSK's proposal (ref. 25459-01T(00), dated 9 February 2012), and subsequent revisions, including the scope of works prescribed by Wilson Bowden, summarised in email dated 14 August 2012. The scope of works for the assessment included:

- An updated preliminary risk assessment (PRA) to include a review of existing reports, geological, hydrogeological and hydrological information, a commercially available environmental database, and historical plans; correspondence with regulatory authorities; and a site walkover – this information is used to develop an initial conceptual site model to consider any potentially complete pollutant linkages;
- An intrusive investigation consisting of 5 no. boreholes (2 no. associated with the Wilson Bowden Scope of works), 52 no. trial pits (4 no. associated with the Wilson Bowden scope of works), 9 no. infiltration test locations, 28 no. drive-in window sampler boreholes (4 no. associated with the Wilson Bowden scope of works) with laboratory analysis plus subsequent groundwater and gas monitoring;
- Development of a refined conceptual site model followed by generic quantitative risk assessment (GQRA) to assess complete pollutant linkages that may require mitigation measures to be implemented to facilitate redevelopment;
- Identification of outline mitigation measures for complete pollutant linkages or recommendations for further work;
- Interpretation of ground conditions and geotechnical data to provide recommendations with respect to foundations and infrastructure design; and
- A factual and interpretative report with recommendations for further works (i.e. undertake a remedial options appraisal to identify appropriate mitigation measures/produce a remedial implementation and verification plan) and/or remediation as necessary.

1.4 Existing reports

The following reports detailing previous works at the site were made available for review:

- Proposed Development Site, Huntingdon Road/Histon Road, Cambridge, Report ref: 5593/04/CM/03-06/1213, 'Phase 1 Environmental Risk Assessment', Millard Consulting Engineers, March 2006;
- Proposed Development Site, Huntingdon Road/Histon Road, Cambridge, Report ref: 5593/14/RT/09-06/1371, 'Phase 2 Intrusive Environmental and Geotechnical Site Investigation', Millard Consulting Engineers, September 2006;

These have been summarised in Section 2.

2 THE SITE

2.1 Site location and description

The site is located to the northeast of the main administration/office buildings of the National institute of Agricultural Botany (NIAB), off Huntington Road, Cambridge at National Grid reference 543818, 260766, as shown on Figure 1.

The site covers approximately 54.6 hectares and generally slopes downwards to the north/northeast with a highest elevation of 19.93m in the south east corner and the lowest at 12.03m in the north. The site land use comprises entirely of arable farmland, most recently used for agricultural research, with the exception of a disused cricket pavilion and associated storage sheds/outbuildings in the far southeast corner. The arable farmland is sectioned off into approximately eight separate fields with a further field beyond a concrete access road in the far north. The field boundaries comprise a combination of hedgerows, drainage ditches and an access road running between the central fields, providing access to the westerly NIAB farm premises. There is also a public right of way, which for most of its length, coincides with the northem site boundary and the boundary between South Cambridgeshire District and Cambridge City. Figure 3 shows the existing site layout.

The A14 is located north of the site, oriented in an east-west direction. Residential and academic land-uses occupy the area to the east of the site. The main NIAB office building is situated immediately south/southwest, between the site itself and Huntingdon Road. A mixture of residential and undeveloped/agricultural land surround the periphery of the site to both the south and west.

2.2 Proposed development

The site in question is being considered for a mixed-use redevelopment as described in section 1. The planned layout of the site is shown on Figure 2.

2.3 Key information from previous reports

Two previous investigations undertaken by Millard Consulting Engineers have been reviewed as part of the preliminary risk assessment. The following sections provide a review of pertinent information from the reports noted in section 1.4.

2.3.1 Phase 1 Environmental Risk Assessment, March 2006

This investigation comprised a phase 1 study of a wider site area than the current study, also encompassing the designated NIAB 1 site itself. The study was undertaken in connection with the intention for David WIson Estates to apply for planning approval to redevelop the site for residential use. The site considered as part of the study included a parcel of land located between the existing main NIAB buildings and Whitehouse Lane (recently been redeveloped, in part, and currently under construction). The assessment also included correspondence with a number of consultees, including various departments of Cambridge City Council and the Environment Agency. A summary of key information extracted from the report is provided below:

- The NIAB facility has existed, in various forms, since the early 20th Century, prior to which the site was entirely occupied by open fields. The facility is used for agricultural and food research, along with general agricultural activities and has been supported by a number of buildings used as offices, laboratories, greenhouses and farm yards in the south-western portion of the site;
- Anecdotal information confirmed that a number of the buildings located on the site contained asbestos containing materials (ACM's). However, it is understood that the buildings referenced are not located in the current study area and are predominantly associated with the former NIAB laboratories, greenhouses and offices located between the existing NIAB main office and Whitehouse Lane to the south/southwest of the site;
- An above ground diesel storage tank was located on hard standing in the premises of the disused sports pavilion, adjacent to the former sports field in the southeast portion of the site;
- The site activities require the use and storage of agricultural chemicals, principally pesticides and herbicides;
- Off-site sources of contamination (referenced also as on-site sources in the report, owing to the variation in study area) were also noted, associated with the wider NIAB facility. The identified sources included the following:
 - Bulk storage of hydrocarbons in above ground storage tanks;
 - Storage and use of agricultural chemical, referenced above;
 - ACM's in the fabric of existing buildings (predominantly to the west/southwest of the current site area);
 - Gas cylinders (predominantly to the west/southwest of the current site area); and
 - Mixing of chemicals within a bunded chemical mixing point.

