

18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT UK

Telephone: +44 (0)1442 437500 Fax: +44 (0)1442 437550 www.rsk.co.uk

Our ref: 25459-02R (00)

1st May 2013

Cambridge City Council – Environmental Services Mandela House 4 Regent Street Cambridge CB2 1BY

For the attention of: Themis Kantara

Dear Themis

Supplementary Investigation NIAB 1 Fields, Phase 1 Development Your reference wk/201258067

Background

A geo-environmental ground investigation was conducted at the above site by RSK to supplement a previous phase of investigation performed by Millard Consulting Engineers. The reports were submitted on behalf of our Client, Barratt Homes, in support of the planning application references 07/0003/OUT and S/07/0001/F.

The planning application spans the boundary between the districts administered by South Cambridgeshire District Council (SCDC) and Cambridge City Council (CCC), therefore both local authorities were consulted in respect to the information submitted and a joint response was issued on 12th December 2012.

Specifically, the response confirmed the northern portion of the site, located within the SCDC district to have been adequately investigated in respect its proposed future use. The following scope of further investigation, was however, prescribed for the remaining area of the site:

- Three additional rounds of ground gas monitoring to confidently characterise the ground gas regime beneath the site;
- Further non-targeted chemical testing for herbicides and pesticides to provide greater confidence in the initial suite of analyses; and
- Further targeted investigation of a former waste disposal area, two former above ground storage tanks and a former shed.

A scope of supplementary, targeted investigation and chemical analyses was subsequently proposed by RSK in January 2013, which comprised the following:

- Three additional rounds of ground gas monitoring;
- Additional investigation targeted to the location of an above ground fuel storage tank, formerly located adjacent to the farm yard, comprising the excavation of two shallow trial pits (HP1 and HP2) and testing a minimum of two soil samples for a suite of analyses including polycyclic aromatic hydrocarbons (PAH) (EPA16) and petroleum hydrocarbons (TPH-CWG);
- Additional investigation targeted to the location of a former waste storage area, comprising the
 excavation of five shallow trial pits (HP3 to HP7) and testing a minimum of five soil samples for a
 suite of analyses including PAH (EPA16), nine commonly occurring metals, a screen for asbestos
 containing materials (ACMs), Triazine herbicides, Phenoxy acid herbicides and petroleum
 hydrocarbons (TPH-total);
- Additional investigation targeted to the location of a former storage shed, comprising the
 excavation of three shallow trial pits (HP8 to HP10) and testing a minimum of three soil samples
 for a suite of analyses including PAH (EPA16), nine commonly occurring metals, a screen for
 asbestos containing materials (ACMs), Triazine herbicides, Phenoxy acid herbicides and
 petroleum hydrocarbons (TPH-total); and
- Additional investigation targeted to the location of an above ground fuel storage tank, formerly located adjacent to the sports pavilion, comprising the excavation of two shallow trial pits (HP12 and HP13) and testing a minimum of two soil samples for a suite of analyses including polycyclic aromatic hydrocarbons (PAH) (EPA16) and petroleum hydrocarbons (TPH-CWG).

The scope of testing for pesticides and herbicides was proposed following discussions between RSK and the National Institute of Agricultural Botany regarding the use of the plant protection products at the site. It was confirmed that plant protection products, approved for use by the Chemical Regulations Directorate, had been applied to the site in strict accordance with the Code of practice for using plant protection products. The products were stored off-site within the farmyard and mixed within a bunded chemical mixing unit with spill catchment facility. Based on this information, the risk posed by the former use of plant protection products was considered to be low.

The proposed scope of work was verbally agreed between RSK and yourself prior to its commencement.

Supplementary fieldwork

Thirteen trial pits, designated HP1 to HP13, were excavated by hand at the locations agreed for further investigation on 1st March 2013. The investigation and the soil descriptions were carried out in general accordance with 'BS 5930:1999. Code of Practice for Site Investigations' (BSI, 1999) and 'BS10175:2011 Investigation of Potentially Contaminated Sites – Code of Practice' (BSI, 2011).

The investigation points were located by rigorous surveying techniques as shown in Figure 1, the exploratory hole logs are also appended for reference.

The soils samples were collected in containers appropriate to the anticipated testing suite required. The containers were filled to capacity and placed in a cool box to minimise volatilisation. Samples were transported directly to RSK's testing laboratory (Envirolab) under chain of custody documentation. The samples were tested for the agreed suite of organic and inorganic compounds.

In addition to the above, three additional rounds of ground gas monitoring were conducted to record ground gas concentrations from the installations constructed during the previous main phase of investigation.

The results of the supplementary ground gas monitoring events and laboratory analyses are appended to this letter.

Ground conditions

The supplementary, targeted investigation confirmed the shallow ground conditions at the specified locations to comprise a generally uniform veneer of made ground overlying the Gault Formation. The made ground soils typically comprised a silty sandy locally gravelly clay with rare pockets of ash and brick. No obvious signs of any significant contamination were observed during the course of the investigation. No groundwater was encountered during the course of the shallow investigation.

Copies of the exploratory hole records are appended to this letter for reference.

Chemical test results and assessment

The chemical test results were directly compared against the RSK Generic Assessment Criteria (GAC) values derived using CLEA version 1.06 for the protection of human health in residential sites with pathways for plant uptake. The GAC values and details of their derivation are appended to this letter for reference.

No elevated concentrations of any determinants were identified during the comparison. Whilst no GACs have been derived for the assessment of herbicides, pesticides or ACM's, no concentrations of any of these contaminants were recorded above the relevant laboratory limits of detection.

Ground Gas Regime

The results of the three recent monitoring events have been combined with the previous three rounds and are appended to this letter. The minimum and maximum results are summarised in the table below.

Borehole	Response zone/strata	Probable source(s) of ground gas	Number of monitoring visits	Methane (%)	Carbon dioxide (%)	Oxygen (%)	Flow rate (I/hr)	Water level (m b TOC)	Atmospheric pressure (mbar)
BH1	GC	Shallow topsoil / made ground	6	<0.1 to 0.1	0.1 to 1.8	18.5 to 21.4	0.0	Dry to 1.70	1005 to 1022
BH2	RTD / GC	Shallow topsoil / made ground	6	<0.1	0.5 to 1.6	18.5 to 21.0	-0.4 to 0.4	0.85 to 1.86	1004 to 1022
BH3	RTD / GC	Shallow topsoil / made ground	6	-0.2 to <0.1	0.5 to 1.5	17.7 to 21.2	0.0	1.38 to 1.44	1005 to 1022
BHG	MG.TS / RTD / GC	Shallow topsoil / made ground	6	<0.1	0.0 to 1.8	19.3 to 21.5	-0.1 to 0.2	0.95 to 2.19	1005 to 1022
ВНК	RTD / GF	Shallow topsoil / made ground	6	-0.1 to 0.1	0.0 to 3.5	18.0 to 21.0	-0.1 to 0.2	1.35 to 2.09	1006 to 1022
WS3	MG.TS / GF	Shallow topsoil / made ground	6	<0.1 to 0.1	0.3 to 2.2	19.3 to 21.0	0.0 to 0.9	1.55 to 2.92	1006 to 1022
WS17	MG.TS / GF	Shallow topsoil / made ground	5	<0.1	0.0 to 2.9	18.6 to 21.4	0.0 to 0.2	1.57 to 1.88	1005 to 1022
WSH	MG.TS	Shallow topsoil / made ground	6	<0.1 to 0.1	0.1 to 4.2	18.0 to 20.8	0.0 to 0.2	Dry	1005 to 1022
Note: MG.TS – M	lade Grou	nd / Topsoil, RT	DC – R	iver Terra	ace Depo	sits, GC -	- Gault Cl	ay	

Table 1: Summary of ground gas monitoring results

The results of the combined data set have been assessed in accordance with the guidance provided in *CIRIA Report C665: Assessing risks posed by hazardous ground gases to buildings* (Wilson et al., 2007). In the assessment of risks posed by hazardous ground gases and selection of appropriate mitigation measures, CIRIA C665 identifies two types of development, termed Situation A (modified Wilson and Card method), appropriate to all development excluding traditional low-rise construction, and Situation B (National House-Building Council, NHBC) only appropriate to traditional low-rise construction with ventilated sub-floor voids. The site is to be redeveloped with both low-rise residential houses and commercial properties and therefore falls under Situation A and B.

The gas monitoring data has identified a maximum methane concentration of 0.1% and a maximum concentration of carbon dioxide of 4.2%. A maximum gas flow rate of 0.9l/hr has been recorded. The

calculated GSV for methane is 0.0009l/hr and the GSV for carbon dioxide is 0.0378l/hr. Based on the GSVs the site has been characterised as CS1 for the area of the development defined by Situation A and as Green for the remainder of the development defined by Situation B.

The proposed mixed-use development, which fulfils the requirements of both Situation A and Situation B, has been characterised as Characteristic Situation 1 and Green, respectively. This indicates that a negligible gas regime has been identified and that gas protection measures are not considered necessary.

Conclusions

The results of the agreed scope of supplementary investigation have not identified any significant ground contamination. The supplementary investigation has therefore provided a greater level of confidence that the soils across the site are suitable for use within all areas of the proposed mixed-use development.

In addition, the supplementary rounds of ground gas monitoring, which has increased the data set for the site to the minimum prescribed by CIRIA C665, has confirmed a negligible gas regime, for which gas protection measures are not considered necessary.

In conclusion, the supplementary phase of investigation has confirmed, with an appropriate level of confidence, that the site is suitable for its proposed use. No further investigation or remediation is therefore recommended at this stage. However, should any unexpected ground conditions be revealed during redevelopment, immediate advice should be sought from the local authority and the environmental consultant.

We trust the information supplied is sufficient to recommended discharge of the contaminated land conditions pertaining to the site, should however, you have any queries or require any further information please do not hesitate to give me a call.

Yours sincerely For RSK Environment Ltd

Duncan Sharp Associate Director RSK Environment - Geosciences

Encl.

Figure 1 Exploratory hole location plan Exploratory hole records Chemical test results Ground gas monitoring records RSK GAC values for residential sites with pathways for plant uptake

Cc. Claire Sproats - SCDC

FIGURES

		Client:	BDW Trading	Figure No:	Figure 1
KSK	Exploratory hole location plan	Site:	NIAB Phase 1	Job No:	25459-02(00)
		Scale:	NTS	Source:	Woods Hardwick

EXPLORATORY HOLE LOGS

Contract:		NIAB	- Phase 1			Client:	N Tradin	g Limited	Trial P	n	HP1
Contract R	ef:		Date:			Ground Level (m AOD):	National G	rid Co-ordinate:	Sheet		
	254	59		01.0	3.13					1	of 1
Sam	ples a	and In-sit	u Tests	Water	kfill		D :	(O)		Depth	
Depth	No	Туре	Results	Wa	Backfill		Description	of Strata		(Thick ness)	
0.20 0.30	1	ES ES	T+J+VL T+J+VL			MADE GROUND: Firm occasional sub-angular rootlets (1-2mm diameter is fine to medium. (MADE GROUND) MADE GROUND: Firm occasional sub-angular to rare ash pockets and (MADE GROUND)	fine to coars er) and occa yellow brow fine to coars	e flint gravels and sional to rare ash n slightly silty sa e flint gravels and	with occasional pockets. Sand	0.30)	
0.60	3	ES	T+J+VL			Inspection pit terminated				0.36)	
										-	
Plan (Not to	- ▲ [e) ???►		2. E 3. I	Backfil nspec	und water encountered led with arising tion pit remained stable er conditions: cool, overca		Remarks		-	
		ection p	oit + Plant			All dimensions in metres	s Logged	Scale:	1:13 Checked		AC
Method							. 00000d				

Contract:		NIAB	- Phase 1				Client:	W Tradi	ng Limited	Trial F	-	HP2
Contract Re	f:		Date:			Groun	d Level (m AOD):	National	Grid Co-ordinate:	Sheet	:	
	254	59		01.0	3.13						1	of 1
Sam	oles a	and In-sit	tu Tests	Water	Backfill			Doscriptio	n of Strata		Depth	Materi Graph
Depth	No	Туре	Results	Wa	Bac			-			ness)	
Depth 0.20 0.50	No 1 2	ES ES	Results T+J+VL T+J+VL		Bac	occa rootl is fin (MAI occa to ra (MAI	asional sub-angula ets (1-2mm diame le to medium. DE GROUND) DE GROUND- firm sional sub-angula re ash pockets an DE GROUND) vellow brown	n dark brow fine to coar ter) and occ fine to coar brick fragn vith grey r r fine to co	n of Strata vn slightly silty sa rse flint gravels and casional to rare asl wm slightly silty sa rse flint gravels and nents. mottling slightly s arse flint gravels.	I with occasional h pockets. Sand andy CLAY with I with occasional ilty CLAY with	- (0.40) - (0.40) - (0.20) 0.60	
											F	
											-	
											-	
Plan (Not to	Scal	e) ???		1.1	No aro	und wa	ater encountered	Genera	l Remarks			
222				2. E 3. I	Backfil Inspec	ed with	n arising remained stable ditions: cool, overc	ast				
						All di	imensions in metre	S	Scale:	1:13		

Contract:		NIAB	- Phase 1			Client:	N Tradin	g Limited	Trial F	-11:	HP3
Contract Re	ef:		Date:			Ground Level (m AOD):		rid Co-ordinate:	Sheet	t:	
	254	59		01.0	3.13					1	of 1
Sam	ples a	and In-sit	u Tests	ter	kfill					Depth	
Depth	No	Туре	Results	Water	Backfill		Description	of Strata		(Thick ness)	
0.20	1	ES	T+J+VL			MADE GROUND- so occasional sub-angular rootlets (1-2mm diamete Firm yellow brown m	fine to coars	e flint gravels and	I with occasional	- (0.40)	
0.50		50	T . 1.1/1			occasional sub-angular	fine to coa	rse flint gravels.	Sand is fine to	(0.20)	X Z O
0.50	2	ES	T+J+VL				- /			0.60	
										-	
								Derector			
Plan (Not to	- • [e)		2. E	Backfil nspec	und water encountered led with arising tion pit remained stable er conditions: cool, overca		Remarks			
	- • [Plan	2. F 3. I 4. \	Backfil nspec	und water encountered led with arising tion pit remained stable	st	Scale:	1:13 Checked		

Contract:		NIAB	- Phase 1	I		Client:	N Tradin	g Limited		ll Pit:	HP4
Contract Re	ef:		Date:			Ground Level (m AOD):		rid Co-ordinate:	She	et:	
	254	59		01.0	3.13					1	of 1
Sam	ples a	and In-sit	u Tests	ter	₹					Depth	
Depth	No	Туре	Results	Vat	Bac		Description	of Strata		(Thick ness)	
				Water	Backfill	MADE GROUND- firm occasional sub-angula occasional rootlets (1- <i>i</i> pockets. Sand is fine to MADE GROUND- firm occasional sub-angula occasional to rare ash. Firm light brown mottl sub-angular fine to co (GAULT FORMATION). Inspection pit terminated	r fine to r 2mm diamet medium. yellow brow r fine to r ed grey slig arse flint gr	slightly silty sa nedium flint gra er) and occasion n slightly silty sa nedium flint gra htly silty CLAY avels. Sand is f	avels and winnal to rare as andy CLAY wind avels and wind with occasion	(Thick ness) th th sh (0.30) 0.30 th th (0.25) 0.55 al 0.60	Graph
							General	Remarks		-	
Plan (Not to	- ▲ [e)		2.	Backfil Inspec	und water encountered led with arising tion pit remained stable er conditions: cool, overca All dimensions in metres		Scale:	1:1;	3	

	1		- Phase	1			BI	OW Tradi	ng Limited			HP
Contract Re			Date			Ground	Level (m AOD)	: National	Grid Co-ordinate:	Sheet		
	2545	59		01.0	3.13						1	of
Sam	ples an	d In-situ	Tests	Water	Backfill			Descriptio	on of Strata		Depth (Thick	
Depth	No	Туре	Results	Ň	Ba			-			ness)	
Depth 0.20 0.40	No .	ES ES	Results T+J+VL T+J+VL		Ba	MADE occas to rare	ional sub-angul ragments. Sanc GROUND- fir ional sub-angul a ash pockets a	It dark brow ar fine to coan is fine to me m yellow bro ar fine to coan nd brick fragn	rn slightly silty san rse flint gravels and edium. own slightly silty san rse flint gravels and nents. (GAULT FORMATIO	with occasional ndy CLAY with with occasional	(0.30) 0.30 (0.25) 0.55 0.60	Legi
- - - - Plan (Not to	•) ???		2. 3.	Backfil nspec	led with a tion pit re er condit	er encountered arising emained stable ions: cool, over	cast	Il Remarks	1:13	-	
Method			Pla	ant				Logged		Checked		A
Used:		nd dug		sed:		Hand	taala	By:	VMacfarlane	By:		

Contract:		ΝΙΔΒ	- Phase 1			Client:)W Tradi	ng Limited	Trial F	Pit:	HP6
Contract Re			Date:			Ground Level (m AOD)		Grid Co-ordinate:	Sheet		
	254	59		01.0	3.13					_	of 1
		nd In-sit								1	Materi
Depth	No	Туре	Results	Water	Backfill		Descriptio	on of Strata		(Thick	Graph Leger
Deptil		туре	Itesuits			MADE GROUND-	firm brown	slightly silty san	dy CLAY with	ness)	
0.20	1	ES	T+J+VL			occasional sub-angula fragments. Sand is fin	ar fine to coa	arse flint gravels and	d with rare brick	(0.30)	
						MADE GROUND- fir occasional sub-angula to rare ash pockets ar	ar fine to coa	rse flint gravels and	ndy CLAY with with occasional	-(0.20)	
0.40	2	ES	T+J+VL			· · · · · · · · · · · · · · · · · · ·				0.50	\bigotimes
						Firm light brown mottl sub-roundeded to sub to medium. (GAULT F Inspection pit termina	-angular fine ORMATION	e to coarse flint grav l).	with occasional els. Sand is fine	0.60	×××× •-0× •-0×
										-	
Plan (Not to	- ▲ [e) ???		2. E 3. Ir	Backfill nspect	und water encountered ed with arising ion pit remained stable er conditions: cool, over		al Remarks			
/ethod	¥ L		Plar	t		All dimensions in metr	es Logged	Scale:	1:13 Checked		A
Jsed:	11-	and dug	n Use	d:		Hand tools	By:	VMacfarlane	By:		I V∧¥ f

GINT_LIBRARY_V8_04.GLBILog INSPECTION PIT_LOG | 25459_NIAB PHASE 1.GPJ - v8_04 | 01/05/13 - 14:01 | CH. RSK Environment Ltd. 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tei: 01442 437550, Web: www.rsk.co.uk.