- An off-site historical gravel pit (worked during the early to middle part of the 20th Century) was located to the south of Huntingdon Road and has now been infilled. Adjacent to this, an area containing Roman coffins was also noted. Both are in excess of 200m from the study area. Petrol stations, nurseries and a laundry were also recorded in the vicinity of the site;
- The findings of the study identified the following risks associated with the site :
 - Residential end-users a moderate risk identified from potentially contaminated soils and a moderate to low risk associated with ACM's in the buildings (it is noted that the buildings referred to are not located on the study site itself, and many no longer exist);
 - Construction workers a moderate risk identified from potentially contaminated soils and ACM's (ACM's associated with buildings that are not located on the study site itself, and many no longer exist), and a moderate/low risk associated with the bulk storage of hydrocarbons and an electricity sub-station (located to the west/southwest of the existing study site);
 - A low risk was identified to flora and fauna, groundwater, surface water, and building structures and services.
- The phase 1 assessment undertaken Millard Consulting Engineers culminated in a number of recommendations, as follows:
 - > The production of an archaeological desk study; and
 - The completion of a preliminary Phase 2 land quality assessment to refine the initial conceptual model.

2.3.2 Phase 2 Environmental and Geotechnical Site Investigation, September 2006

Millard Consulting Engineers carried out a phase 2 investigation of the study area described in section 2.3.1. The scope of work included the excavation of six cable percussive boreholes, thirteen window sampler boreholes, six mechanical trial pits, installation of seven monitoring wells and associated in-situ testing and laboratory analysis. A number of the exploratory holes were located in areas between former and existing NIAB buildings, which form the majority of the recent redevelopment area alongside Huntingdon Road. However, sixteen of the exploratory holes were located on the NIAB 1 site area, specifically BH1 to BH4, TP1, TP2, TP5, TP6, TP7, WS6, WS7 and WS CH1 to CH5. A summary of pertinent information in relation to the existing assessment of NIAB 1 is provided below:

 A variable thickness of made ground/topsoil was encountered ranging between 0.1m and 1.6m thickness, with a typical thickness of around 0.3m. The greatest thickness of made ground was encountered in CH5, where concrete and brick was encountered between 1.5m and 1.6m bgl;

- River Terrace Deposits were encountered in localised areas of the site, generally increasing in frequency and thickness to the northeast where granular deposits were encountered to the terminal depth of the exploratory hole designated CH WS1 at 4.0m bgl. Deposits of the Gault Clay Formation were encountered directly below the made ground/topsoil or River Terrace Deposits, where present;
- Significant contamination issues were not identified, albeit the presence of localised elevated concentrations of heavy metals and TPH were encountered with respect to a residential (with plant uptake) end-use. Specifically, elevated concentrations of arsenic and cadmium within the shallow made ground soils at WS6 and TPH within the shallow made ground and Gault Clay deposits in WS8 (in proximity to the former above ground fuel storage tank in proximity to the sports pavilion) were recorded;
- Topsoil across the site was generally recorded to be suitable for use, albeit with further testing required to delineate the potential sources of contamination associated with WS6 in the west of the site and WS8 in the southeast.
- Analysis of groundwater demonstrated that the underlying Secondary Aquifer associated with the granular River Terrace Deposits was not impacted with contamination. Furthermore, a single sample of groundwater recovered from an abstraction well on the NIAB premises indicated that there has been 'no measurable impact on the underlying Lower Greensand aquifer';
- The report made the following recommendations in relation to foundations and allowable ground bearing pressures:
 - River Terrace Deposits Loose to medium dense sands and gravels: 150kN/m² at a minimum foundation depth of 0.75m bgl;
 - River Terrace Deposits soft to firm sandy clay: 100kN/m² at a minimum foundation depth of 0.9m bgl;
 - Gault Clay stiff blue/grey clay: 175 kN/m² at a minimum foundation depth of 0.9m bgl;
 - A piled foundation solution may provide the most economical option in areas of deeper made ground, such as BH1 and CH5; and
 - Cohesive soils were identified as having medium volume change potential. Where the proposed founding stratum comprises cohesive deposits and within the zone of influence of trees, foundation depths and heave protection should be considered in accordance with NHBC Standards Chapter 4.2.
- Soakaways were only considered to be possible in the vicinity of TP5, where an infiltration rate of 1.87 x 10-5 m/s calculated;
- Standing groundwater levels were recorded between 1.64 and 2.2m bgl adjacent to the site boundaries in the central eastern and western portions of

the site. Groundwater strikes were encountered in the northern portion of the site at depths ranging between 3.0 and 3.50m bgl;

 In relation to the existing study area, the following recommendations were made:

Further testing to investigate the extent of TPH contamination in proximity to the former AST alongside the pavilion building in the southeast of the site;

Additional sampling to be carried out to quantify the potential for pesticides/herbicide residues to be present within the shallow soils of agricultural areas of the site which were not previously accessible;

Further infiltration testing to supplement the existing data, particularly in the northern-most area of the site (referred to previously as the 'Chivers land';

• Further geotechnical investigation to refine the findings of the report and to more accurately delineate the boundaries of differing soil conditions.