Contract:		NIAB	- Phase 1				Client:	W Trading	g Limited	Trial		HP
Contract Re	ef:		Date:			Groun	d Level (m AOD):	National G	id Co-ordinate:	Shee	t:	
	254	59		01.0	3.13						1	of 1
Sam	ples a	and In-site	u Tests	Water	Backfill			Description	of Strata		Depth (Thick	
Depth	No	Туре	Results	M	Bac			-			ness)	
Depth 0.20 0.50 0.50 0.50 0.50 0.50 0.50 0.50	No 1 2	ES	Results T+J+VL T+J+VL		Bac	Sub-a (5mn pock MAD sub-a pock Firm sub-a (GAL	E GROUND-bro angular fine to co n diameter) rootlets ets and brick fragn E GROUND- firm angular fine to coal ets and brick fragn yellow brown mo angular fine to co JLT FORMATION) ection pit terminate	light brown s se flint grave hents. light brown s se flint grave hents. ttled grey slig barse flint grave	silty CLAY w avels and with o neter) and occasi lightly silty CLAY is and with occasi ghtly silty CLAY avels. Sand is fi	ccasional roots onal to rare ash with occasional onal to rare ash with occasional	(0.50) (0.50) 0.50 0.60 0.65	
								Concret	Domentic			
Plan (Not to	Scal							Jeneral	Remarks			
	- ₽ ↓ [???		2. E	Backfil nspec	led with tion pit	ter encountered a arising remained stable itions: cool, overca	st				
			Plan			All di	mensions in metre	S	Scale:	1:13		
Method								Logged		Checked		A

Contract:		NIAB	- Phase 1			Client:	N Tradiı	ng Limited	Trial P		HP8
Contract Re	ef:		Date:			Ground Level (m AOD):	National (Grid Co-ordinate:	Sheet:		
	254	59		01.0	3.13					1	of 1
Sam	ples a	and In-site	u Tests	Water	Backfill		Description	a of Strata		Depth	Materi Graph
Depth	No	Туре	Results	Ma	Bac		Description	1 of Strata		ness)	Legen
0.10	1	ES	T+J+VL			MADE GROUND- firi sub-angular fine to me (1-2mm diameter) and fragments.	dium flint gr	avels and with oc I to rare ash po	casional rootlets ckets and brick	(0.30)	
0.30	2	ES	T+J+VL			MADE GROUND- firm occasional sub-angular medium.	fine to co	arse flint gravels.	Sand is fine to	0.40	
						Firm yellow brown m occasional sub-angular medium. (GAULT FOR	fine to me	slightly silty sar dium flint gravels.	ndy CLAY with Sand is fine to	(0.25)	
						Inspection pit terminate	d at 0.65m d	depth		0.65	~
										-	
										ы.	
										-	
										-	
										-	
										-	
										-	
										-	
										-	
										-	
										-	
										-	
										-	
										-	
Plan (Not to	o Scal	e)					Genera	l Remarks			
		???		1. N	lo gro	und water encountered					
				3. Ir	nspect	led with arising tion pit remained stable er conditions: cool, overca	st				
				1							
						All dimensions in metre	6	Scale:	1:13		AC

Samples and In-situ Tests and the second	Contract:		NIAB	- Pha	ase 1			BDV	V Trading	g Limited			HF
Samples and In-situ Tests by set by set becaption of Strata Depth Math (Thick Scale) Lepth No Type Results B B Lepth No Type Results B L20 1 ES T+J+VL B L20 2 ES T+J+VL B L20 1 Inspection pit terminated at 0.50m depth 0.20m L20 1 Inspection pit terminated at 0.50m depth Inspection pit terminated at 0.50m depth L20 1 Inspection pit remained stable Inspection pit remained stable L20 1 Inspection pit remained	Contract R									•	SI	heet:	
Depth No Type Results Results <thresults< th=""> <thresults< th=""> <thresu< th=""><th></th><th>254</th><th>59</th><th></th><th></th><th>01.0</th><th>3.13</th><th></th><th></th><th></th><th></th><th>1</th><th>of</th></thresu<></thresults<></thresults<>		254	59			01.0	3.13					1	of
Image: state in the state i	Sam	ples a	and In-sit	u Tests		er	ţ						
1 ES T+J+VL MADE GROUND fim dark brown slightly silty sandy CLAY with occasional to rare ash pockets and brick fragments. Sand is fine to medium. 0.30 1.00 2 ES T+J+VL MADE GROUND fim value brown slightly silty sandy CLAY with occasional sub-angular fine to coarse finit graves and with occasional sub-angular fine to coarse finit graves and with occasional sub-angular fine to coarse finit graves and with occasional sub-angular fine to coarse finit graves and with occasional sub-angular fine to coarse finit graves and with occasional sub-angular fine to coarse finit graves and with occasional sub-angular fine to medium finit graves. Sand is fine to medium finit graves.	Depth	No	Туре	Res	ults	Wat	Back		Description	of Strata			
??? 1. No ground water encountered 2. Backfilled with arising 3. Inspection pit remained stable 4. Weather conditions: cool, overcast All dimensions in metres Scale:		No 1	Type ES	Resi	ults +VL	Wate	Backfi	MADE GROUND- firm occasional sub-angular to rare ash pockets and MADE GROUND- firm occasional sub-angular to rare ash pockets and Firm light brown mottle with occasional sub-ang to medium. (GAULT FO	dark brown fine to coarso brick fragme yellow brow fine to coarso brick fragme d grey and o gular fine to r RMATION).	n slightly silty sa e flint gravels and ents. Sand is fine t m slightly silty sa e flint gravels and ents. orange slightly si medium flint grave	I with occasic to medium. andy CLAY v with occasic	(Thirness with onal (0.3 - 0.3 with onal - (0.2 0.5 LAY	ck Graµ s) Leg 0) 0 0) 0 2 2
												-	
Method Plant Logged Checked Jsed: Hand dug Used: Hand tools By: CJBall By: A		- • [2. E 3. I	Backfill nspect	und water encountered led with arising tion pit remained stable er conditions: cool, overca	st	1			

		NIAB	- Phase				W Trading	-			HP1
Contract Re		50	Da		00.44	Ground Level (m AOD):	National Gr	id Co-ordinate:	Sheet		, A
	254				1.03.13					1	of 1
		and In-sit			Water Backfill		Description	of Strata		Depth (Thick	Grap
Depth	No	Туре	Results	5 5	> XXXX		dark brown	elightly eilty ear	ndy CLAX with	ness)	Lege
Depti 0.20 0.50 0.50	1	ES	T+J+VL			MADE GROUND- firm occasional sub-angular rootlets (1-5mm diame metal fragments. Sand MADE GROUND- firm occasional sub-angular to rare ash pockets and Firm light brown mottle with occasional sub-rou to medium. (GAULT FC Inspection pit terminate	fine to coarse ter) and occa is fine to med yellow brow fine to coarse brick fragme ad grey and o inded fine to r PRMATION).	e flint gravels and asional to rare as um. e flint gravels and hts. prange slightly sil nedium flint grave	with occasional sh pockets and ndy CLAY with with occasional ty sandy CLAY	- (0.40) - (0.40) - 0.50 - 0.60 	
-							<u> </u>				
- Plan (Not to	Scal	e)				(Jeneral	Remarks			
Plan (Not to	-	e) ??►</td <td></td> <td>2</td> <td>2. Backi 3. Inspe</td> <td>ound water encountered illed with arising ction pit remained stable ner conditions: cool, overca</td> <td></td> <td>Remarks</td> <td></td> <td></td> <td></td>		2	2. Backi 3. Inspe	ound water encountered illed with arising ction pit remained stable ner conditions: cool, overca		Remarks			
	-			2	2. Backi 3. Inspe	ound water encountered illed with arising ction pit remained stable	ist	Remarks Scale:	1:13 Checked		

Contract:		NIAB	- Phase 1			Client:	W Trading	g Limited	Trial F		HP1
Contract Re	ef:		Date:			Ground Level (m AOD):	National G	rid Co-ordinate:	Sheet	:	
	254	59		01.0	3.13					1	of
Sam	ples a	and In-sit	u Tests	Water	kfill		Description	- 6 011		Depth	
Depth	No	Туре	Results	Ma	Bac		Description	of Strata		ness)	
Depth 0.20 0.50 0.50 0.50 0.50 0.50 0.50 0.50	No 1 2	ES	Results T+J+VL T+J+VL		Backfill	MADE GROUND- firm occasional sub-rounded and with occasional roc ash pockets. Sand is fir MADE GROUND- soft occasional sub-angular to rare ash pockets and Firm yellow brown mo sub-angular fine to co (GAULT FORMATION) Inspection pit terminated	d to sub-ang titets (1-2mm to firm brow fine to coars brick fragme ttled grey sli barse flint gr	a slightly silty sar ular fine to mediu diameter) and oc m slightly silty sa e flint gravels and nts. ghtly silty CLAY avels. Sand is fi	um flint gravels casional to rare ndy CLAY with with occasional	(Thick ness) (0.30) 0.30 (0.30) 0.60 0.70	
	0	-					Conoral	Domortico			
Plan (Not to	scal						Selleral	Remarks			
	. 🛉 [???		2. E	Backfil nspec	und water encountered led with arising tion pit remained stable er conditions: cool, overca	st				
222	: ↓ [
Method			Plant			All dimensions in metre	s Logged	Scale:	1:13 Checked		A

Contract:		NIAB	- Phase	e 1		Client:		g Limited	Trial P		HP1
Contract R			Da			Ground Level (m AOD):	National G	rid Co-ordinate:	Sheet:		
	254	59		01.	03.13					1	of 1
Sam	ples a	and In-sit	u Tests	Water	Backfill		Description	of Strata		Depth (Thick	
Depth	No	Туре	Results	s ≥	Ba		-			ness)	
0.20 0.50	No 1	ES	T+J+VL T+J+VL			MADE GROUND- firm occasional sub-angular rootlets (1-2mm diamet MADE GROUND- fir occasional sub-angula occasional to rare roots Soft to firm light yellow fine to medium flint grav Inspection pit terminate	m dark brown fine to coars er) and crop and crop ar fine to n and rootlets brown silty C vels. (GAULT	n slightly silty sa e flint gravels and stubble. prown slightly si medium flint gra (1-2mm) CLAY with occasic FORMATION).	with occasional Ity CLAY with ivels and with		Lege
-										F	
										-	
										-	
Plan (Not to	- ▲ [e) ??? ▲──►		2. 3.	Backfil Inspec	und water encountered led with arising tion pit remained stable		Remarks		I	
ссс с	E ▼			4.	Weath	All dimensions in metre		Scale:	1:13		
Method				lant			Logged	1	Checked		A
Used:	Ц	and dug	n U	lsed:		Hand tools		/Macfarlane	By:		$ \mathbf{A} $

		NIAB	- Phase 1					g Limited			HP1
Contract Re			Date:			Ground Level (m AOD):	National G	rid Co-ordinate:	Sheet:		
	254	59		01.03	3.13					1	of 1
Sam	ples a	and In-site	u Tests	Water	Backfill		Description	of Strata		Depth (Thick	
Depth	No	Туре	Results	Ŵ	Ba					ness)	
						MADE GROUND- re-wo	n dark brow	n very silty san	dy CLAY with	0.10	
0.20	1	ES	T+J+VL			occasional sub-rounde occasional rootlets (1- pockets. Sand is fine to	2mm diamet	nedium flint gra er) and occasion	vels and with al to rare ash	(0.30)	
						MADE GROUND- firm	yellow brow	n slightly silty sa	ndy CLAY with	0.40	
0.50	2	ES	T+J+VL			occasional sub-angular roots and rootlets (1-2 fragments.	fine to coars 2mm diameto	e flint gravels. oco er) with ash poc	casional to rare kets and brick	- (0.20)	
-						Inspection pit terminated	d at 0.60m de	pth		0.60	
- - - - - - Plan (Not to) Scal	e)		1. N		und water encountered	General	Remarks		-	
222	€ ↓ [3. Ir	spect	ed with arising ion pit remained stable er conditions: cool, overca	st				
Method	l.a -	4 -				All dimensions in metres		Scale:	1:13		Α
N/othood	Inen	ection p	it + Plant				Logged		Checked		

CHEMICAL TEST RESULTS

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: Issue Number:

13/01097

1

Date: 18 March, 2013

Client:

RSK Environment Ltd Hemel 18 Frogmore Road Hemel Hempstead Hertfordshire UK HP3 9RT

Project Manager: Project Name: Project Ref: Order No: Date Samples Received: Date Instructions Received: Date Analysis Completed:

Nigel Austin / Chris Ball / Verity Macfarlane BDW Trading / NIAB 1, Cambridge 25459 Not specified 06/03/13 06/03/13 18/03/13

Prepared by:

Manshall

Melanie Marshall Laboratory Coordinator

Approved by:

Gill Scott Laboratory Manager

Notes - Soil analysis

All results are reported as dry weight (<40 °C).

For samples with Matrix Codes 1 - 6 inert stones >10mm are removed or excluded from the sample prior to analysis and reported results corrected to a whole sample basis. For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis

Notes - General

Subscript "A" indicates analysis performed on the sample as received, "D" indicates analysis performed on the dried sample.

All analysis is performed on the dried and crushed sample for samples with Matrix Code 7 and this supercedes any "A" subscripts. Superscript "M" indicates method accredited to MCERTS.

For complex, multi-compound analysis, quality control results do not always fall within chart limits for every compound and we have criteria for reporting in these situations. If results are in italic font they are associated with such quality control failures and may be unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling. Predominant Matrix Codes - 1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER.

Samples with Matrix Code 7 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our MCERTS accreditation. Secondary Matrix Codes - A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains

roots/twigs.

IS indicates Insufficient sample for analysis. NDP indicates No Determination Possible. NAD indicates No Asbestos Detected. Superscript # indicates method accredited to ISO 17025. Analytical results reflect the quality of the sample at the time of analysis only.

Opinions and interpretations expressed are outside the scope of our accreditation.

Client Project Name: BDW Trading / NIAB 1, Cambridge

Lab Sample ID	13/01097/1	13/01097/2	13/01097/3	13/01097/4	13/01097/5	13/01097/6	13/01097/7	13/01097/8		
Client Sample No										
Client Sample ID	HP1	HP2	HP3	HP4	HP5	HP6	HP7	HP8		
Depth to Top	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.10		
Depth To Bottom										
Date Sampled	01-Mar-13		ef							
Sample Type	Soil - ES	s	Method ref							
Sample Matrix Code	5AE	5E	6AE	6AE	6AE	6AE	6AE	6E	Units	Meth
Asbestos in soil _p #	-	-	NAD	NAD	NAD	NAD	NAD	NAD		A-T-045
Asbestos Matrix _D	-	-	-	-	-	-	-	-		A-T-045
Arsenic _D ^{M#}	-	-	6	5	7	6	5	5	mg/kg	A-T-024
Cadmium _D ^{M#}	-	-	0.9	0.8	0.8	0.8	0.9	1.0	mg/kg	A-T-024
Copper _D ^{M#}	-	-	24	20	16	20	21	25	mg/kg	A-T-024
Chromium _D ^{M#}	-	-	41	36	26	39	40	47	mg/kg	A-T-024
Lead _D ^{M#}	-	-	50	41	32	42	46	52	mg/kg	A-T-024
Mercury _D	-	-	0.40	0.34	0.18	0.26	0.39	0.27	mg/kg	A-T-024
Nickel ^{D^{M#}}	-	-	32	30	23	32	32	38	mg/kg	A-T-024
Selenium _D ^{M#}	-	-	<1	<1	<1	<1	<1	<1	mg/kg	A-T-024
Zinc _D ^{M#}	-	-	70	59	54	63	69	78	mg/kg	A-T-024
TPH total (C6-C40) _A	-	-	<10	<10	25	<10	<10	21	mg/kg	A-T-007s

Client Project Name: BDW Trading / NIAB 1, Cambridge

								r		
Lab Sample ID	13/01097/1	13/01097/2	13/01097/3	13/01097/4	13/01097/5	13/01097/6	13/01097/7	13/01097/8		
Client Sample No										
Client Sample ID	HP1	HP2	HP3	HP4	HP5	HP6	HP7	HP8		
Depth to Top	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.10		
Depth To Bottom										
Date Sampled	01-Mar-13		ef							
Sample Type	Soil - ES	s	Method ref							
Sample Matrix Code	5AE	5E	6AE	6AE	6AE	6AE	6AE	6E	Units	Meth
Acid Herbs										
2,3,6-TBA	-	-	-	<0.1	-	<0.1	-	<0.1	mg/kg	Subcon
2,4-D	-	-	-	<0.1	-	<0.1	-	<0.1	mg/kg	Subcon
2,4-DB	-	-	-	<0.1	-	<0.1	-	<0.1	mg/kg	Subcon
2,4,5-T	-	-	-	<0.1	-	<0.1	-	<0.1	mg/kg	Subcon
2,4,5-TP; (Fenoprop); (Silvex)	-	-	-	<0.1	-	<0.1	-	<0.1	mg/kg	Subcon
4-CPA	-	-	-	<0.1	-	<0.1	-	<0.1	mg/kg	Subcon
Benazolin	-	-	-	<0.1	-	<0.1	-	<0.1	mg/kg	Subcon
Bentazone	-	-	-	<0.1	-	<0.1	-	<0.1	mg/kg	Subcon
Bromacil	-	-	-	<0.1	-	<0.1	-	<0.1	mg/kg	Subcon
Bromoxynil	-	-	-	<0.1	-	<0.1	-	<0.1	mg/kg	Subcon
Clopyralid	-	-	-	<0.1	-	<0.1	-	<0.1	mg/kg	Subcon
Dicamba	-	-	-	<0.1	-	<0.1	-	<0.1	mg/kg	Subcon
2,4-DP; (Dichlorprop)	-	-	-	<0.1	-	<0.1	-	<0.1	mg/kg	Subcon
Diclofop	-	-	-	<0.1	-	<0.1	-	<0.1	mg/kg	Subcon
Flamprop	-	-	-	<0.1	-	<0.1	-	<0.1	mg/kg	Subcon
Flamprop-isopropyl	-	-	-	<0.1	-	<0.1	-	<0.1	mg/kg	Subcon
Fluroxypyr	-	-	-	<0.1	-	<0.1	-	<0.1	mg/kg	Subcon
loxynil	-	-	-	<0.1	-	<0.1	-	<0.1	mg/kg	Subcon
МСРА	-	-	-	<0.1	-	<0.1	-	<0.1	mg/kg	Subcon
МСРВ	-	-	-	<0.1	-	<0.1	-	<0.1	mg/kg	Subcon
MCPP; (Mecoprop)	-	-	-	<0.1	-	<0.1	-	<0.1	mg/kg	Subcon
PCP; (Pentachlorophenol)	-	-	-	<0.1	-	<0.1	-	<0.1	mg/kg	Subcon
Picloram	-	-	-	<0.1	-	<0.1	-	<0.1	mg/kg	Subcon
Triclopyr	-	-	-	<0.1	-	<0.1	-	<0.1	mg/kg	Subcon

Client Project Name: BDW Trading / NIAB 1, Cambridge

						i reject nei				
Lab Sample ID	13/01097/1	13/01097/2	13/01097/3	13/01097/4	13/01097/5	13/01097/6	13/01097/7	13/01097/8		
Client Sample No										
Client Sample ID	HP1	HP2	HP3	HP4	HP5	HP6	HP7	HP8		
Depth to Top	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.10		
Depth To Bottom										
Date Sampled	01-Mar-13	01-Mar-13	01-Mar-13	01-Mar-13	01-Mar-13	01-Mar-13	01-Mar-13	01-Mar-13		ef
Sample Type	Soil - ES	Soil - ES	Soil - ES	s	Method ref					
Sample Matrix Code	5AE	5E	6AE	6AE	6AE	6AE	6AE	6E	Units	Meth
PAH 16										
Acenaphthene _A ^{M#}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-019s
Acenaphthylene _A ^{M#}	<0.01	<0.01	<0.01	0.05	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-019s
Anthracene _A ^{M#}	<0.02	<0.02	<0.02	0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	A-T-019s
Benzo(a)anthracene _A ^{M#}	0.14	0.10	<0.04	0.11	<0.04	<0.04	<0.04	<0.04	mg/kg	A-T-019s
Benzo(a)pyrene _A ^{M#}	0.22	0.18	<0.04	0.96	<0.04	<0.04	<0.04	<0.04	mg/kg	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	0.28	0.21	<0.05	0.60	<0.05	<0.05	<0.05	<0.05	mg/kg	A-T-019s
Benzo(ghi)perylene _A ^{M#}	0.19	0.13	<0.05	4.69	<0.05	<0.05	<0.05	<0.05	mg/kg	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	0.15	0.12	<0.07	0.59	<0.07	<0.07	<0.07	<0.07	mg/kg	A-T-019s
Chrysene _A ^{M#}	0.20	0.13	<0.06	0.13	<0.06	<0.06	<0.06	<0.06	mg/kg	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	<0.04	<0.04	<0.04	3.89	<0.04	<0.04	<0.04	<0.04	mg/kg	A-T-019s
Fluoranthene ^{A^{M#}}	0.28	0.13	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	mg/kg	A-T-019s
Fluorene _A ^{M#}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	0.15	0.12	<0.03	4.37	<0.03	<0.03	<0.03	<0.03	mg/kg	A-T-019s
Naphthalene _A ^{M#}	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	A-T-019s
Phenanthrene _A ^{M#}	0.07	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	A-T-019s
Pyrene _A ^{M#}	0.28	0.15	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	mg/kg	A-T-019s
Total PAH _A ^{M#}	1.96	1.29	<0.08	15.4	<0.08	<0.08	<0.08	<0.08	mg/kg	A-T-019s

Client Project Name: BDW Trading / NIAB 1, Cambridge

						-				
Lab Sample ID	13/01097/1	13/01097/2	13/01097/3	13/01097/4	13/01097/5	13/01097/6	13/01097/7	13/01097/8		
Client Sample No										
Client Sample ID	HP1	HP2	HP3	HP4	HP5	HP6	HP7	HP8		
Depth to Top	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.10		
Depth To Bottom										
Date Sampled	01-Mar-13		ef							
Sample Type	Soil - ES	s	Method ref							
Sample Matrix Code	5AE	5E	6AE	6AE	6AE	6AE	6AE	6E	Units	Meth
Triazines (x11)										
Ametryne	-	-	<0.2	-	<0.2	<0.2	<0.2	-	mg/kg	Subcon
Atraton	-	-	<0.1	-	<0.1	<0.1	<0.1	-	mg/kg	Subcon
Atrazine	-	-	<0.02	-	<0.02	<0.02	<0.02	-	mg/kg	Subcon
Cyanazine	-	-	<0.02	-	<0.02	<0.02	<0.02	-	mg/kg	Subcon
Prometon	-	-	<0.1	-	<0.1	<0.1	<0.1	-	mg/kg	Subcon
Prometryn	-	-	<0.02	-	<0.02	<0.02	<0.02	-	mg/kg	Subcon
Propazine	-	-	<0.02	-	<0.02	<0.02	<0.02	-	mg/kg	Subcon
Simazine	-	-	<0.02	-	<0.02	<0.02	<0.02	-	mg/kg	Subcon
Simetryn	-	-	<0.1	-	<0.1	<0.1	<0.1	-	mg/kg	Subcon
Terbuthylazine	-	-	<0.02	-	<0.02	<0.02	<0.02	-	mg/kg	Subcon
Terbutryn	-	-	<0.02	-	<0.02	<0.02	<0.02	-	mg/kg	Subcon

Client Project Name: BDW Trading / NIAB 1, Cambridge

B	-					Project nei				
Lab Sample ID	13/01097/1	13/01097/2	13/01097/3	13/01097/4	13/01097/5	13/01097/6	13/01097/7	13/01097/8		
Client Sample No										
Client Sample ID	HP1	HP2	HP3	HP4	HP5	HP6	HP7	HP8		
Depth to Top	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.10		
Depth To Bottom										
Date Sampled	01-Mar-13	01-Mar-13	01-Mar-13	01-Mar-13	01-Mar-13	01-Mar-13	01-Mar-13	01-Mar-13		ef
Sample Type	Soil - ES	Soil - ES	Soil - ES	s	Method ref					
Sample Matrix Code	5AE	5E	6AE	6AE	6AE	6AE	6AE	6E	Units	Meth
TPH CWG										
Ali >C5-C6 _A [#]	<0.01	<0.01	-	-	-	-	-	-	mg/kg	A-T-022s
Ali >C6-C8 _A [#]	<0.01	<0.01	-	-	-	-	-	-	mg/kg	A-T-022s
Ali >C8-C10 _A [#]	<0.01	<0.01	-	-	-	-	-	-	mg/kg	A-T-022s
Ali >C10-C12 _A [#]	<0.1	<0.1	-	-	-	-	-	-	mg/kg	A-T-023s
Ali >C12-C16 _A [#]	<0.1	<0.1	-	-	-	-	-	-	mg/kg	A-T-023s
Ali >C16-C21 _A [#]	<0.1	<0.1	-	-	-	-	-	-	mg/kg	A-T-023s
Ali >C21-C35 _A #	<0.1	<0.1	-	-	-	-	-	-	mg/kg	A-T-023s
Total Aliphatics _A [#]	<0.1	<0.1	-	-	-	-	-	-	mg/kg	A-T-022+23s
Aro >C5-C7 _A [#]	<0.01	<0.01	-	-	-	-	-	-	mg/kg	A-T-022s
Aro >C7-C8 _A [#]	<0.01	<0.01	-	-	-	-	-	-	mg/kg	A-T-022s
Aro >C8-C9 _A [#]	<0.01	<0.01	-	-	-	-	-	-	mg/kg	A-T-022s
Aro >C9-C10 _A [#]	<0.01	<0.01	-	-	-	-	-	-	mg/kg	A-T-022s
Aro >C10-C12 _A [#]	<0.1	<0.1	-	-	-	-	-	-	mg/kg	A-T-023s
Aro >C12-C16 _A [#]	<0.1	<0.1	-	-	-	-	-	-	mg/kg	A-T-023s
Aro >C16-C21 _A [#]	<0.1	<0.1	-	-	-	-	-	-	mg/kg	A-T-023s
Aro >C21-C35 _A [#]	<0.1	<0.1	-	-	-	-	-	-	mg/kg	A-T-023s
Total Aromatics _A [#]	<0.1	<0.1	-	-	-	-	-	-	mg/kg	A-T-022+23s
TPH (Ali & Aro) _A [#]	<0.1	<0.1	-	-	-	-	-	-	mg/kg	A-T-022+23s
BTEX - Benzene _A [#]	<0.01	<0.01	-	-	-	-	-	-	mg/kg	A-T-022s
BTEX - Toluene _A #	<0.01	<0.01	-	-	-	-	-	-	mg/kg	A-T-022s
BTEX - Ethyl Benzene _A #	<0.01	<0.01	-	-	-	-	-	-	mg/kg	A-T-022s
BTEX - m & p Xylene _A #	<0.01	<0.01	-	-	-	-	-	-	mg/kg	A-T-022s
BTEX - o Xylene _A [#]	<0.01	<0.01	-	-	-	-	-	-	mg/kg	A-T-022s
MTBE _A #	<0.01	<0.01	-	-	-	-	-	-	mg/kg	A-T-022s

Client Project Name: BDW Trading / NIAB 1, Cambridge

Lab Sample ID	13/01097/9	13/01097/10	13/01097/11	13/01097/12	13/01097/13			
Client Sample No								
Client Sample ID	HP9	HP10	HP11	HP12	HP13			
Depth to Top	0.20	0.20	0.20	0.20	0.20			
Depth To Bottom								
Date Sampled	01-Mar-13	01-Mar-13	01-Mar-13	01-Mar-13	01-Mar-13			ef
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES		ø	Method ref
Sample Matrix Code	6AE	6E	6E	5AE	6AE		Units	Meth
Asbestos in soil _D [#]	NAD	NAD	-	-	-			A-T-045
Arsenic _D ^{M#}	6	7	-	-	-		mg/kg	A-T-024
Cadmium _D ^{M#}	0.9	0.9	-	-	-		mg/kg	A-T-024
Copper _D ^{M#}	22	25	-	-	-		mg/kg	A-T-024
Chromium _D ^{M#}	37	31	-	-	-		mg/kg	A-T-024
Lead _D ^{M#}	51	85	-	-	-		mg/kg	A-T-024
Mercury _D	0.24	0.26	-	-	-		mg/kg	A-T-024
Nickel ^{D^{M#}}	32	28	-	-	-		mg/kg	A-T-024
Selenium _D ^{M#}	<1	2	-	-	-		mg/kg	A-T-024
Zinc ^{M#}	97	107	-	-	-		mg/kg	A-T-024
TPH total (C6-C40) _A	<10	45	-	-	-		mg/kg	A-T-007s

Client Project Name: BDW Trading / NIAB 1, Cambridge

Lab Sample ID 13/01097/9 13/01097/10 13/01097/11 13/01097/12 13/01097/13 Image: Constraint of the state o	Method ref
Client Sample ID HP9 HP10 HP11 HP12 HP13 Image: Client Sample ID Depth to Top 0.20 <td>sthod ref</td>	sthod ref
Depth to Top 0.20	thod ref
Depth To Bottom Image: Construction of the second sec	thod ref
Date Sampled 01-Mar-13	thod ref
Sample Type Soil - ES Soil - ES <td>sthod ref</td>	sthod ref
Sample Matrix Code 6AE 6E 6E 5AE 6AE gg Acid Herbs - <0.1	sthod re
Acid Herbs - <0.1 - - - mg/k 2,3,6-TBA - <0.1	ř
2,3,6-TBA - <0.1	; Š
2,4-D - <0.1 mg/k	
	kg Subcon
24.DB	kg ^{Subcon}
	kg ^{Subcon}
2,4,5-T - <0.1 mg/k	kg ^{Subcon}
2,4,5-TP; (Fenoprop); (Silvex) - <0.1 mg/k	kg Subcon
4-CPA - <0.1 mg/k	kg ^{Subcon}
Benazolin - <0.1 mg/k	kg ^{Subcon}
Bentazone - <0.1 mg/k	kg ^{Subcon}
Bromacil - <0.1 March Ma	kg ^{Subcon}
Bromoxynil - <0.1 mg/k	kg ^{Subcon}
Clopyralid - <0.1 mg/k	kg Subcon
Dicamba - <0.1 mg/k	kg ^{Subcon}
2,4-DP; (Dichlorprop) - <0.1 mg/k	kg ^{Subcon}
Diclofop - <0.1 mg/k	kg ^{Subcon}
Flamprop - <0.1 mg/k	kg ^{Subcon}
Flamprop-isopropyl - <0.1 mg/k	kg ^{Subcon}
Fluroxypyr - <0.1 mg/k	kg ^{Subcon}
loxynil - <0.1 mg/k	kg ^{Subcon}
MCPA - <0.1 Mg/k	kg ^{Subcon}
MCPB - <0.1 Mg/k	kg ^{Subcon}
MCPP; (Mecoprop) - <0.1 mg/k	kg ^{Subcon}
PCP; (Pentachlorophenol) - <0.1 mg/k	kg ^{Subcon}
Picloram - <0.1 mg/k	kg ^{Subcon}
Triclopyr - <0.1 mg/k	

Client Project Name: BDW Trading / NIAB 1, Cambridge

						Froject nei			
Lab Sample ID	13/01097/9	13/01097/10	13/01097/11	13/01097/12	13/01097/13				
Client Sample No									
Client Sample ID	HP9	HP10	HP11	HP12	HP13				
Depth to Top	0.20	0.20	0.20	0.20	0.20				
Depth To Bottom									
Date Sampled	01-Mar-13	01-Mar-13	01-Mar-13	01-Mar-13	01-Mar-13				ef
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES			ú	Method ref
Sample Matrix Code	6AE	6E	6E	5AE	6AE			Units	Meth
PAH 16									
Acenaphthene _A ^{M#}	<0.01	<0.01	<0.01	<0.01	<0.01			mg/kg	A-T-019s
Acenaphthylene _A ^{M#}	<0.01	<0.01	<0.01	<0.01	<0.01			mg/kg	A-T-019s
Anthracene _A ^{M#}	<0.02	<0.02	<0.02	<0.02	0.04			mg/kg	A-T-019s
Benzo(a)anthracene _A ^{M#}	<0.04	<0.04	<0.04	<0.04	0.16			mg/kg	A-T-019s
Benzo(a)pyrene _A ^{M#}	<0.04	<0.04	<0.04	0.05	0.24			mg/kg	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	<0.05	<0.05	<0.05	0.07	0.29			mg/kg	A-T-019s
Benzo(ghi)perylene _A ^{M#}	<0.05	<0.05	<0.05	<0.05	0.17			mg/kg	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	<0.07	<0.07	<0.07	<0.07	0.14			mg/kg	A-T-019s
Chrysene _A ^{M#}	<0.06	<0.06	<0.06	0.09	0.26			mg/kg	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	<0.04	<0.04	<0.04	<0.04	<0.04			mg/kg	A-T-019s
Fluoranthene ^{A^{M#}}	<0.08	<0.08	<0.08	0.15	0.38			mg/kg	A-T-019s
Fluorene ^{A^{M#}}	<0.01	<0.01	<0.01	<0.01	<0.01			mg/kg	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	<0.03	<0.03	<0.03	<0.03	0.13			mg/kg	A-T-019s
Naphthalene _A ^{M#}	<0.03	<0.03	<0.03	<0.03	<0.03			mg/kg	A-T-019s
Phenanthrene _A ^{M#}	<0.03	<0.03	<0.03	0.05	0.19			mg/kg	A-T-019s
Pyrene _A ^{M#}	<0.07	<0.07	<0.07	0.13	0.37			mg/kg	A-T-019s
Total PAH _A ^{M#}	<0.08	<0.08	<0.08	0.55	2.38			mg/kg	A-T-019s

Client Project Name: BDW Trading / NIAB 1, Cambridge

Lab Sample ID	13/01097/9	13/01097/10	13/01097/11	13/01097/12	13/01097/13			
Client Sample No								
Client Sample ID	HP9	HP10	HP11	HP12	HP13			
Depth to Top	0.20	0.20	0.20	0.20	0.20			
Depth To Bottom								
Date Sampled	01-Mar-13	01-Mar-13	01-Mar-13	01-Mar-13	01-Mar-13			ef
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES		ø	Method ref
Sample Matrix Code	6AE	6E	6E	5AE	6AE		Units	Meth
Triazines (x11)								
Ametryne	<0.2	-	-	-	-		mg/kg	Subcon
Atraton	<0.1	-	-	-	-		mg/kg	Subcon
Atrazine	<0.02	-	-	-	-		mg/kg	Subcon
Cyanazine	<0.02	-	-	-	-		mg/kg	Subcon
Prometon	<0.1	-	-	-	-		mg/kg	Subcon
Prometryn	<0.02	-	-	-	-		mg/kg	Subcon
Propazine	<0.02	-	-	-	-		mg/kg	Subcon
Simazine	<0.02	-	-	-	-		mg/kg	Subcon
Simetryn	<0.1	-	-	-	-		mg/kg	Subcon
Terbuthylazine	<0.02	-	-	-	-		mg/kg	Subcon
Terbutryn	<0.02	-	-	-	-		mg/kg	Subcon

Client Project Name: BDW Trading / NIAB 1, Cambridge

				1			T		
Lab Sample ID	13/01097/9	13/01097/10	13/01097/11	13/01097/12	13/01097/13				
Client Sample No									
Client Sample ID	HP9	HP10	HP11	HP12	HP13				
Depth to Top	0.20	0.20	0.20	0.20	0.20				
Depth To Bottom									
Date Sampled	01-Mar-13	01-Mar-13	01-Mar-13	01-Mar-13	01-Mar-13				ef
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES			Ś	Method ref
Sample Matrix Code	6AE	6E	6E	5AE	6AE			Units	Meth
TPH CWG									
Ali >C5-C6 _A [#]	-	-	<0.01	<0.01	<0.01			mg/kg	A-T-022s
Ali >C6-C8 _A [#]	-	-	<0.01	<0.01	<0.01			mg/kg	A-T-022s
Ali >C8-C10 ₄ [#]	-	-	<0.01	<0.01	<0.01			mg/kg	A-T-022s
Ali >C10-C12 _A #	-	-	<0.1	<0.1	<0.1			mg/kg	A-T-023s
Ali >C12-C16 _A #	-	-	<0.1	<0.1	<0.1			mg/kg	A-T-023s
Ali >C16-C21 _A #	-	-	<0.1	<0.1	<0.1			mg/kg	A-T-023s
Ali >C21-C35 _A #	-	-	<0.1	<0.1	<0.1			mg/kg	A-T-023s
Total Aliphatics _A #	-	-	<0.1	<0.1	<0.1			mg/kg	A-T-022+23s
Aro >C5-C7 _A #	-	-	<0.01	<0.01	<0.01			mg/kg	A-T-022s
Aro >C7-C8 _A #	-	-	<0.01	<0.01	<0.01			mg/kg	A-T-022s
Aro >C8-C9 _A [#]	-	-	<0.01	<0.01	<0.01			mg/kg	A-T-022s
Aro >C9-C10 _A #	-	-	<0.01	<0.01	<0.01			mg/kg	A-T-022s
Aro >C10-C12 _A #	-	-	<0.1	<0.1	<0.1			mg/kg	A-T-023s
Aro >C12-C16 ₄ [#]	-	-	<0.1	<0.1	<0.1			mg/kg	A-T-023s
Aro >C16-C21 _A #	-	-	<0.1	<0.1	<0.1			mg/kg	A-T-023s
Aro >C21-C35 _A #	-	-	<0.1	<0.1	<0.1			mg/kg	A-T-023s
Total Aromatics _A #	-	-	<0.1	<0.1	<0.1			mg/kg	A-T-022+23s
TPH (Ali & Aro) _A [#]	-	-	<0.1	<0.1	<0.1			mg/kg	A-T-022+23s
BTEX - Benzene _A [#]	-	-	<0.01	<0.01	<0.01			mg/kg	A-T-022s
BTEX - Toluene _A [#]	-	-	<0.01	<0.01	<0.01			mg/kg	A-T-022s
BTEX - Ethyl Benzene _A [#]	-	-	<0.01	<0.01	<0.01			mg/kg	A-T-022s
BTEX - m & p Xylene _A #	-	-	<0.01	<0.01	<0.01			mg/kg	A-T-022s
BTEX - o Xylene _A [#]	-	-	<0.01	<0.01	<0.01			mg/kg	A-T-022s
MTBE _A #	-	-	<0.01	<0.01	<0.01			mg/kg	A-T-022s

SUPPLEMENTARY GROUND GAS MONITORING RECORDS

IN-SITU GAS MONITORING RESULTS

[Pressures]	Previous	During	<u>Start</u>	End	Equipment Used & Remarks
Round 1	Constant	Constant	1018	1020	Dipmeter + GA2000 + Weath
Round 2	Rising	Rising	1008	1009	Dipmeter + GA2000 + Weath
Round 3	Falling	Falling	1005	1005	Dipmeter + GFM-40 + Weath

Dipmeter + GA2000 + Weather: Clear & Sunny + Ground: Dry + Wind: Strong + Air Temp: 16DegC Dipmeter + GA2000 + Weather: Overcast + Ground: Damp + Wind: Medium + Air Temp: 7DegC Dipmeter + GFM-40 + Weather: Overcast & Sunny + Ground: Dry + Wind: Medium

Exploratory Position ID	Monitoring Round	Measured Installation Depth (mbgl)	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)	Atmos Pressure (mb)	Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	PID (ppm)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
BH1	1	4.18	19/09/2012	1018	1018	0.0 _(SS)	DRY	0.6	0.1	19.8	-	0.2	0.0	0.0
BH1	1		15 secs	-	-	0.0 _(SS)	-	0.8	0.1	19.1	-	0.2	0.0	0.0
BH1	1		30 secs	-	-	0.0 _(SS)	-	0.6	0.1	19.1	-	0.2	0.0	0.0
BH1	1		60 secs	-	-	0.0 _(SS)	-	0.6	0.1	19.1	-	0.0	0.0	0.0
BH1	1		90 secs	-	-	0.0 _(SS)	-	0.6	0.1	19.4	-	0.0	0.0	0.0
BH1	1		120 secs	-	-	0.0 _(SS)	-	0.6	0.1	19.4	-	0.0	0.0	0.0
BH1	1		180 secs	-	-	0.0 _(SS)	-	0.6	0.1	19.4	-	0.0	0.0	0.0
BH1	1		240 secs	-	-	0.0 _(SS)	-	0.6	0.1	19.4	-	0.0	0.0	0.0
BH1	1		300 secs	-	-	0.0 _(SS)	-	0.6	0.1	19.4	-	0.0	0.0	0.0
BH1	1		360 secs	-	-	0.0 _(SS)	-	0.6	0.1	19.4	-	0.0	0.0	0.0
BH1	1		420 secs	-	-	0.0 _(SS)	-	0.6	0.1	19.4	-	0.0	0.0	0.0
BH1	2 (2)	4.22	05/10/2012	1004	1008	0.0 _(SS)	DRY	0.0	0.0	20.4	-	0.0	0.0	0.0
BH1	2 (2)		15 secs	-	-	0.0 _(SS)	-	1.1	0.0	18.5	-	0.0	0.0	0.0
BH1	2 (2)		30 secs	-	-	0.0 _(SS)	-	1.1	0.0	18.5	-	0.0	0.0	0.0
BH1	2 (2)		60 secs	-	-	0.0 _(SS)	-	1.1	0.0	18.5	-	0.0	0.0	0.0
BH1	2 (2)		90 secs	-	-	0.0 _(SS)	-	1.1	0.0	18.5	-	0.0	0.0	0.0
BH1	2 (2)		120 secs	-	-	0.0 _(SS)	-	1.1	0.0	18.5	-	0.0	0.0	0.0
BH1	2 (2)		180 secs	-	-	0.0 _(SS)	-	1.1	0.0	18.5	-	0.0	0.0	0.0
Key: I = Initial, P	1	Steady State. N	Note: LEL = Lower	Explosive L	imit = 5% v			1				I	1	·
R	SK Enviro	nment I td	Co	ompiled By			Date		Chec	ked By		Da	te	Contract Ref:
	18 Frogmo		1	Snow			24/10/12							25459
	Hemel Hempstead Contract: Hertfordshire HP3 9RT										Page: 1 of 11			

Exploratory Position ID	Monitoring Round	Installation Depth (mbgl)	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)	Atmos Pressure (mb)	Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	PID (ppm)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)	
BH1	2 (2)		240 secs	-	-	0.0 _(SS)	-	1.1	0.0	18.5	-	0.0	0.0	0.0	
BH1	2 (2)		300 secs	-	-	0.0 _(SS)	-	1.1	0.0	18.5	-	0.0	0.0	0.0	
BH1	2 (2)		360 secs	-	-	0.0 _(SS)	-	1.1	0.0	18.5	-	0.0	0.0	0.0	
BH1	2 (2)		420 secs	-	-	0.0 _(SS)	-	1.1	0.0	18.5	-	0.0	0.0	0.0	
BH1	3 (3)	4.25	11/10/2012	1004	1000	0.0 _(SS)	DRY	0.0	0.0	20.9	0.0	-	-	-	
BH1	3 (3)		15 secs	-	-	0.0 _(SS)	-	1.7	0.0	19.9	0.0	-	-	-	
BH1	3 (3)		30 secs	-	-	0.0 _(SS)	-	1.7	0.0	19.2	0.0	-	-	-	
BH1	3 (3)		60 secs	-	-	0.0 _(SS)	-	1.7	0.0	19.1	0.0	-	-	-	
BH1	3 (3)		90 secs	-	-	0.0 _(SS)	-	1.8	0.0	19.0	0.0	-	-	-	
BH1	3 (3)		120 secs	-	-	0.0 _(SS)	-	1.8	0.0	19.0	0.0	-	-	-	
BH1	3 (3)		180 secs	-	-	0.0 _(SS)	-	1.7	0.0	19.1	0.0	-	-	-	
BH2	1		19/09/2012	1018	1018	0.3 _(SS)	_	0.8	0.0(1)	20.1	0.0(1)	0.3	0.0	0.0	
BH2	1		15 secs	1018	1018	0.3 _(SS)	_	0.8	0.0	20.0	0.0	0.0	0.0	0.0	
BH2	1		30 secs	1018	1018	0.3 _(SS)	_	0.8	0.0	20.0	0.0	0.0	0.0	0.0	
BH2	1		60 secs	1018	1018	0.3 _(SS)	_	0.8	0.0	20.0	0.0	0.0	0.0	0.0	
BH2	1		90 secs	1018	1018	0.3 _(SS)	_	0.8	0.0	20.0	0.0	0.0	0.0	0.0	
BH2	1		120 secs	1018	1018	0.3 _(SS)	_	0.8	0.0	20.0	0.0	0.0	0.0	0.0	
BH2	1		180 secs	1018	1018	0.3 _(SS)	_	0.8	0.0	20.0	0.0	0.0	0.0	0.0	
BH2	1		240 secs	1018	1018	0.3 _(SS)	_	0.8	0.0	20.0	0.0	0.0	0.0	0.0	
BH2	1		300 secs	1018	1018	0.3 _(SS)	-	0.8	0.0	20.0	0.0	0.0	0.0	0.0	
BH2	1		360 secs	1018	1018	0.3 _(SS)	_	0.8	0.0	20.0	0.0	0.0	0.0	0.0	
BH2	1		420 secs	1018	1018	0.3 _(SS)	_	0.8	0.0	20.0	0.0	0.0	0.0	0.0	
BH2	2		05/10/2012	1008	1008	0.4(1)	-	0.0	0.0	20.8	0.0	0.0	0.0	0.0	
BH2	2		15 secs	1018	1018	0.0 _(SS)	-	0.5	0.0	19.9	0.0	-	-	-	
			Note: LEL = Lower	Explosive L		/v.		0.5			0.0		-		
R	SK Enviro	nment Lto	1	ompiled By			Date		Checl	ked By		Da	ite	Contract Ref	
	18 Frogmo	ore Road	-	Sum	-	24	/10/12								25459
	Hemel Her Hertford HP3 9	lshire	Contract:				NIAB	- Phase	1					Page:	2 of 11

Exploratory Position ID	Monitoring Round	Installation Depth (mbgl)	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)	Atmos Pressure (mb)	Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	PID (ppm)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)	
BH2	2		30 secs	1018	1018	0.0 _(SS)	-	0.5	0.0	19.9	0.0	-	-	-	
BH2	2		60 secs	1018	1018	0.0 _(SS)	-	0.5	0.0	19.9	0.0	-	-	-	
BH2	2		90 secs	1018	1018	0.0 _(SS)	-	0.5	0.0	19.8	0.0	-	-	-	
BH2	2		120 secs	1018	1018	0.0 _(SS)	-	0.5	0.0	19.9	0.0	-	-	-	
BH2	2		180 secs	1018	1018	0.0 _(SS)	-	0.5	0.0	19.9	0.0	-	-	-	
BH2	2		240 secs	1018	1018	0.0 _(SS)	-	0.5	0.0	19.9	0.0	-	-	-	
BH2	2		300 secs	1018	1018	0.0 _(SS)	-	0.5	0.0	19.9	0.0	-	-	-	
BH2	2		360 secs	1018	1018	0.0 _(SS)	-	0.5	0.0	19.9	0.0	-	-	-	
BH2	2		420 secs	1018	1018	0.0 _(SS)	-	0.5	0.0	19.9	0.0	-	-	-	
BH2	3		11/10/2012	1005	1005	0.0 _(I)	-	0.3	0.0	20.9	0.0	-	-	-	
BH2	3		15 secs	1005	1005	0.0 _(SS)	-	1.7 _(SS)	0.0 _(SS)	20.9 _(SS)	0.0 _(SS)	-	-	-	
BH2	3		30 secs	1005	1005	0.0 _(SS)	-	1.8	0.0	20.0	0.0	-	-	-	
BH2	3		60 secs	1005	1005	0.0 _(SS)	-	1.8	0.0	19.5	0.0	-	-	-	
BH2	3		90 secs	1005	1005	0.0 _(SS)	-	1.8	-	19.4	-	-	-	-	
BH2	3		120 secs	1005	1005	0.0 _(SS)	-	1.8	-	19.3	-	-	-	-	
BH2	3		180 secs	1005	1005	0.0 _(SS)	-	1.7	-	19.3	-	-	-	-	
BH2	3		240 secs	1005	1005	0.0 _(SS)	-	1.7	-	19.4	-	-	-	-	
BH2	3		300 secs	1005	1005	0.0 _(SS)	-	1.7	-	19.4	-	-	-	-	
BH2	3		360 secs	1005	1005	0.0 _(SS)	-	1.7	-	19.4	-	-	-	-	
BH2	3		420 secs	1005	1005	0.0 _(SS)	-	1.7	-	19.4	-	-	-	-	
BH3	2 (2)	3.23	05/10/2012	-	1009	0.0 _(SS)	1.44	0.0	0.0	20.6	0.0	0.0	0.0	0.0	
BH3	2 (2)		15 secs	-	-	0.0 _(SS)	-	0.7	0.0	19.4	0.0	-	0.0	0.0	
BH3	2 (2)		30 secs	-	-	0.0 _(SS)	-	0.7	0.0	19.4	0.0	-	0.0	0.0	
BH3	2 (2)		60 secs	-	-	0.0 _(SS)	-	0.7	0.0	19.4	0.0	-	0.0	0.0	
	= Peak, SS = S		Note: LEL = Lower	Explosive L	.imit = 5% v	/v.	Date		Chec	ked By		Da	te	Contract Ref	f:
	18 Frogmo			Snow	-	24	/10/12								25459
	Hemel Her Hertford HP3 §	mpstead Ishire	Contract:		-			- Phase	1					Page:	3 of 11

Exploratory Position ID	Monitoring Round	Installation Depth (mbgl)	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)	Atmos Pressure (mb)	Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	PID (ppm)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
BH3	2 (2)		90 secs	-	-	0.0 _(SS)	-	0.7	0.0	19.4	0.0	-	0.0	0.0
BH3	2 (2)		120 secs	-	-	0.0 _(SS)	-	0.7	0.0	19.3	0.0	-	0.0	0.0
BH3	2 (2)		180 secs	-	-	0.0 _(SS)	-	0.7	0.0	19.4	0.0	-	0.0	0.0
BH3	2 (2)		240 secs	-	-	0.0 _(SS)	-	0.7	0.0	19.3	0.0	-	0.0	0.0
BH3	2 (2)		300 secs	-	-	0.0 _(SS)	-	0.7	0.0	19.3	0.0	-	0.0	0.0
BH3	2 (2)		360 secs	-	-	0.0 _(SS)	-	0.7	0.0	19.3	0.0	-	0.0	0.0
BH3	2 (2)		420 secs	-	-	0.0 _(SS)	-	0.7	0.0	19.3	0.0	-	0.0	0.0
BH3	3 (3)	3.50	11/10/2012	-	1008	0.0 _(SS)	1.58	0.0	-	20.7	-	-	0.0	-
BH3	3 (3)		15 secs	-	-	0.0 _(SS)	-	1.4	-	19.4	-	-	-	-
BH3	3 (3)		30 secs	-	-	0.0 _(SS)	-	1.5	-	18.2	-	-	-	-
BH3	3 (3)		60 secs	-	-	0.0 _(SS)	-	1.5	-	17.9	-	-	-	-
BH3	3 (3)		90 secs	-	-	0.0 _(SS)	-	1.5	-	17.9	-	-	-	-
BH3	3 (3)		120 secs	-	-	0.0 _(SS)	-	1.5	-	17.9	-	-	-	-
BH3	3 (3)		180 secs	-	-	0.0 _(SS)	-	1.5	-	17.9	-	-	-	-
BHG	1	4.32	19/09/2012	1018	1018	-0.1 _(SS)	2.12	0.2	0.0	20.2	0.0	0.3	0.0	0.0
BHG	1		15 secs	-	-	-0.1 _(SS)	-	0.2	0.0	20.2	0.0	0.0	0.0	0.0
BHG	1		30 secs	-	-	-0.1 _(SS)	-	0.2	0.0	20.2	0.0	0.0	0.0	0.0
BHG	1		60 secs	-	-	-0.1 _(SS)	-	0.2	0.0	20.3	0.0	0.0	0.0	0.0
BHG	1		90 secs	-	-	-0.1 _(SS)	-	0.2	0.0	20.3	0.0	0.0	0.0	0.0
BHG	1		120 secs	-	-	-0.1 _(SS)	-	0.2	0.0	20.3	0.0	0.0	0.0	0.0
BHG	1		180 secs	-	-	-0.1 _(SS)	-	0.1	0.0	20.3	0.0	0.0	0.0	0.0
BHG	1		240 secs	-	-	-0.1 _(SS)	-	0.2	0.0	20.3	0.0	0.0	0.0	0.0
BHG	1		300 secs	-	-	-0.1 _(SS)	-	0.2	0.0	20.2	0.0	0.0	0.0	0.0
BHG	1		360 secs	_	-	-0.1 _(SS)	-	0.2	0.0	20.2	0.0	0.0	0.0	0.0
y: I = Initial, P	= Peak, SS = S	Steady State.	Note: LEL = Lower		imit = 5% v.	/v.			0					Contract Ref:
	SK Enviro		<u>ו</u> ג	ompiled By		-	Date		Check	ked By		Dat	te	
	18 Frogmo	ore Road		Sum	-	24	/10/12							25459
	Hemel Her Hertford HP3 9	lshire	Contract:				NIAB	- Phase	1					Page: 4 of 11

Exploratory Position ID	Monitoring Round	Installation Depth (mbgl)	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)	Atmos Pressure (mb)	Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	PID (ppm)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)	
BHG	1		420 secs	-	-	-0.1 _(SS)	-	0.2	0.0	20.2	0.0	0.0	0.0	0.0	
BHG	2 (2)	4.31	05/10/2012	1008	1008	0.0 _(SS)	2.15	0.0	0.0	20.8	0.0	0.0	0.0	0.0	
BHG	2 (2)		15 secs	-	-	0.0 _(SS)	-	0.3	0.0	19.6	0.0	0.0	0.0	0.0	
BHG	2 (2)		30 secs	-	-	0.0 _(SS)	-	0.3	0.0	19.9	0.0	0.0	0.0	0.0	
BHG	2 (2)		60 secs	-	-	0.0 _(SS)	-	0.3	0.0	20.0	0.0	0.0	0.0	0.0	
BHG	2 (2)		90 secs	-	-	0.0 _(SS)	-	0.3	0.0	20.0	0.0	0.0	0.0	0.0	
BHG	2 (2)		120 secs	-	-	0.0 _(SS)	-	0.2	0.0	20.0	0.0	0.0	0.0	0.0	
BHG	2 (2)		180 secs	-	-	0.0 _(SS)	-	0.2	0.0	20.1	0.0	0.0	0.0	0.0	
BHG	2 (2)		240 secs	-	-	0.0 _(SS)	-	0.2	0.0	20.1	0.0	0.0	0.0	0.0	
BHG	2 (2)		300 secs	-	-	0.0 _(SS)	-	0.1	0.0	20.1	0.0	0.0	0.0	0.0	
BHG	2 (2)		360 secs	-	-	0.0 _(SS)	-	0.1	0.0	20.1	0.0	0.0	0.0	0.0	
BHG	2 (2)		420 secs	-	-	0.0 _(SS)	-	0.1	0.0	20.2	0.0	0.0	0.0	0.0	
BHG	3 (3)	4.58	11/10/2012	1003	1003	0.0 _(SS)	2.40	0.3	0.0	20.9	0.0	-	-	-	
BHG	3 (3)		15 secs	-	-	0.0 _(SS)	-	1.7	0.0	20.0	0.0	-	-	-	
BHG	3 (3)		30 secs	-	-	0.0 _(SS)	-	1.8	0.0	19.5	0.0	-	-	-	
BHG	3 (3)		60 secs	-	-	0.0 _(SS)	-	1.8	0.0	19.4	0.0	-	-	-	
BHG	3 (3)		90 secs	-	-	0.0 _(SS)	-	1.8	0.0	19.3	0.0	-	-	-	
BHG	3 (3)		120 secs	-	-	0.0 _(SS)	-	1.8	0.0	19.3	0.0	-	-	-	
BHG	3 (3)		180 secs	-	-	0.0 _(SS)	-	1.7	0.0	19.4	0.0	-	-	-	
BHG	3 (3)		240 secs	-	-	0.0 _(SS)	-	1.7	0.0	19.4	0.0	-	-	-	
BHG	3 (3)		300 secs	-	-	0.0 _(SS)	-	1.7	0.0	19.4	0.0	-	-	-	
BHG	3 (3)		360 secs	-	-	0.0 _(SS)	-	1.7	0.0	19.4	0.0	-	-	-	
BHG	3 (3)		420 secs	-	-	0.0 _(SS)	-	1.7	0.0	19.4	0.0	-	-	-	
ВНК	1	4.05	19/09/2012	1018	1018	0.0 _(SS)	1.97	1.3	0.1	19.8	1.0	0.0	0.0	0.0	
			Note: LEL = Lower				1.97	1.3	0.1	19.8	1.0	0.0	1		
R	SK Enviro	nment Ltd	Co	ompiled By			Date		Chec	ked By		Da	te	Contract Re	
	18 Frogmo			Sum	-	24	/10/12								25459
	Hemel Her Hertford HP3 9	mpstead Ishire	Contract:					- Phase	1					Page:	5 of 11

Exploratory Position ID	Monitoring Round	Installation Depth (mbgl)	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)	Atmos Pressure (mb)	Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	PID (ppm)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)	
BHK	1		15 secs	-	-	0.0 _(SS)	-	1.3	0.1	19.5	1.0	0.0	0.0	0.0	
BHK	1		30 secs	-	-	0.0 _(SS)	-	1.4	0.1	19.5	1.0	0.0	0.0	0.0	
BHK	1		60 secs	-	-	0.0 _(SS)	-	1.3	0.1	19.5	1.0	0.0	0.0	0.0	
BHK	1		90 secs	-	-	0.0 _(SS)	-	1.3	0.1	19.5	1.0	0.0	0.0	0.0	
BHK	1		120 secs	-	-	0.0 _(SS)	-	1.4	0.1	19.5	1.0	0.0	0.0	0.0	
BHK	1		180 secs	-	-	0.0 _(SS)	-	1.5	0.1	19.5	1.0	0.0	0.0	0.0	
BHK	1		240 secs	-	-	0.0 _(SS)	-	1.7	0.1	19.4	1.0	0.0	0.0	0.0	
BHK	1		300 secs	-	-	0.0 _(SS)	-	1.8	0.1	19.3	1.0	0.0	0.0	0.0	
BHK	1		360 secs	-	-	0.0 _(SS)	-	1.8	0.1	19.3	1.0	0.0	0.0	0.0	
BHK	1		420 secs	-	-	0.0 _(SS)	-	1.8	0.1	19.3	1.0	0.0	0.0	0.0	
BHK	2 (2)	4.04	05/10/2012	1009	1008	0.2 _(SS)	2.06	0.2	0.0	20.8	-	0.0	0.0	0.0	
BHK	2 (2)		15 secs	-	-	0.2 _(SS)	-	0.7	0.0	19.8	-	0.0	0.0	0.0	
BHK	2 (2)		30 secs	-	-	0.2 _(SS)	-	1.3	0.0	19.1	-	0.0	0.0	0.0	
BHK	2 (2)		60 secs	-	-	0.2 _(SS)	-	1.3	0.0	19.1	-	0.0	0.0	0.0	
BHK	2 (2)		90 secs	-	-	0.2 _(SS)	-	1.3	0.0	19.1	-	0.0	0.0	0.0	
BHK	2 (2)		120 secs	-	-	0.2 _(SS)	-	1.2	0.0	19.1	-	0.0	0.0	0.0	
BHK	2 (2)		180 secs	-	-	0.2 _(SS)	-	1.3	0.0	19.1	-	0.0	0.0	0.0	
BHK	2 (2)		240 secs	-	-	0.2 _(SS)	-	1.2	0.0	19.1	-	0.0	0.0	0.0	
BHK	2 (2)		300 secs	-	-	0.2 _(SS)	-	1.2	0.0	19.1	-	0.0	0.0	0.0	
BHK	2 (2)		360 secs	-	-	0.2 _(SS)	-	1.2	0.0	19.1	-	0.0	0.0	0.0	
BHK	2 (2)		420 secs	-	-	0.2 _(SS)	-	1.2	0.0	19.1	-	0.0	0.0	0.0	
ВНК	3 (3)	4.30	11/10/2012	-	1006	-0.1 _(SS)	2.38	0.1	0.0	20.7	0.0	-	-	-	
BHK	3 (3)		15 secs	-	-	-0.1 _(SS)	-	3.2	0.0	19.2	0.0	-	-	-	
BHK	3 (3)		30 secs	-	-	-0.1 _(SS)	-	3.3	0.0	18.4	0.0	-	-	-	
BHK	3 (3)		60 secs	-	-	-0.1 _(SS)	-	3.3	0.0	18.2	0.0	-	-	-	
y: I = Initial, P	= Peak, SS = S	Steady State.	Note: LEL = Lower		.imit = 5% v/	/v.		1						Contract Ref	r.
	SK Enviro		1	ompiled By	,		Date		Cnecl	ked By		Da	le	Contract Rel	
	18 Frogmo			Sum	-	24	/10/12								25459
	Hemel Her Hertford HP3 9	lshire	Contract:				NIAB	- Phase	1					Page:	6 of 11

Exploratory Position ID	Monitoring Round	Installation Depth (mbgl)	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)	Atmos Pressure (mb)	Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	PID (ppm)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)	
BHK	3 (3)		90 secs	-	-	-0.1 _(SS)	-	3.4	0.0	18.1	0.0	-	-	-	
BHK	3 (3)		120 secs	-	-	-0.1 _(SS)	-	3.4	0.0	18.1	0.0	-	-	-	
BHK	3 (3)		180 secs	-	-	-0.1 _(SS)	-	3.5	0.0	18.0	0.0	-	-	-	
BHK	3 (3)		240 secs	-	-	-0.1 _(SS)	-	3.5	0.0	18.0	0.0	-	-	-	
BHK	3 (3)		300 secs	-	-	-0.1 _(SS)	-	3.5	0.0	18.0	0.0	-	-	-	
WS3	1	3.21	19/09/2012	1018	1018	0.2 _(SS)	DRY	0.0	0.1	20.3	0.0	0.0	0.0	0.0	
WS3	1		15 secs	-	-	0.2 _(SS)	-	0.6	0.1	20.2	1.0	0.0	0.0	0.0	
WS3	1		30 secs	-	-	0.2 _(SS)	-	0.7	0.1	20.2	1.0	0.0	0.0	0.0	
WS3	1		60 secs	-	-	0.2 _(SS)	-	0.8	0.1	20.2	1.0	0.0	0.0	0.0	
WS3	1		90 secs	-	-	0.2 _(SS)	-	0.7	0.1	20.2	1.0	0.0	0.0	0.0	
WS3	1		120 secs	-	-	0.2 _(SS)	-	0.7	0.1	20.2	1.0	0.0	0.0	0.0	
WS3	1		180 secs	-	-	0.2 _(SS)	-	0.6	0.1	20.3	1.0	0.0	0.0	0.0	
WS3	1		240 secs	-	-	0.2 _(SS)	-	0.6	0.1	20.3	1.0	0.0	0.0	0.0	
WS3	1		300 secs	-	-	0.2 _(SS)	-	0.5	0.1	20.4	1.0	0.0	0.0	0.0	
WS3	1		360 secs	-	-	0.2 _(SS)	-	0.4	0.1	20.5	1.0	0.0	0.0	0.0	
WS3	1		420 secs	-	-	0.2 _(SS)	-	0.4	0.1	20.5	1.0	0.0	0.0	0.0	
WS3	2 (2)	3.18	05/10/2012	1004	1008	0.3 _(SS)	2.92	1.1	0.0	19.6	-	-	-	-	
WS3	2 (2)		15 secs	-	-	0.3 _(SS)	-	1.1	0.0	19.6	-	-	-	-	
WS3	2 (2)		30 secs	-	-	0.3 _(SS)	-	1.1	0.0	19.5	-	-	-	-	
WS3	2 (2)		60 secs	-	-	0.3 _(SS)	-	1.2	0.0	19.5	-	-	-	-	
WS3	2 (2)		90 secs	-	-	0.3 _(SS)	-	1.2	0.0	19.5	-	-	-	-	
WS3	2 (2)		120 secs	-	-	0.3 _(SS)	-	1.1	0.0	19.4	-	-	-	-	
WS3	2 (2)		180 secs	-	-	0.3 _(SS)	-	1.0	0.0	19.5	-	-	-	-	
WS3	2 (2)		240 secs	-	-	0.3 _(SS)	-	0.9	0.0	19.5	-	-	-	-	
y: I = Initial, P	= Peak, SS = S	Steady State.	Note: LEL = Lower		imit = 5% v	/v.									
R	SK Enviro	nment Lto	1	ompiled By			Date		Chec	ked By		Da	te	Contract Ref	
	18 Frogmo			Sum	-	24	/10/12								25459
	Hemel Her Hertford HP3 9	lshire	Contract:			1	NIAB	- Phase	1					Page:	7 of 11

WS3 $2 (2)$ $300 \sec$ $1 \cdot$ 0.3_{68} 0.9 0.0 19.6 $1 \cdot$ $1 \cdot$ $1 \cdot$ $1 \cdot$ $1 \cdot$ WS3 $2 (2)$ $360 \sec$ $1 \cdot$ 0.3_{88} $1 \cdot$ 0.8 0.0 19.6 $1 \cdot$ <t< th=""><th>Exploratory Position ID</th><th>Monitoring Round</th><th>Installation Depth (mbgl)</th><th>Date & Time of Monitoring (elapsed time)</th><th>Borehole Pressure (mb)</th><th>Atmos Pressure (mb)</th><th>Gas Flow (l/hr)</th><th>Water Depth (mbgl)</th><th>Carbon Dioxide (% / vol)</th><th>Methane (% / vol)</th><th>Oxygen (% / vol)</th><th>LEL (%)</th><th>PID (ppm)</th><th>Carbon Monoxide (ppm)</th><th>Hydrogen Sulphide (ppm)</th><th></th></t<>	Exploratory Position ID	Monitoring Round	Installation Depth (mbgl)	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)	Atmos Pressure (mb)	Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	PID (ppm)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)	
WS32 (2)420 secs0.3(85)-0.80.019.6WS33 (3)5.4411/10/2012-1006 $0.0_{(55)}$ 2.870.30.020.70.0WS33 (3)15 secs $0.0_{(55)}$ -2.10.019.90.0WS33 (3)30 secs $0.0_{(55)}$ -2.20.019.30.0WS33 (3)60 secs $0.0_{(55)}$ -2.20.019.30.0WS33 (3)90 secs $0.0_{(55)}$ -2.20.019.30.0WS33 (3)120 secs $0.0_{(55)}$ -2.20.019.30.0WS33 (3)180 secs $0.0_{(55)}$ -2.20.019.30.0WS33 (3)180 secs $0.0_{(55)}$ -2.20.019.30.0WS33 (3)240 secs $0.0_{(55)}$ -2.20.019.30.0	WS3	2 (2)		300 secs	-	-	0.3 _(SS)	-	0.9	0.0	19.6	-	-	-	-	
WS3 3 (3) 5.44 11/10/2012 - 1006 $0.0_{(S5)}$ 2.87 0.3 0.0 20.7 0.0 $ -$ WS3 3 (3) 15 secs - $ 0.0_{(S5)}$ $ 2.1$ 0.0 19.9 0.0 $ -$ WS3 3 (3) $30 secs$ $ 0.0_{(S5)}$ $ 2.2$ 0.0 19.3 0.0 $ -$ WS3 3 (3) $60 secs$ $ 0.0_{(S5)}$ $ 2.2$ 0.0 19.3 0.0 $ 0.0_{(S5)}$ $ 2.2$ 0.0 19.3 0.0 $ -$	WS3	2 (2)		360 secs	-	-	0.3 _(SS)	-	0.8	0.0	19.6	-	-	-	-	
WS3 $3(3)$ $15 \sec s$ - $0 \ 0_{(SS)}$ - 2.1 0.0 19.9 0.0 - $ -$ WS3 $3(3)$ $30 \sec s$ $0 \ 0_{(SS)}$ - 2.2 0.0 19.3 0.0 $ -$ WS3 $3(3)$ $60 \sec s$ $0 \ 0_{(SS)}$ - 2.2 0.0 19.3 0.0 $ -$ WS3 $3(3)$ $90 \sec s$ $0 \ 0_{(SS)}$ - 2.2 0.0 19.3 0.0 $ -$ WS3 $3(3)$ $120 \sec s$ $0 \ 0_{(SS)}$ - 2.2 0.0 19.3 0.0 $ -$ WS3 $3(3)$ $120 \sec s$ $0 \ 0_{(SS)}$ - 2.2 0.0 19.3 0.0 $ -$ WS3 $3(3)$ $120 \sec s$ $0 \ 0_{(SS)}$ - 2.2 0.0 19.3 0.0 $ -$ WS3 $3(3)$ $240 \sec s$ $0 \ 0_{(SS)}$ - 2.2 0.0 19.3 0.0 $ -$ WS3 $3(3)$ $300 \sec s$ $0 \ 0_{(SS)}$ - 2.2 0.0 19.3 0.0 $ -$ WS3 $3(3)$ $300 \sec s$ - </td <td>WS3</td> <td>2 (2)</td> <td></td> <td>420 secs</td> <td>-</td> <td>-</td> <td>0.3_(SS)</td> <td>-</td> <td>0.8</td> <td>0.0</td> <td>19.6</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td>	WS3	2 (2)		420 secs	-	-	0.3 _(SS)	-	0.8	0.0	19.6	-	-	-	-	
WS3 $3 (3)$ $$ $30 \sec s$ $ 0.0_{(S)}$ $ 2.2$ 0.0 19.3 0.0 $ -$ WS3 $3 (3)$ $$ $60 \sec s$ $ 0.0_{(S)}$ $ 2.2$ 0.0 19.3 0.0 $ -$ WS3 $3 (3)$ $$ $90 \sec s$ $ 0.0_{(S)}$ $ 2.2$ 0.0 19.3 0.0 $ -$ WS3 $3 (3)$ $$ $120 \sec s$ $ 0.0_{(S)}$ $ 2.2$ 0.0 19.3 0.0 $ -$ WS3 $3 (3)$ $$ $120 \sec s$ $ 0.0_{(S)}$ $ 2.2$ 0.0 19.3 0.0 $ -$ WS3 $3 (3)$ $$ $180 \sec s$ $ 0.0_{(S)}$ $ 2.2$ 0.0 19.3 0.0 $ -$ WS3 $3 (3)$ $$ $180 \sec s$ $ 0.0_{(S)}$ $ 2.2$ 0.0 19.3 0.0 $ -$ WS3 $3 (3)$ $$ $240 \sec s$ $ 0.0_{(S)}$ $ 2.2$ 0.0 19.3 0.0 $ -$ WS3 $3 (3)$ $$ $300 \sec s$ $ 0.0_{(S)}$ $ 2.2$ 0.0 19.3 0.0 $ -$ <td>WS3</td> <td>3 (3)</td> <td>5.44</td> <td>11/10/2012</td> <td>-</td> <td>1006</td> <td>0.0_(SS)</td> <td>2.87</td> <td>0.3</td> <td>0.0</td> <td>20.7</td> <td>0.0</td> <td>-</td> <td>-</td> <td>-</td> <td></td>	WS3	3 (3)	5.44	11/10/2012	-	1006	0.0 _(SS)	2.87	0.3	0.0	20.7	0.0	-	-	-	
WS3 $3 (3)$ $60 \sec$ $0 0_{(S)}$ 2.2 0.0 19.3 0.0 WS3 $3 (3)$ $90 \sec$ $0 0_{(S)}$ 2.2 0.0 19.3 0.0 WS3 $3 (3)$ $120 \sec$ $0 0_{(S)}$ 2.2 0.0 19.3 0.0 WS3 $3 (3)$ $120 \sec$ $0 0_{(S)}$ 2.2 0.0 19.3 0.0 WS3 $3 (3)$ $120 \sec$ $0 0_{(S)}$ 2.2 0.0 19.3 0.0 WS3 $3 (3)$ $140 \sec$ $0 0_{(S)}$ $1 \cdot$ 2.2 0.0 19.3 0.0 $1 \cdot$ $1 \cdot$ WS3 $3 (3)$ $240 \sec$ $1 \cdot$ $0 \cdot$ 2.2 0.0 19.3 0.0 $1 \cdot$ $1 \cdot$ $1 \cdot$ WS3 $3 (3)$ $300 \sec$ $1 \cdot$ $0 \cdot$ $0 \cdot$ 2.2 0.0 19.3 0.0 $1 \cdot$ $1 \cdot$ $1 \cdot$ WS3 $3 (3)$ $300 \sec$ $1 \cdot$ $0 \cdot$ $0 \cdot$ 2.2 0.0 19.3 0.0 $1 \cdot$ $1 \cdot$ $1 \cdot$ WS3 $3 (3)$ $1 \cdot$ $300 \sec$ $1 \cdot$ $0 \cdot$ $0 \cdot$ 2.2 0.0 19.3 <	WS3	3 (3)		15 secs	-	-	0.0 _(SS)	-	2.1	0.0	19.9	0.0	-	-	-	
WS3 3 (3) 90 secs - 0.0 (ss) - 2.2 0.0 19.3 0.0 - - - WS3 3 (3) 120 secs - 0.0 (ss) - 2.2 0.0 19.3 0.0 - - - - WS3 3 (3) 120 secs - 0.0 (ss) - 2.2 0.0 19.3 0.0 - - - - WS3 3 (3) 180 secs - - 0.0 (ss) - 2.2 0.0 19.3 0.0 - - - - - 0.0 (ss) - 2.2 0.0 19.3 0.0 - - - - 0.0 (ss) - 2.2 0.0 19.3 0.0 - - - - - 0.0 (ss) - 2.2 0.0 19.3 0.0 - - - - - - - - - - - - - - - - -	WS3	3 (3)		30 secs	-	-	0.0 _(SS)	-	2.2	0.0	19.3	0.0	-	-	-	
WS3 $3 (3)$ $120 \sec s$ $1.20 \sec s$ $0.0_{(SS)}$ 2.2 0.0 19.3 0.0 WS3 $3 (3)$ $180 \sec s$ $ 0.0_{(SS)}$ 2.2 0.0 19.3 0.0 WS3 $3 (3)$ $240 \sec s$ $ 0.0_{(SS)}$ $ 2.2$ 0.0 19.3 0.0 WS3 $3 (3)$ $240 \sec s$ $ 0.0_{(SS)}$ $ 2.2$ 0.0 19.3 0.0 $ -$ WS3 $3 (3)$ $300 \sec s$ $ 0.0_{(SS)}$ $ 2.2$ 0.0 19.3 0.0 $ -$ WS3 $3 (3)$ $300 \sec s$ $ 0.0_{(SS)}$ $ 2.2$ 0.0 19.3 0.0 $ -$ WS3 $3 (3)$ $360 \sec s$ $ 0.0_{(SS)}$ $ 2.2$ 0.0 19.3 0.0 $ -$ WS3 $3 (3)$ $ 420 \sec s$ $ 0.0_{(SS)}$ $ 2.2$ 0.0 19.3 0.0 $ -$ WS171 2.95 $19/9/2012$ 1020 $0.1_{(SS)}$ DRY 1.7 0.0 19.5 0.0 $ -$ WS17	WS3	3 (3)		60 secs	-	-	0.0 _(SS)	-	2.2	0.0	19.3	0.0	-	-	-	
WS3 $3 (3)$ 180 secs $0.0_{(SS)}$ - 2.2 0.0 19.3 0.0 WS3 $3 (3)$ 240 secs $0.0_{(SS)}$ - 2.2 0.0 19.3 0.0 WS3 $3 (3)$ 240 secs $0.0_{(SS)}$ - 2.2 0.0 19.3 0.0 WS3 $3 (3)$ 300 secs $0.0_{(SS)}$ - 2.2 0.0 19.3 0.0 WS3 $3 (3)$ 360 secs $0.0_{(SS)}$ - 2.2 0.0 19.3 0.0 WS3 $3 (3)$ 360 secs $0.0_{(SS)}$ - 2.2 0.0 19.3 0.0 WS3 $3 (3)$ 360 secs $0.0_{(SS)}$ - 2.2 0.0 19.3 0.0 WS3 $3 (3)$ 420 secs $0.0_{(SS)}$ - 2.2 0.0 19.3 0.0 WS1712.95 $19/09/2012$ 1020 $0.1_{(SS)}$ DRY 1.7 0.0 19.5 0.0 WS171 30 secs $0.1_{(SS)}$ - 1	WS3	3 (3)		90 secs	-	-	0.0 _(SS)	-	2.2	0.0	19.3	0.0	-	-	-	
WS3 3 (3) 240 secs - 0.0 _(SS) - 2.2 0.0 19.3 0.0 - - - - WS3 3 (3) 300 secs - - 0.0 _(SS) - 2.2 0.0 19.3 0.0 - - - - WS3 3 (3) 300 secs - - 0.0 _(SS) - 2.2 0.0 19.3 0.0 - - - - WS3 3 (3) 360 secs - - 0.0 _(SS) - 2.2 0.0 19.3 0.0 - - - - WS3 3 (3) 360 secs - - 0.0 _(SS) - 2.2 0.0 19.3 0.0 - - - - WS3 3 (3) 420 secs - 0.0 _(SS) - 2.2 0.0 19.3 0.0 - - - WS17 1 2.95 19/09/2012 1020 0.1 _(SS) <th< td=""><td>WS3</td><td>3 (3)</td><td></td><td>120 secs</td><td>-</td><td>-</td><td>0.0_(SS)</td><td>-</td><td>2.2</td><td>0.0</td><td>19.3</td><td>0.0</td><td>-</td><td>-</td><td>-</td><td></td></th<>	WS3	3 (3)		120 secs	-	-	0.0 _(SS)	-	2.2	0.0	19.3	0.0	-	-	-	
WS3 3 (3) 300 secs - 0.0 (ss) - 2.2 0.0 19.3 0.0 - - - - WS3 3 (3) 360 secs - - 0.0 (ss) - 2.2 0.0 19.3 0.0 - - - - WS3 3 (3) 360 secs - - 0.0 (ss) - 2.2 0.0 19.3 0.0 - - - - WS3 3 (3) 420 secs - - 0.0 (ss) - 2.2 0.0 19.3 0.0 - - - - WS3 3 (3) 420 secs - - 0.0 (ss) - 2.2 0.0 19.3 0.0 - - - - WS17 1 2.95 19/09/2012 1020 0.1 (ss) DRY 1.7 0.0 19.5 0.0 - - - - WS17 1 30 secs - 0.1 (ss)	WS3	3 (3)		180 secs	-	-	0.0 _(SS)	-	2.2	0.0	19.3	0.0	-	-	-	
WS3 $3 (3)$ $360 \sec s$ - $ 0.0_{(SS)}$ - 2.2 0.0 19.3 0.0 - - - - WS3 $3 (3)$ $420 \sec s$ - $ 0.0_{(SS)}$ - 2.2 0.0 19.3 0.0 - - - - WS3 $3 (3)$ $420 \sec s$ - $ 0.0_{(SS)}$ - 2.2 0.0 19.3 0.0 - - - - - - - - - - 0.0 19.3 0.0 - -	WS3	3 (3)		240 secs	-	-	0.0 _(SS)	-	2.2	0.0	19.3	0.0	-	-	-	
WS3 $3 (3)$ $420 \sec s$ - $0.0_{(SS)}$ - 2.2 0.0 19.3 0.0 - - - - - - - - - - - - - - - - - 2.2 0.0 19.3 0.0 - - <t< td=""><td>WS3</td><td>3 (3)</td><td></td><td>300 secs</td><td>-</td><td>-</td><td>0.0_(SS)</td><td>-</td><td>2.2</td><td>0.0</td><td>19.3</td><td>0.0</td><td>-</td><td>-</td><td>-</td><td></td></t<>	WS3	3 (3)		300 secs	-	-	0.0 _(SS)	-	2.2	0.0	19.3	0.0	-	-	-	
MS17 1 2.95 19/09/2012 1020 1020 0.1 _(SS) DRY 1.7 0.0 19.5 0.0 WS17 1 15 secs - 0.1 _(SS) DRY 1.7 0.0 19.5 0.0 WS17 1 15 secs - 0.1 _(SS) 1.7 0.0 19.5 0.0 WS17 1 30 secs - 0.1 _(SS) 1.8 0.0 19.2 0.0	WS3	3 (3)		360 secs	-	-	0.0 _(SS)	-	2.2	0.0	19.3	0.0	-	-	-	
WS17 1 15 secs - - 0.1 _(SS) - 1.7 0.0 19.5 0.0 - - - - WS17 1 30 secs - - 0.1 _(SS) - 1.8 0.0 19.2 0.0 - - -	WS3	3 (3)		420 secs	-	-	0.0 _(SS)	-	2.2	0.0	19.3	0.0	-	-	-	
WS17 1 30 secs - 0.1 _(SS) - 1.8 0.0 19.2 0.0 - - -	WS17	1	2.95	19/09/2012	1020	1020	0.1 _(SS)	DRY	1.7	0.0	19.5	0.0	-	-	-	
WS17 1 30 secs - 0.1 _(SS) - 1.8 0.0 19.2 0.0 - - -	WS17	1		15 secs	-	-	0.1 _(SS)	-	1.7	0.0	19.5	0.0	-	-	-	
WS17 1 60 secs - - 0.1 _(SS) - 2.0 0.0 19.1 0.0 - - -	WS17	1		30 secs	-	-		-	1.8	0.0	19.2	0.0	-	-	-	
	WS17	1		60 secs	-	-	0.1 _(SS)	-	2.0	0.0	19.1	0.0	-	-	-	
WS17 1 90 secs 0.1 _(SS) - 2.1 0.1 19.0 1.0	WS17	1		90 secs	-	-	0.1 _(SS)	-	2.1	0.1	19.0	1.0	-	-	-	
	WS17	1		120 secs	-	-	0.1 _(SS)	-	2.4	0.1	18.8	2.0	-	-	-	
WS17 1 120 secs 0.1 _(SS) - 2.4 0.1 18.8 2.0	WS17	1		180 secs	-	-	0.1 _(SS)	-	2.7	0.1	18.7	2.0	-	-	-	
	WS17	1		240 secs	-	-	0.1 _(SS)	-	2.9	0.1	18.6	2.0	-	-	-	
WS17 1 180 secs - 0.1 _(SS) - 2.7 0.1 18.7 2.0 - - -	WS17	1		300 secs	-	-	0.1 _(SS)	-	2.9	0.1	18.6	2.0	-	-	-	
WS17 1 180 secs - 0.1 (SS) - 2.7 0.1 18.7 2.0 - - - WS17 1 240 secs - - 0.1 (SS) - 2.9 0.1 18.6 2.0 - - -	WS17	1		360 secs	-	-	0.1 _(SS)	-	2.9	0.1	18.6	2.0	-	-	-	
WS17 1 90 secs 0.1 _(SS) - 2.1 0.1 19.0 1.0	WS17 WS17 WS17 WS17 WS17	1 1 1 1 1 1	 	15 secs 30 secs 60 secs 90 secs			$\begin{array}{c} 0.1_{(SS)} \\ 0.1_{(SS)} \\ 0.1_{(SS)} \\ 0.1_{(SS)} \\ 0.1_{(SS)} \\ \end{array}$		1.7 1.8 2.0 2.1	0.0 0.0 0.0 0.1	19.5 19.5 19.2 19.1 19.0	0.0 0.0 0.0 1.0	- - -	-		
WS17 1 120 secs 0.1 _(SS) - 2.4 0.1 18.8 2.0	WS17	1		180 secs	-	-	0.1 _(SS)	-	2.7	0.1	18.7	2.0	-	-	-	
WS17 1 180 secs - 0.1 _(SS) - 2.7 0.1 18.7 2.0 - - -					-	-		-	-	-			-	-	-	
WS17 1 180 secs - 0.1 (ss) - 2.7 0.1 18.7 2.0 - - - WS17 1 240 secs - - 0.1 (ss) - 2.9 0.1 18.6 2.0 - - -					-		()	-		-			-	-	-	
WS17 1 180 secs - 0.1 (ss) - 2.7 0.1 18.7 2.0 - - - WS17 1 240 secs - - 0.1 (ss) - 2.9 0.1 18.6 2.0 - - - WS17 1 300 secs - - 0.1 (ss) - 2.9 0.1 18.6 2.0 - - - WS17 1 300 secs - - 0.1 (ss) - 2.9 0.1 18.6 2.0 - - -	WS17	1		360 secs	-	-	0.1 _(SS)	-	2.9	0.1	18.6	2.0	-	-	-	
WS17 1 180 secs - 0.1 (ss) - 2.7 0.1 18.7 2.0 - - - WS17 1 240 secs - - 0.1 (ss) - 2.9 0.1 18.6 2.0 - - - WS17 1 300 secs - - 0.1 (ss) - 2.9 0.1 18.6 2.0 - - - WS17 1 300 secs - - 0.1 (ss) - 2.9 0.1 18.6 2.0 - - -			-	0		imit = 5% v/		Date		Checl	ked By		Da	te	Contract Ref	f:
WS17 1 180 secs - $0.1_{(SS)}$ - 2.7 0.1 18.7 2.0 - - - WS17 1 240 secs - - $0.1_{(SS)}$ - 2.9 0.1 18.6 2.0 - - - WS17 1 300 secs - - $0.1_{(SS)}$ - 2.9 0.1 18.6 2.0 - - - WS17 1 360 secs - - $0.1_{(SS)}$ - 2.9 0.1 18.6 2.0 - - - WS17 1 360 secs - - $0.1_{(SS)}$ - 2.9 0.1 18.6 2.0 - - - WS17 1 360 secs - $0.1_{(SS)}$ - 2.9 0.1 18.6 2.0 - - - T I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v. Date Commided Bv <th< td=""><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td>050</td><td></td><td></td><td>24</td><td></td><td></td><td></td></th<>				1						050			24			
WS17 1 180 secs - $0.1_{(SS)}$ - 2.7 0.1 18.7 2.0 - - - WS17 1 240 secs - - $0.1_{(SS)}$ - 2.9 0.1 18.6 2.0 - - - WS17 1 300 secs - - $0.1_{(SS)}$ - 2.9 0.1 18.6 2.0 - - - WS17 1 300 secs - - $0.1_{(SS)}$ - 2.9 0.1 18.6 2.0 - - - WS17 1 360 secs - $ 0.1_{(SS)}$ - 2.9 0.1 18.6 2.0 - - - WS17 1 360 secs - $0.1_{(SS)}$ - 2.9 0.1 18.6 2.0 - - - Y: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v. Date Date Contract Ref: <td></td> <td>8 Frogmo</td> <td>ore Road</td> <td>_</td> <td>SUOM</td> <td>-</td> <td>24</td> <td>/10/12</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>20409</td>		8 Frogmo	ore Road	_	SUOM	-	24	/10/12								20409
WS17 1 180 secs - 0.1 (ss) - 2.7 0.1 18.7 2.0 - - - WS17 1 240 secs - - 0.1 (ss) - 2.9 0.1 18.6 2.0 - - - - WS17 1 300 secs - - 0.1 (ss) - 2.9 0.1 18.6 2.0 - - - - WS17 1 300 secs - - 0.1 (ss) - 2.9 0.1 18.6 2.0 -		Hemel He Hertford HP3 9	dshire	Contract:				NIAB	- Phase	1					Page:	8 of 11

Exploratory Position ID	Monitoring Round	Installation Depth (mbgl)	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)	Atmos Pressure (mb)	Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	PID (ppm)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)	
WS17	1		420 secs	-	-	0.1 _(SS)	-	2.9	0.1	18.6	2.0	-	-	-	
WS17	2 (2)	2.95	05/10/2012	1383	1009	0.0 _(SS)	1.88	0.1	0.0	20.2	0.0	0.0	0.0	0.0	
WS17	2 (2)		15 secs	-	-	0.0 _(SS)	-	0.3	0.0	20.2	0.0	-	0.0	0.0	
WS17	2 (2)		30 secs	-	-	0.0 _(SS)	-	0.4	0.0	20.2	0.0	-	0.0	0.0	
WS17	2 (2)		60 secs	-	-	0.0 _(SS)	-	0.8	0.0	19.7	0.0	-	0.0	0.0	
WS17	2 (2)		90 secs	-	-	0.0 _(SS)	-	0.9	0.0	19.6	0.0	-	0.0	0.0	
WS17	2 (2)		120 secs	-	-	0.0 _(SS)	-	1.3	0.0	19.2	0.0	-	0.0	0.0	
WS17	2 (2)		180 secs	-	-	0.0 _(SS)	-	1.4	0.0	18.9	0.0	-	0.0	0.0	
WS17	2 (2)		240 secs	-	-	0.0 _(SS)	-	1.5	0.0	18.8	0.0	-	0.0	0.0	
WS17	2 (2)		300 secs	-	-	0.0 _(SS)	-	1.5	0.0	18.8	0.0	-	0.0	0.0	
WS17	2 (2)		360 secs	-	-	0.0 _(SS)	-	1.4	0.0	18.9	0.0	-	0.0	0.0	
WS17	2 (2)		420 secs	-	-	0.0 _(SS)	-	1.3	0.0	18.9	0.0	-	0.0	0.0	
WS17	3 (3)	2.90	11/10/2012	-	1005	0.0 _(SS)	1.85	0.2	-	21.3	-	-	-	-	
WS17	3 (3)		15 secs	-	-	0.0 _(SS)	-	0.6	-	20.6	-	-	-	-	
WS17	3 (3)		30 secs	-	-	0.0 _(SS)	-	0.6	-	20.5	-	-	-	-	
WS17	3 (3)		60 secs	-	-	0.0 _(SS)	-	0.7	-	20.4	-	-	-	-	
WS17	3 (3)		90 secs	-	-	0.0 _(SS)	-	0.9	-	20.2	-	-	-	-	
WS17	3 (3)		120 secs	-	-	0.0 _(SS)	-	1.1	-	20.0	-	-	-	-	
WS17	3 (3)		180 secs	-	-	0.0 _(SS)	-	1.4	-	19.6	-	-	-	-	
WS17	3 (3)		240 secs	-	-	0.0 _(SS)	-	1.6	-	19.6	-	-	-	-	
WS17	3 (3)		300 secs	-	-	0.0 _(SS)	-	1.7	-	19.3	-	-	-	-	
WS17	3 (3)		360 secs	-	-	0.0 _(SS)	-	1.7	-	19.3	-	-	-	-	
WSH	1	2.33	19/09/2012	1018	1018	0.0 _(SS)	DRY	2.7	0.1	19.1	1.0	0.7	0.0	0.0	
WSH	1		15 secs	-	-	0.0 _(SS)	-	2.8	0.1	19.0	1.0	0.0	0.0	0.0	
ey: I = Initial, P			Note: LEL = Lower	Explosive L	imit = 5% v	/v.	Date			ked By		Da		Contract Ref	
	18 Frogmo			Sum	-	24	/10/12								25459
	Hemel Her Hertford HP3 9	mpstead Ishire	Contract:		-			- Phase	1					Page:	9 of 11

Exploratory Position ID	Monitoring Round	Installation Depth (mbgl)	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)	Atmos Pressure (mb)	Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	PID (ppm)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)	
WSH	1		30 secs	-	-	0.0 _(SS)	-	3.1	0.1	18.8	1.0	0.0	0.0	0.0	
WSH	1		60 secs	-	-	0.0 _(SS)	-	3.4	0.1	18.8	1.0	0.0	0.0	0.0	
WSH	1		90 secs	-	-	0.0 _(SS)	-	3.5	0.1	18.8	1.0	0.0	0.0	0.0	
WSH	1		120 secs	-	-	0.0 _(SS)	-	3.6	0.1	18.7	1.0	0.0	0.0	0.0	
WSH	1		180 secs	-	-	0.0 _(SS)	-	3.6	0.1	18.8	1.0	0.0	0.0	0.0	
WSH	1		240 secs	-	-	0.0 _(SS)	-	3.5	0.1	18.9	1.0	0.0	0.0	0.0	
WSH	1		300 secs	-	-	0.0 _(SS)	-	3.3	0.1	18.9	1.0	0.0	0.0	0.0	
WSH	1		360 secs	-	-	0.0 _(SS)	-	3.3	0.1	19.0	1.0	0.0	0.0	0.0	
WSH	1		420 secs	-	-	0.0 _(SS)	-	3.2	0.1	19.0	1.0	0.0	0.0	0.0	
WSH	2 (2)	2.39	05/10/2012	-	1008	0.0 _(SS)	DRY	0.0	0.0	19.9	-	0.0	0.0	0.0	
WSH	2 (2)		15 secs	-	-	0.0 _(SS)	-	1.3	0.0	19.1	-	-	0.0	0.0	
WSH	2 (2)		30 secs	-	-	0.0 _(SS)	-	2.9	0.0	18.7	-	-	0.0	0.0	
WSH	2 (2)		60 secs	-	-	0.0 _(SS)	-	3.3	0.0	18.4	-	-	0.0	0.0	
WSH	2 (2)		90 secs	-	-	0.0 _(SS)	-	3.4	0.0	18.4	-	-	0.0	0.0	
WSH	2 (2)		120 secs	-	-	0.0 _(SS)	-	3.4	0.0	18.4	-	-	0.0	0.0	
WSH	2 (2)		180 secs	-	-	0.0 _(SS)	-	3.4	0.0	18.4	-	-	0.0	0.0	
WSH	2 (2)		240 secs	-	-	0.0 _(SS)	-	3.3	0.0	18.4	-	-	0.0	0.0	
WSH	2 (2)		300 secs	-	-	0.0 _(SS)	-	3.4	0.0	18.4	-	-	0.0	0.0	
WSH	2 (2)		360 secs	-	-	0.0 _(SS)	-	3.3	0.0	18.4	-	-	0.0	0.0	
WSH	2 (2)		420 secs	-	-	0.0 _(SS)	-	3.3	0.0	18.4	-	-	0.0	0.0	
WSH	3 (3)	2.70	11/10/2012	1004	1005	0.0 _(SS)	DRY	0.1	0.0	20.8	0.0	-	-	-	
WSH	3 (3)		15 secs	-	-	0.0 _(SS)	-	3.5	0.0	19.2	0.0	-	-	-	
WSH	3 (3)		30 secs	-	-	0.0 _(SS)	-	3.5	0.0	18.6	0.0	-	-	-	
WSH	3 (3)		60 secs	-	-	0.0 _(SS)	-	3.7	0.0	18.4	0.0	-	-	-	
WSH	3 (3)		90 secs	-	-	0.0 _(SS)	-	4.0	0.0	18.2	0.0	-	-	-	
	= Peak, SS = S SK Enviro	-	l	ompiled By			Date		Chec	ked By		Da	te	Contract Ref	
	18 Frogmo			Snow	-	24	/10/12								25459
	Hemel He Hertford HP3 §	dshire	Contract:				NIAB	- Phase	1		I_			Page:	10 of 11

Exploratory Position ID	Monitoring Round	Installation Depth (mbgl)	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)	Atmos Pressure (mb)	Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	PID (ppm)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)				
WSH	3 (3)		120 secs	-	-	0.0 _(SS)	-	4.1	0.0	18.1	0.0	-	-	-				
WSH	3 (3)		180 secs	-	-	0.0 _(SS)	-	4.2	0.0	18.0	0.0	-	-	-				
WSH	3 (3)		240 secs	-	-	0.0 _(SS)	-	4.2	0.0	18.0	0.0	-	-	-				
Key: I = Initial, P	= Peak, SS = 5	Steady State.	Note: LEL = Lower	Explosive L	.imit = 5% v	/v.												
D	SK Enviro	nment I tr	Co	mpiled By			Date		Chec	ked By		Dat	te	Contract Re	ef:			
	18 Frogmo			ron	-	24	/10/12								2	25459)	
	Hemel He Hertford HP3 9	mpstead dshire	Contract:					- Phase	1					Page:	11	of	11	AG

APPENDIX - Results of Gas Monitoring (date 16/01/2013)

Atmospheric Pressure (mb): 1009

AP Conditions (BBC Website): Rising

Equipment Used GA2000+

Temperature: 1C

Weather Conditions: Clear, recent snow fall

Location	Depth to water (m bgl)	Depth to base of well (m bgl)	Differential Pressure (mb)	Time (secs.)	Flow (l/hr)	Methane (%/vol)	Carbon Dioxide (%/vol)	Oxygen (%/vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)	PID (ppm)	Product	Observation
BH1	0.80	4.27		0	0.0	0.0	0.1	21.4	0	0	0			
				15	0.0	0.0	0.7	21.1	0	0	0			
				30	0.0	0.0	0.7	21.0	0	0	0			
				60	0.0	0.0	0.7	21.0	0	0	0			
				90	0.0	0.0	0.7	21.0	0	0	0			
				120	0.0	0.0	0.7	21.0	0	0	0			
				180	0.0	0.0	0.7	21.0	0	0	0			
				240	0.0	0.0	0.7	21.0	0	0	0			

Location	Depth to water (m bgl)	Depth to base of well (m bgl)	Differential Pressure (mb)	Time (secs.)	Flow (l/hr)	Methane (%/vol)	Carbon Dioxide (%/vol)	Oxygen (%/vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)	PID (ppm)	Product	Observation
BH2		4.34		0	0.0	0.0	0.1	20.7	0	0	0			
				15	0.0	0.0	0.9	19.5	0	0	0			
				30	0.0	0.0	0.9	18.0	0	0	0			
				60	0.0	0.0	0.9	18.0	0	0	0			
				90	0.0	0.0	0.9	18.2	0	0	0			
				120	0.0	0.0	0.9	18.2	0	0	0			
				180	0.0	0.0	0.9	18.2	0	0	0			
				240	0.0	0.0	0.9	18.2	0	0	0			

Location	Depth to water (m bgl)	Depth to base of well (m bgl)	Differential Pressure (mb)	Time (secs.)	Flow (l/hr)	Methane (%/vol)	Carbon Dioxide (%/vol)	Oxygen (%/vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)	PID (ppm)	Product	Observation
BH3		3.22		0	0.0	0.0	0.1	21.2	0	0	0			
				15	0.0	0.0	1.1	20.2	0	0	0			
				30	0.0	0.0	1.1	18.9	0	0	0			
				60	0.0	0.0	1.1	17.7	0	0	0			
				90	0.0	0.0	1.1	17.7	0	0	0			
				120	0.0	0.0	1.1	17.7	0	0	0			
				180	0.0	0.0	1.1	17.7	0	0	0			
				240	0.0	0.0	1.1	17.7	0	0	0			

Location	Depth to water (m bgl)	Depth to base of well (m bgl)	Differential Pressure (mb)	Time (secs.)	Flow (l/hr)	Methane (%/vol)	Carbon Dioxide (%/vol)	Oxygen (%/vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)	PID (ppm)	Product	Observation
BHG	0.95	4.30		0	0.0	0.0	0.1	21.4	0	0	0			
				15	0.0	0.1	0.9	21.3	0	0	0			
				30	0.0	0.1	0.9	20.8	0	0	0			
				60	0.0	0.1	0.9	20.8	0	0	0			
				90	0.0	0.1	0.4	20.8	0	0	0			
				120	0.0	0.1	0.4	20.8	0	0	0			
				180	0.0	0.1	0.4	20.8	0	0	0			
				240	0.0	0.1	0.4	20.7	0	0	0			

Location	Depth to water (m bgl)	Depth to base of well (m bgl)	Differential Pressure (mb)	Time (secs.)	Flow (l/hr)	Methane (%/vol)	Carbon Dioxide (%/vol)	Oxygen (%/vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)	PID (ppm)	Product	Observation
ВНК	1.96	4.3		0	0	0.0	0.1	20.7	0	0	0			
				15	-0.1	0.0	0.6	20.6	0	0	0			
				30	-0.1	0.0	0.6	17.5	0	0	0			
				60	-0.1	0.0	0.6	17.5	0	0	0			
				90	-0.1	0.0	0.6	17.5	0	0	0			
				120	-0.1	0.0	0.5	17.5	0	0	0			
				180	-0.1	0.0	0.5	17.5	0	0	0			
				240	-0.1	0.0	0.6	17.5	0	0	0			

Location	Depth to water (m bgl)	Depth to base of well (m bgl)	Differential Pressure (mb)	Time (secs.)	Flow (l/hr)	Methane (%/vol)	Carbon Dioxide (%/vol)	Oxygen (%/vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)	PID (ppm)	Product	Observation
WS3		3.20		0	0.0	0.0	0.1	21.0	0	0	0			
				15	0.0	0.0	2.2	20.5	0	0	0			
				30	0.0	0.0	2.2	19.4	0	0	0			
				60	0.0	0.0	2.1	18.8	0	0	0			
				90	0.0	0.0	2.1	18.8	0	0	0			
				120	0.0	0.0	2.1	18.8	0	0	0			
				180	0.0	0.0	2.1	18.8	0	0	0			
				240	0.0	0.0	2.1	18.8	0	0	0			

Location	Depth to water (m bgl)	Depth to base of well (m bgl)	Differential Pressure (mb)	Time (secs.)	Flow (l/hr)	Methane (%/vol)	Carbon Dioxide (%/vol)	Oxygen (%/vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)	PID (ppm)	Product	Observation
WS17	0.83	2.90		0	0.0	0.0	0.1	21.2	0	0	0			
				15	0.1	0.0	0.1	21.1	0	0	0			
				30	0.1	0.0	0.1	21.3	0	0	0			
				60	0.1	0.0	0.1	21.3	0	0	0			
				90	0.1	0.0	0.1	21.3	0	0	0			
				120	0.1	0.0	0.1	21.3	0	0	0			
				180	0.1	0.0	0.1	21.3	0	0	0			
				240	0.1	0.0	0.1	21.3	0	0	0			

Location	Depth to water (m bgl)	Depth to base of well (m bgl)	Differential Pressure (mb)	Time (secs.)	Flow (l/hr)	Methane (%/vol)	Carbon Dioxide (%/vol)	Oxygen (%/vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)	PID (ppm)	Product	Observation
WSH	1.30	2.32		0	0.0	0.0	0.1	21.3	0	0	0			
				15	0.0	0.0	1.2	20.5	0	0	0			
				30	0.0	0.0	1.2	20.1	0	0	0			
				60	0.0	0.0	1.2	20.0	0	0	0			
				90	0.0	0.0	1.2	20.0	0	0	0			
				120	0.0	0.0	1.2	20.0	0	0	0			
				180	0.0	0.0	1.2	20.0	0	0	0			
				240	0.0	0.0	1.2	20.0	0	0	0			

APPENDIX - Results of Gas Monitoring (date 18/04/2013)

Atmospheric Pressure (mb): 1006

AP Conditions (BBC Website): Rising

Equipment Used GA2000+

Temperature: 11C

Weather Conditions: Overcast, dry

Location	Depth to water (m bgl)	Depth to base of well (m bgl)	Differential Pressure (mb)	Time (secs.)	Flow (l/hr)	Methane (%/vol)	Carbon Dioxide (%/vol)	Oxygen (%/vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)	PID (ppm)	Product	Observation
BH1	0.89	4.27		0	0.0	0.0	0.1	21.4	0	0	0			
				15	0.0	0.0	0.2	21.2	0	0	0			
				30	0.0	0.0	0.2	21.2	0	0	0			
				60	0.0	0.0	0.2	21.2	0	0	0			
				90	0.0	0.0	0.2	21.2	0	0	0			
				120	0.0	0.0	0.2	21.2	0	0	0			
				180	0.0	0.0	0.2	21.2	0	0	0			
				240	0.0	0.0	0.2	21.2	0	0	0			

Location	Depth to water (m bgl)	Depth to base of well (m bgl)	Differential Pressure (mb)	Time (secs.)	Flow (l/hr)	Methane (%/vol)	Carbon Dioxide (%/vol)	Oxygen (%/vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)	PID (ppm)	Product	Observation
BH2		4.34		0	0.0	0.0	0.1	20.7	0	0	0			
				15	0.0	0.0	0.7	19.5	0	0	0			
				30	0.0	0.0	0.7	19.5	0	0	0			
				60	0.0	0.0	0.7	19.5	0	0	0			
				90	0.0	0.0	0.7	19.5	0	0	0			
				120	0.0	0.0	0.7	19.5	0	0	0			
				180	0.0	0.0	0.7	19.5	0	0	0			
				240	0.0	0.0	0.7	19.5	0	0	0			

Location	Depth to water (m bgl)	Depth to base of well (m bgl)	Differential Pressure (mb)	Time (secs.)	Flow (l/hr)	Methane (%/vol)	Carbon Dioxide (%/vol)	Oxygen (%/vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)	PID (ppm)	Product	Observation
BH3		3.22		0	0.0	0.0	0.1	21.2	0	0	0			
				15	0.0	0.0	0.5	20.1	0	0	0			
				30	0.0	0.0	0.5	19.8	0	0	0			
				60	0.0	0.0	0.5	19.8	0	0	0			
				90	0.0	0.0	0.5	19.8	0	0	0			
				120	0.0	0.0	0.5	19.8	0	0	0			
				180	0.0	0.0	0.5	19.8	0	0	0			
				240	0.0	0.0	0.5	19.8	0	0	0			

Location	Depth to water (m bgl)	Depth to base of well (m bgl)	Differential Pressure (mb)	Time (secs.)	Flow (l/hr)	Methane (%/vol)	Carbon Dioxide (%/vol)	Oxygen (%/vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)	PID (ppm)	Product	Observation
BHG	1.01	4.30		0	0.1	0.0	0.0	21.5	0	0	0			
				15	0.1	0.0	0.0	21.5	0	0	0			
				30	0.1	0.0	0.0	21.4	0	0	0			
				60	0.1	0.0	0.0	21.5	0	0	0			
				90	0.1	0.0	0.0	21.5	0	0	0			
				120	0.1	0.0	0.0	21.5	0	0	0			
				180	0.1	0.0	0.0	21.5	0	0	0			
				240	0.1	0.0	0.0	21.5	0	0	0			

Location	Depth to water (m bgl)	Depth to base of well (m bgl)	Differential Pressure (mb)	Time (secs.)	Flow (l/hr)	Methane (%/vol)	Carbon Dioxide (%/vol)	Oxygen (%/vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)	PID (ppm)	Product	Observation
ВНК	1.75	4.3		0	0	0.0	0.0	20.0	0	0	0			
				15	-0.1	0.0	0.0	20.0	0	0	0			
				30	-0.1	0.0	0.0	20.9	0	0	0			
				60	-0.1	0.0	0.0	21.0	0	0	0			
				90	-0.1	0.0	0.0	21.0	0	0	0			
				120	-0.1	0.0	0.0	21.0	0	0	0			
				180	-0.1	0.0	0.0	21.0	0	0	0			
				240	-0.1	0.0	0.0	21.0	0	0	0			

Location	Depth to water (m bgl)	Depth to base of well (m bgl)	Differential Pressure (mb)	Time (secs.)	Flow (l/hr)	Methane (%/vol)	Carbon Dioxide (%/vol)	Oxygen (%/vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)	PID (ppm)	Product	Observation
WS3		3.20		0	0.0	0.0	0.1	21.0	0	0	0			
				15	0.0	0.0	1.2	20.5	0	0	0			
				30	0.0	0.0	1.2	19.5	0	0	0			
				60	0.0	0.0	1.2	19.5	0	0	0			
				90	0.0	0.0	1.2	19.5	0	0	0			
				120	0.0	0.0	1.2	19.5	0	0	0			
				180	0.0	0.0	1.2	19.5	0	0	0			
				240	0.0	0.0	1.2	19.5	0	0	0			

Location	Depth to water (m bgl)	Depth to base of well (m bgl)	Differential Pressure (mb)	Time (secs.)	Flow (l/hr)	Methane (%/vol)	Carbon Dioxide (%/vol)	Oxygen (%/vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)	PID (ppm)	Product	Observation
WS17	0.83	2.90		0	0	0.0	0.1	21.2	0	0	0			
				15	0.1	0.0	0.1	21.1	0	0	0			
				30	0.1	0.0	0.1	21.3	0	0	0			
				60	0.1	0.0	0.1	21.3	0	0	0			
				90	0.1	0.0	0.1	21.3	0	0	0			
				120	0.1	0.0	0.1	21.3	0	0	0			
				180	0.1	0.0	0.1	21.3	0	0	0			
				240	0.1	0.0	0.1	21.3	0	0	0			

Location	Depth to water (m bgl)	Depth to base of well (m bgl)	Differential Pressure (mb)	Time (secs.)	Flow (l/hr)	Methane (%/vol)	Carbon Dioxide (%/vol)	Oxygen (%/vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)	PID (ppm)	Product	Observation
WSH	1.57	2.32		0	0.1	0.0	0.1	18.9	0	0	0			
				15	0.1	0.0	0.0	21.4	0	0	0			
				30	0.1	0.0	0.0	21.4	0	0	0			
				60	0.1	0.0	0.0	21.4	0	0	0			
				90	0.1	0.0	0.0	21.4	0	0	0			
				120	0.1	0.0	0.0	21.4	0	0	0			
				180	0.1	0.0	0.0	21.4	0	0	0			
				240	0.1	0.0	0.0	21.4	0	0	0			

APPENDIX - Results of Gas Monitoring (date 30/04/2013)

Atmospheric Pressure (mb): 1022

AP Conditions (BBC Website): Rising

Equipment Used: GA 2000 +3

Temperature: 15C

Weather Conditions: Sunny spells, dry

Location	Depth to water (m bgl)	Depth to base of well (m bgl)	Differential Pressure (mb)	Time (secs.)	Flow (l/hr)	Methane (%/vol)	Carbon Dioxide (%/vol)	Oxygen (%/vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)	PID (ppm)	Product	Observation
BH1	1.70	4.27		0	0.0	0.0	0.1	20.8	0	0	0			
				15	0.0	0.0	0.5	20.4	0	0	0			
				30	0.0	0.0	0.5	20.3	0	0	0			
				60	0.0	0.0	0.5	20.2	0	0	0			
				90	0.0	0.0	0.5	20.1	0	0	0			
				120	0.0	0.0	0.5	20.1	0	0	0			
				180	0.0	0.0	0.5	20.1	0	0	0			
				240	0.0	0.0	0.5	20.1	0	0	0			

Location	Depth to water (m bgl)	Depth to base of well (m bgl)	Differential Pressure (mb)	Time (secs.)	Flow (l/hr)	Methane (%/vol)	Carbon Dioxide (%/vol)	Oxygen (%/vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)	PID (ppm)	Product	Observation
BH2	1.86	4.34		0	-0.1	0.0	0.0	20.4	0	0	0			
				15	-0.1	0.0	0.5	19.9	0	0	0			
				30	-0.1	0.0	0.5	19.9	0	0	0			
				60	-0.1	0.0	0.5	19.9	0	0	0			
				90	-0.1	0.0	0.5	19.9	0	0	0			
				120	-0.1	0.0	0.5	20.0	0	0	0			
				180	-0.1	0.0	0.5	20.0	0	0	0			
				240	-0.1	0.0	0.5	20.0	0	0	0			

Location	Depth to water (m bgl)	Depth to base of well (m bgl)	Differential Pressure (mb)	Time (secs.)	Flow (l/hr)	Methane (%/vol)	Carbon Dioxide (%/vol)	Oxygen (%/vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)	PID (ppm)	Product	Observation
BH3	1.78	3.22		0	0.0	0.0	0.0	20.8	0	0	0			
				15	-0.1	0.0	0.2	20.7	0	0	0			
				30	-0.2	0.0	0.2	20.7	0	0	0			
				60	-0.2	0.0	0.2	20.7	0	0	0			
				90	-0.2	0.0	0.2	20.8	0	0	0			
				120	-0.2	0.0	0.2	20.8	0	0	0			
				180	-0.2	0.0	0.2	20.8	0	0	0			
				240	-0.2	0.0	0.2	20.8	0	0	0			

Location	Depth to water (m bgl)	Depth to base of well (m bgl)	Differential Pressure (mb)	Time (secs.)	Flow (l/hr)	Methane (%/vol)	Carbon Dioxide (%/vol)	Oxygen (%/vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)	PID (ppm)	Product	Observation
BHG	1.14	4.30		0	0.0	0.0	0.5	20.7	0	0	0			
				15	0.0	0.0	1.4	19.4	0	0	0			
				30	0.0	0.0	1.4	19.4	0	0	0			
				60	0.0	0.0	1.4	19.4	0	0	0			
				90	0.0	0.0	1.4	19.4	0	0	0			
				120	0.0	0.0	1.4	19.4	0	0	0			
				180	0.0	0.0	1.4	19.4	0	0	0			
				240	0.0	0.0	1.4	19.4	0	0	0			

Location	Depth to water (m bgl)	Depth to base of well (m bgl)	Differential Pressure (mb)	Time (secs.)	Flow (l/hr)	Methane (%/vol)	Carbon Dioxide (%/vol)	Oxygen (%/vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)	PID (ppm)	Product	Observation
ВНК	1.35	4.3		0	0.01	0.0	0.0	20.9	0	0	0			
				15	0.0	0.0	0.9	20.0	0	0	0			
				30	0.0	0.0	0.9	20.0	0	0	0			
				60	0.0	0.0	0.9	20.0	0	0	0			
				90	0.0	0.0	1.0	19.9	0	0	0			
				120	0.0	0.0	1.0	19.9	0	0	0			
				180	0.0	0.0	1.0	19.9	0	0	0			
				240	0.0	0.0	1.0	19.9	0	0	0			

Location	Depth to water (m bgl)	Depth to base of well (m bgl)	Differential Pressure (mb)	Time (secs.)	Flow (l/hr)	Methane (%/vol)	Carbon Dioxide (%/vol)	Oxygen (%/vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)	PID (ppm)	Product	Observation
WS3	1.55	3.20		0	0.0	0.0	0.4	20.9	0	0	0			
				15	0.0	0.0	1.4	19.8	0	0	0			
				30	0.0	0.0	1.4	19.8	0	0	0			
				60	0.0	0.0	1.4	19.9	0	0	0			
				90	0.0	0.0	1.3	20.0	0	0	0			
				120	0.0	0.0	1.3	20.1	0	0	0			
				180	0.0	0.0	1.2	20.2	0	0	0			
				240	0.0	0.0	1.1	20.3	0	0	0			

Location	Depth to water (m bgl)	Depth to base of well (m bgl)	Differential Pressure (mb)	Time (secs.)	Flow (l/hr)	Methane (%/vol)	Carbon Dioxide (%/vol)	Oxygen (%/vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)	PID (ppm)	Product	Observation
WS17														Could not locate position

Location	Depth to water (m bgl)	Depth to base of well (m bgl)	Differential Pressure (mb)	Time (secs.)	Flow (l/hr)	Methane (%/vol)	Carbon Dioxide (%/vol)	Oxygen (%/vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)	PID (ppm)	Product	Observation
WSH	1.6	2.32		0	0.0	0.0	2.0	19.5	0	0	0			
				15	0.0	0.0	2.1	19.2	0	0	0			
				30	0.0	0.0	2.1	19.2	0	0	0			
				60	0.0	0.0	2.2	19.1	0	0	0			
				90	0.0	0.0	2.3	19.1	0	0	0			
				120	0.0	0.0	2.3	19.1	0	0	0			
				180	0.0	0.0	2.2	19.1	0	0	0			
				240	0.0	0.0	2.2	19.2	0	0	0			

RSK GAC FOR RESIDENTIAL LAND USE WITH PATHWAYS FOR PLANT UPTAKE

Generic assessment criteria for human health: residential scenario – private gardens

The human health generic assessment criteria (GAC) have been developed during a period of regulatory review and updating of the Contaminated Land Exposure Assessment (CLEA) project. Therefore, the Environment Agency (EA) is in the process of publishing updated reports relating to the CLEA project and the GAC presented in this document may change to reflect these updates. This issue was prepared following the publication of soil guideline value (SGV) reports and associated publications⁽¹⁾ for mercury, selenium, benzene, toluene, ethylbenzene and xylene in March 2009, arsenic and nickel in May 2009, cadmium and phenol in June 2009, dioxins, furans and dioxin-like polychlorinated biphenyls (PCBs) in September 2009. It was also produced following publication of GAC by LQM⁽⁶⁾. Where available, the published soil guideline values (SGV)⁽¹⁾ were used as the GAC. The GAC for lead is discussed separately below owing to it not being derived using the same approach as other compounds.

Lead GAC derivation

The Environment Agency SGV and Tox reports for lead were withdrawn in 2009. In addition, the provisional tolerable weekly intake data published in the Netherlands were withdrawn in 2010 owing to concerns that they were not suitably protective of human health. The withdrawn SGVs were based on a target blood lead concentration of 10µg/dl. In the absence of current guidelines many consultants continue to use the withdrawn SGV. However, as this is not considered sufficiently protective of human health, after attendance at the SOBRA summer workshop June 2011, RSK has revised its GAC and is currently undertaking a review of recent toxicological developments that will be used to refine this GAC further in the coming months. In the meantime, RSK has undertaken sensitivity analysis using the Society of Environmental Geochemistry and Health (SEGH) equation and the CLEA model to produce an interim GAC value. The results are summarised below:

- Using CLEA with the former provisional tolerable weekly intake (PTWI) (25 μ g/kg bw), assuming 100% lead is bioavailable, produces a GAC of 212 mg/kg
- Using CLEA with the former PTWI, assuming 50% lead is bioavailable, produces a GAC of 478 mg/kg
- Using the SEGH equation amended for a blood target concentration of 5.6 μg/dl (equal to the LOAEL for IQ defects) gives a negative GAC number unless other factors such as child background blood concentration or delta are amended. Without undertaking further research into these numbers, RSK can present sensitivity analysis to demonstrate the sensitivity of these input parameters but cannot justify one parameter over another. The results are:
 - GAC between 39mg/kg and 99mg/kg if the value of delta (the slope or response of blood Pb versus soil and dust Pb relationship) only is amended from 5 to 2µg/dl/1000µg/g. The value of 2 was chosen as it is within the reasonable range quoted in the former SGV report
 - GAC between 244mg/kg and 610mg/kg if the geometric mean of blood lead concentration in young children is reduced from 3.4µg/dl to 2µg/dl. This decrease has been simulated on the basis that blood concentrations are likely to decrease over time across the UK owing to a ban on lead in petrol, lead within paint used internally and water pipe replacement. This decrease is considered reasonable as the site is a new development

so lead-based paints will not be used internally and lead water supply pipelines will be absent.

Therefore, given the results above RSK proposes to use a GAC of **300mg/kg** for a residential end use. This value is broadly in the middle of the range of sensitivity modelling results quoted above when background mean blood lead concentrations in children are reduced to reflect a new development. The value is also broadly in the middle of the range of sensitivity modelling results for a range of bioavailability of lead between 50% and 100%. This number is considered reasonably protective of human health while being practical for use.

GAC derivation for other metals and organic compounds

Model selection

Soil assessment criteria (SAC) were calculated using CLEA v1.06 and the supporting UK guidance⁽¹⁻⁶⁾. Groundwater assessment criteria (GrAC) protective of human health via the inhalation pathway were derived using the RBCA 1.3b model. RSK has updated the inputs within RBCA to reflect the UK guidance⁽¹⁻⁵⁾. The SAC and GrAC collectively are termed GAC.

Conceptual model

In accordance with EA Science Report SC050221/SR3⁽³⁾, the residential with private garden scenario considers risks to a female child between the ages of 0 and 6 years old. In accordance with Box 3.1, SR3⁽³⁾, the pathways considered for production of the SAC in the residential with gardens scenario are:

- direct soil and dust ingestion;
- consumption of home-grown produce;
- consumption of soil attached to home-grown produce;
- dermal contact with soil and indoor dust, and
- inhalation of indoor and outdoor dust and vapours.

Figure 1 is a conceptual model illustrating these linkages.

The pathway considered in production of the GrAC is the volatilisation of compounds from groundwater and subsequent vapour inhalation by residents while indoors. Figure 2 illustrates this linkage. Although the outdoor air inhalation pathway is also valid, this contributes little to the overall risks owing to the dilution in outdoor air. Within RBCA, the solubility limit of the determinant restricts the extent of volatilisation, which in turn drives the indoor air inhalation pathway. While the same restriction is not built into the CLEA model, the CLEA model output cells are flagged red where the soil saturation limit has been exceeded.

An assumption used in the CLEA model is that of simple linear partitioning of a chemical in the soil between the sorbed, dissolved and vapour phase⁽⁴⁾. The upper boundaries of this partitioning are represented by the aqueous solubility and pure saturated vapour concentration of the chemical. The CLEA software uses a traffic light system to identify when individual and/or combined assessment criteria exceed the lower of either the aqueous-based or the vapour based

saturation limits. Where model output cells are flagged red the soil or vapour saturation limit has been exceeded and further consideration of the SAC to be used within the assessment is required. One approach that could be adopted is to use the 'modelled' solubility saturation limit or vapour saturation limit of the compound as the SAC. However, as stated within the CLEA handbook⁽⁴⁾ this is likely to not be practical in many cases because of the very low limits and, in any case, is highly conservative. Unless free-phase product is present, concentrations of the chemical are unlikely to be present at sufficient concentration to result in an exceedance of the health criteria value (HCV).

RSK has adopted an approach for petroleum hydrocarbons in accordance with LQM/CIEH⁽⁶⁾ whereby the concentration modelled for each petroleum hydrocarbon fraction has been tabulated as the SAC with the corresponding solubility or vapour saturation limit given in brackets. Therefore, when using the SAC to screen laboratory analysis the assessor should take note if a given SAC has a corresponding solubility or vapour saturation limit (in brackets), and subsequently incorporate this piece of information within the screening analytical discussion. If further assessment is required following this process then an additional approach can be utilised as detailed within Section 4.12 of the CLEA model handbook⁽⁴⁾, which explains how to calculate an effective assessment criterion manually.

Input selection

Chemical data was obtained from EA Report SC050021/SR7⁽⁵⁾ and the health criteria values (HCV) from the UK TOX⁽¹⁾ reports where available. For SAC for total petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAH), toxicological and chemical specific parameters were obtained from the LQM/CIEH report⁽⁶⁾. Similarly, toxicological and specific chemical parameters for the volatile organic compound 1,2,4-trimethylbenzene were obtained from EIC/AGS/CL:AIRE⁽⁷⁾.

For total petroleum hydrocarbons (TPH), aromatic hydrocarbons C_5 - C_8 were not modelled since benzene and toluene are being modelled separately. The aromatic C_8 - C_9 hydrocarbon fraction comprises ethylbenzene, xylene and styrene. Since ethylbenzene and xylene are being modelled separately, the physical, chemical and toxicological data for this band has been taken from styrene.

Owing to the lack of UK-specific data, default information in the RBCA model was used to evaluate methyl tertiary butyl ether (MTBE). No published UK data was available for 1,3,5-trimethylbenzene, so information was obtained from the US EPA as in the RBCA model. RBCA uses toxicity data for the inhalation pathway in different units to the CLEA model and cannot consider separately the mean daily intake (MDI), occupancy periods or breathing rates. Therefore, the HCV in RBCA was amended to take account of:

- amendments to the MDI using Table 3.4 of SR2⁽²⁾
- a child weighing 13.3kg (average of 0–6 year old female in accordance with Table 4.6 of SR3⁽³⁾) and breathing 11.85m³ (average daily inhalation rate for a 0–6-year old female in accordance with Table 4.14 of SR3⁽³⁾

1. The 50% rule (for petroleum hydrocarbons, trimethylbenzenes and MTBE)⁽²⁾ where MDI data is not available but background exposure is considered important in the overall exposure.

Physical parameters

For the residential with private gardens scenario, the CLEA default building is a small two-storey terrace house with concrete ground-bearing slab. The house is assumed to have a 100m² private garden consisting of lawn, flowerbeds and incorporating a 20m² plot for growing fruit and vegetables consumed by the residents. SR3⁽³⁾ notes this residential building type to be the most conservative in terms of protection from vapour intrusion. The building parameters are outlined in Table 5.

The parameters for a sandy loam soil type were used in line with SR3⁽³⁾. This includes a value of 6% for the percentage of soil organic matter (SOM) within the soil. In RSK's experience, this is rather high for many sites. To avoid undertaking site-specific risk assessments for this parameter, RSK has produced an additional set of SAC for an SOM of 1% and 2.5%. For the GrAC, the depth to groundwater was taken as 2.5m based on RSK's experience of assessing the volatilisation pathway from groundwater.

GAC

The SAC were produced using the input parameters in Tables 1 to 5 and the GrAC using input parameters in Table 6. The final selected GAC are presented by pathway in Table 7 and the combined GAC in Table 8.

Figure 1: Conceptual model for CLEA residential scenario - private gardens

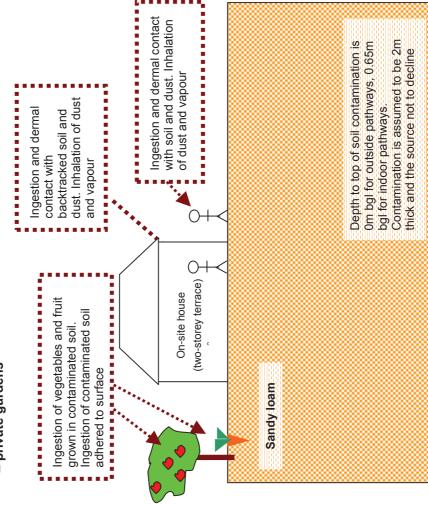


Table 1: Exposure assessment parameters for residential scenario private gardens – inputs for CLEA model

Parameter	Value	Justification
Land use	Residential with homegrown produce	Chosen land use
Receptor	Female child age 1 to 6	Key generic assumption given in Box 3.1, report SC050021/SR3 ⁽³⁾
Building	Small terraced house	Key generic assumption given in Box 3.1, report SC050021/SR3. Two storey small terraced house chosen as it is the most conservative residential building type in terms of protection from vapor intrusion (Section 3.4.6, report SC050021/SR3) ⁽³⁾
Soil type	Sandy Loam	Most common UK soil type (Section 4.3.1, From Table 3.1, report SC050021/SR3) ⁽³⁾
Start AC (age class)	1	Range of age classes corresponding to key generic assumption that the
End AC (age class)	9	critical receptor is a young female child aged zero to six. From Box 3.1, report SC050021/SR3 ⁽³⁾
(%) WOS	9	Representative of sandy loamy soil according to EA guidance note dated January 2009 entitled 'Changes We Have Made to the CLEA Framework Documents' ⁽⁸⁾
	•	To provide SAC for sites where
	2.5	SUM <o% as="" by<br="" observed="" oπen="">RSK</o%>
рН	7	Model default

	Consı day ⁻¹)		on rate e class		V kg⁻¹∣	BW	Dry weight conversion factor	Home-grown fraction (average)	Home-grown fraction (high end)		Preparation correction factor
Name	1	2	3	4	5	6	g DW g⁻¹ FW	-	-	g g⁻¹ DW	-
Green vegetables	7.12	6.85	6.85	6.85	3.74	3.74	0.096	0.05	0.33	1.00E-03	2.00E-01
Root vegetables	10.69	3.30	3.30	3.30	1.77	1.77	0.103	0.06	0.4	1.00E-03	1.00E+00
Tuber vegetables	16.03	5.46	5.46	5.46	3.38	3.38	0.21	0.02	0.13	1.00E-03	1.00E+00
Herbaceous fruit	1.83	3.96	3.96	3.96	1.85	1.85	0.058	0.06	0.4	1.00E-03	6.00E-01
Shrub fruit	2.23	0.54	0.54	0.54	0.16	0.16	0.166	0.09	0.6	1.00E-03	6.00E-01
Tree fruit	3.82	11.96	11.96	11.96	4.26	4.26	0.157	0.04	0.27	1.00E-03	6.00E-01
Justification	Table	4.17, \$	SR3 ⁽³⁾				Table 6.3, SR3 ⁽³⁾	Table 4.19, SF	R3 ⁽³⁾	Table 6.3,	SR3 ⁽³⁾

Table 2: Residential with private gardens -home-grown produce data for CLEA model

Demonster	11-24	Age class					
Parameter	Unit	1	2	3	4	5	6
EF (soil and dust ingestion)	day yr ⁻¹	180	365	365	365	365	365
EF (consumption of home-grown produce)	day yr⁻¹	180	365	365	365	365	365
EF (skin contact, indoor)	day yr⁻¹	180	365	365	365	365	365
EF (skin contact, outdoor)	day yr ⁻¹	180	365	365	365	365	365
EF (inhalation of dust and vapour, indoor)	day yr⁻¹	365	365	365	365	365	365
EF (inhalation of dust and vapour, outdoor)	day yr ⁻¹	365	365	365	365	365	365
Justification		Table 3.1,	SR3 ⁽³⁾				
Occupancy period (indoor)	hr day ⁻¹	23	23	23	23	19	19
Occupancy period (outdoor)	hr day⁻¹	1	1	1	1	1	1
Justification		Table 3.2,	SR3 ⁽³⁾				
Soil to skin adherence factor (indoor)	mg cm ⁻² day ⁻¹	6.00E-02	6.00E-02	6.00E-02	6.00E-02	6.00E-02	6.00E-02
Soil to skin adherence factor (outdoor)	mg cm ⁻² day ⁻¹	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00
Justification		Table 8.1,	SR3 ⁽³⁾				
Soil and dust ingestion rate	g day⁻¹	1.00E-01	1.00E-01	1.00E-01	1.00E-01	1.00E-01	1.00E-01
Justification		Table 6.2,	SR3 ⁽³⁾				

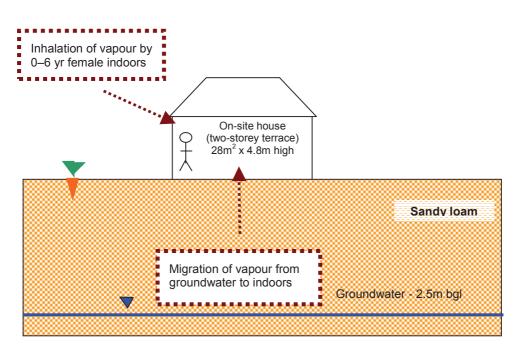
Table 3: Residential with private gardens - land use data for CLEA model

Of note, for **cadmium**, the exposure assessment for a residential land use is based on estimates representative of lifetime exposure AC1-18. This is because the TDI_{oral} and TDI_{inh} – are based on considerations of the kidney burden accumulated over 50 years. It is therefore reasonable to consider exposure not only in childhood but averaged over a longer time period. See the Environment Agency Science report: SC05002 / TOX 3 ⁽¹⁾ and Science Report SC050021/Cadmium SGV ⁽¹⁾ for more information.

Devementer		Age (Class					
Parameter	Unit	1	2	3	4	5	6	Justification
Body weight	kg	5.6	9.8	12.7	15.1	16.9	19.7	Table 4.6, SR3 ⁽³⁾
Body height	m	0.7	0.8	0.9	0.9	1	1.1	Table 4.0, SR3
Inhalation rate	m³ day⁻¹	8.5	13.3	12.7	12.2	12.2	12.2	Table 4.14, SR3 ⁽³⁾
Max exposed skin fraction (indoor)	m ² m ⁻²	0.32	0.33	0.32	0.35	0.35	0.33	
Max exposed skin fraction (outdoor)	$m^2 m^{-2}$	0.26	0.26	0.25	0.28	0.28	0.26	Table 4.8, SR3 ⁽³⁾

Table 4: Residential with private gardens – receptor data for CLEA model

See cadmium note as per Table 3 above.


Table 5: Residential with private gardens – soil and building inputs for CLEA model

Parameter	Unit	Value	Justification
Soil properties for sandy loam			
Porosity, total	cm ³ cm ⁻³	0.53	
Porosity, air filled	cm ³ cm ⁻³	0.20	
Porosity, water filled	cm ³ cm ⁻³	0.33	Default soil type is sandy loam, Section 4.3.1,
Residual soil water content	cm ³ cm ⁻³	0.12	SR3 ⁽³⁾
Saturated hydraulic conductivity	cm s⁻¹	3.56E-03	Parameters for sandy loam from Table 4.4, $SR3^{(3)}$
van Genuchten shape parameter (<i>m</i>)	-	3.20E-01	
Bulk density	g cm⁻³	1.21	
Threshold value of wind speed at 10m	m s⁻¹	7.20	Default value taken from Section 9.2.2, SR3 ⁽³⁾
Empirical function (F _x) for dust model	-	1.22	Value taken from Section 9.2.2, SR3 ⁽³⁾
Ambient soil temperature	к	283	Annual average soil temperature representative of UK surface soils. Section 4.3.1, SR3 ⁽³⁾
Air dispersion model			
Mean annual wind speed (10m)	m s⁻¹	5.00	Default value taken from Section 9.2.2, SR3 ⁽³⁾
Air dispersion factor at height of 0.8m	g m ⁻² s ⁻¹ per kg m ⁻	2400	Values for a 0.01 ha site, appropriate to a residential land use in Newcastle (most representative city for UK). (from Table 9.1,
Air dispersion factor at height of 1.6m	g m ⁻² s ⁻¹ per kg m ⁻	0	SR3) ⁽³⁾ Assumed child of 6 is not tall enough to reach 1.6m
Fraction of site with hard or vegetative cover	$m^2 m^{-2}$	0.75	Section 3.2.6, SR3 ⁽³⁾ based on residential land use

Parameter	Unit	Value	Justification
Building properties for small to	errace house	e with ground	bearing floor slab
Building footprint	m ²	28	
Living space air exchange rate	hr⁻¹	0.50	From Table 3.3 and 4.21, SR3 $^{(3)}$
Living space height (above ground)	m	4.8	
Living space height (below ground)	m	0.0	Assumed no basement
Pressure difference (soil to enclosed space)	Ра	3.1	(2)
Foundation thickness	m	0.15	From Table 3.3, SR3 ⁽³⁾
Floor crack area	cm ²	423	
Dust loading factor	µg m⁻³	50	Default value for a residential site taken from Section 9.3, SR3 ⁽³⁾
Vapour model			
Default soil gas ingress rate	cm ³ s ⁻¹	25	Generic flow rate, Section 10.3, SR3 ⁽³⁾
Depth to top of source (beneath building)	cm	50	Section 3.2.6, SR3 ⁽³⁾ states source is 50cm below building or 65cm below ground surface
Depth to top of source (no building)	cm	0	Section 10.2, SR3 ⁽³⁾ assumes impact from 0m to 1m for outdoor inhalation pathway
Thickness of contaminant layer	cm	200	Model default for indoor air, Section 4.9, SR4 ⁽⁴⁾
Time average period for surface emissions	years	6	Time period of a 0 to 6 year old, Box 3.5, $SR3^{(3)}$
User-defined effective air permeability	cm ²	3.05E-08	Calculated for sandy loam using equations in Appendix 1, SR3 ⁽³⁾

Figure 2: GrAC conceptual model for RBCA residential with private gardens scenario

Parameter	Unit	Value	Justification	
Receptor				
Averaging time	Years	6	From Box 3.1, SR3 ⁽³⁾	
Receptor weight	kg	13.3	Average of CLEA 0–6 year old female data, Table 4.6, $SR3^{(3)}$	
Exposure duration	Years	6	From Box 3.1, report, SR3 ⁽³⁾	
Exposure frequency	Days/yr	350	Weighted using occupancy period of 23 hours per day for 365 days of the year	
Soil type – sandy loam				
Total porosity	-	0.53		
Volumetric water content	-	0.33	CLEA value for sandy loam. Parameters for sandy loa from Table 4.4, SR3 ⁽³⁾	
Volumetric air content	-	0.20		
Dry bulk density	g cm⁻³	1.21		
Vertical hydraulic conductivity	cm s ⁻¹	3.56E-3	CLEA value for saturated conductivity of sandy loam, Table 4.4, SR3 ⁽³⁾	
Vapour permeability	m²	3.05E-12	Calculated for sandy loam using equations in Appendix 1, SR3 ⁽³⁾	
Capillary zone thickness	m	0.1	Professional judgement	

Parameter	Unit	Value	Justification
Fraction organic carbon	%	(i) 0.0348	Representative of sandy loam according to EA guidance note dated January 2009 entitled 'Changes We Have Made to the CLEA Framework Documents' ⁽⁸⁾
		(ii) 0.0058	To provide SAC for sites where SOM < 6% as often observed by RSK
Building			
Building volume/area ratio	m	4.8	Table 3.3, SR3 ⁽³⁾
Foundation area	m²	28	
Foundation perimeter	m	22	Calculated assuming building measures 7m x 4m to give 28m ² foundation area
Building air exchange rate	d ⁻¹	12	
Depth to bottom of foundation slab	m	0.15	Table 3.3, SR3 ⁽³⁾
Foundation thickness	m	0.15	
Foundation crack fraction	-	0.0151	Calculated from floor crack area of 423 $\rm cm^2$ and building footprint of 28m² in Table 4.21, $\rm SR3^{(3)}$
Volumetric water content of cracks	-	0.33	Assumed equal to underlying soil type in assumption that
Volumetric air content of cracks	-	0.2	cracks become filled with soil over time. Parameters for sandy loam from Table 4.4, SR3 ⁽³⁾
Indoor/outdoor differential pressure	Ра	3.1	From Table 3.3, SR3 ⁽³⁾

References

- Environment Agency (2009), 'Science Report SC050021/benzene SGV, toluene SGV, ethylbenzene SGV, xylene SGV, mercury SGV, selenium SGV, nickel SGV, arsenic SGV, cadmium SGV, phenol SGV, dioxins, furans and dioxin like PCBs SGVs', 'Supplementary information for the derivation of SGV for: benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel, arsenic, cadmium, phenol, dioxins, furans and dioxin- like PCBs', and 'Contaminants in soil: updated collation of toxicological data and intake values for humans: benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel, arsenic, cadmium, phenol, dioxins, furans and dioxin- like PCBs', March 2009, May 2009 and September 2009.
- 2. Environment Agency (2009), *Human health toxicological assessment of contaminants in soil. Science Report Final SC050021/SR2*, January (Bristol: Environment Agency).
- 3. Environment Agency (2009), *Science Report SC050021/SR3. Updated technical background to the CLEA model* (Bristol: Environment Agency).
- 4. Environment Agency (2009), Contaminated Land Exposure Assessment (CLEA) software, version 1.06.
- 5. Environment Agency (2008), *Science Report SC050021/SR7. Compilation of Data for Priority Organic Pollutants for Derivation of Soil Guideline Values* (Bristol: Environment Agency).
- 6. Chartered Institute for Environmental Health and Land Quality Management (2009), 'The LQM/CIEH Generic Assessment Criteria for Human Health', second edition.
- 7. CL:AIRE (2009), *Soil Generic Assessment Criteria for Human Health Risk Assessment* (London: CL:AIRE).
- 8. Changes made to the CLEA framework documents after the three-month evaluation period in 2008, released January 2009 by the Environment Agency.

VITH PRIVATE GARDENS
- RESIDENTIAL V
OR HUMAN HEALTH
SSESSMENT CRITERIA FO
GENERIC A

Table 7 Human Health Generic Assessment Criteria by Pathway for Residential Scenario - Private Gardens

		, ,			ľ									
Compound	Notes	GrAC (mg/l)	SAC Appropris Oral	SAC Appropriate to Pathway SOM 1% (mg/kg) Oral Inhalation Combined	0M 1% (mg/kg) Combined	Soil Saturation Limit (mg/kg)	SAC Appropria Oral	SAC Appropriate to Pathway SOM 2.5% (mg/kg) Oral Inhalation Combined	A 2.5% (mg/kg) Combined	Soil Saturation		SAC Appropriate to Pathway SOM 6% (mg/kg) Oral Inhalation Combined	OM 6% (mg/kg) Combined	Soil Saturation Limit (mg/kg)
Metals														
	(p)(c)		3.24E+01	8.50E+01		NR	3.24E+01	8.50E+01	.	NR	3.24E+01	8.50E+01		NR
Cadmium	(q)		1.12E+01	1.85E+02	1.10E+01	NR	1.12E+01	1.85E+02	1.10E+01	NR	1.12E+01	1.85E+02	1.10E+01	NR
Chromium (III) - oxide		-	1.84E+04	3.55E+03	2.98E+03	NR	1.84E+04	3.55E+03	2.98E+03	NR	1.84E+04	3.55E+03	2.98E+03	NR
Chromium (VI) - hexavalent			1.02E+01	4.25E+00	3.21E+00	RN	1.02E+01	4.25E+00	3.21E+00	RN	1.02E+01	4.25E+00	3.21E+00	NR
Copper			2.66E+03	1.04E+04	2.33E+03	R	2.66E+03	1.04E+04	2.33E+03	RN	2.66E+03	1.04E+04	2.33E+03	NR
Lead	(a)	'	3.00E+02			NR	3.00E+02	'	'	NR	3.00E+02			NR
Elemental Mercury (Hg ⁰)	(p)(q)	9.40E-03	'	1.70E-01		4.31E+00	'	4.24E-01		1.07E+01		1.02E+00		2.58E+01
Inorganic Mercury (Hg ²⁺)	(q)		1.81E+02	2.55E+03	1.69E+02	NR	1.81E+02	2.55E+03	1.69E+02	RN	1.81E+02	2.55E+03	1.69E+02	NR
Methyl Mercury (Hg ⁴⁺)	(q)	2.00E+01	1.39E+01	1.59E+01	7.40E+00	7.33E+01	1.39E+01	3.08E+01	9.55E+00	1.42E+02	1.39E+01	6.53E+01	1.14E+01	3.04E+02
Nickel	(p)(q)		5.31E+02	1.27E+02	,	NR	5.31E+02	1.27E+02	,	NR	5.31E+02	1.27E+02	,	NR
Selenium	(b)(c)	-	3.50E+02			NR	3.50E+02	NR		NR	3.50E+02			NR
Zinc	(c)	-	3.75E+03	2.55E+07	-	NR	3.75E+03	2.55E+07		NR	3.75E+03	2.55E+07		NR
Cyanide	_	Ţ	2.66E+01	3.97E+00	3.68E+00	NR	2.66E+01	3.97E+00	3.68E+00	NR	2.66E+01	3.97E+00	3.68E+00	NR
Volatile Organic Compounds														
Benzene	(q)	7.20E+00	1.12E-01	2.69E-01	7.92E-02	1.22E+03	2.28E-01	4.99E-01	1.57E-01	2.26E+03	4.89E-01	1.04E+00	3.32E-01	4.71E+03
Toluene	(q)	1.90E+03	1.47E+02	6.26E+02	1.19E+02	8.69E+02	3.35E+02	1.38E+03	2.70E+02	1.92E+03	7.59E+02	3.14E+03	6.11E+02	4.36E+03
Ethylbenzene	(q)	2.60E+02	1.06E+02	1.70E+02	6.52E+01	5.18E+02	2.51E+02	3.98E+02	1.54E+02	1.22E+03	5.70E+02	9.32E+02	3.54E+02	2.84E+03
Xylene - m		8.40E+01	2.02E+02	5.56E+01	4.36E+01	6.25E+02	4.80E+02	1.31E+02	1.03E+02	1.47E+03	1.09E+03	3.07E+02	2.40E+02	3.46E+03
Xylene - o	(q)	1.00E+02	1.85E+02	5.98E+01	4.52E+01	4.78E+02	4.38E+02	1.40E+02	1.06E+02	1.12E+03	9.96E+02	3.27E+02	2.46E+02	2.62E+03
Xvlene - p	I	8.70E+01	1.91E+02	5.34E+01	4.17E+01	5.76E+02	4.51E+02	1.26E+02	9.82E+01	1.35E+03	1.02E+03	2.94E+02	2.28E+02	3.17E+03
Total xvlene	L	8.40E+01	2.02E+02	5.56E+01	4.36E+01	6.25E+02	4.80E+02	1.31E+02	1.03E+02	1.47E+03	1.09E+03	3.07E+02	2.40E+02	3.46E+03
Methyl t-Butyl ether	E	2.20E+03	1.75E+00	1.84E+02	1.75E+00	1.66E+04	3.68E+00	2.40E+02	3.67E+00	2.16E+04	7.41E+00	3.70E+02	7.37E+00	3.34E+04
Trichloroethene		1.80E+00	2.83E+00	1.10E-01	1.06E-01	1.54E+03	6.25E+00	2.30E-01	2.22E-01	3.22E+03	1.40E+01	5.11E-01	4.93E-01	7.14E+03
Tetrachloroethene		3.60E+00	1.06E+01	1.03E+00	9.36E-01	4.24E+02	2.44E+01	2.30E+00	2.10E+00	9.51E+02	5.55E+01	5.28E+00	4.82E+00	2.18E+03
1,1,1-Trichloroethane		2.60E+01	3.20E+02	6.33E+00	6.21E+00	1.43E+03	6.97E+02	1.29E+01	1.27E+01	2.92E+03	1.55E+03	2.84E+01	2.79E+01	6.39E+03
1,1,1,2 Tetrachloroethane		1.40E+01	5.19E+00	1.08E+00	8.93E-01	2.60E+03	1.22E+01	2.50E+00	2.08E+00	6.02E+03	2.78E+01	5.83E+00	4.82E+00	1.40E+04
1,1,2,2-Tetrachloroethane		1.40E+01	2.70E+00	2.76E+00	1.37E+00	2.67E+03	5.85E+00	5.65E+00	2.87E+00	5.46E+03	1.30E+01	1.24E+01	6.34E+00	1.20E+04
Carbon Tetrachloride		5.50E-02	1.05E+00	1.81E-02	1.79E-02	1.52E+03	2.41E+00	3.97E-02	3.93E-02	3.32E+03	5.44E+00	8.99E-02	8.92E-02	7.54E+03
1,2-Dichloroethane		3.00E-01	3.06E-02	6.46E-03	5.34E-03	3.41E+03	5.53E-02	9.32E-03	7.98E-03	4.91E+03	1.05E-01	1.60E-02	1.39E-02	8.43E+03
Vinyl Chloride		1.90E-02	3.69E-03	5.43E-04	4.73E-04	1.36E+03	6.64E-03	7.02E-04	6.35E-04	1.76E+03	1.21E-02	1.07E-03	9.86E-04	2.69E+03
1,2,4-Trimethylbenzene		7.50E-02	_	3.51E-01	'	5.57E+02	'	8.55E-01		1.36E+03	'	2.10E+00	'	3.25E+03
1,3,5-Trimethylbenzene		4.70E-02	1.45E+01	4.60E-01	4.56E-01	9.47E+01	3.47E+01	1.10E+00	1.09E+00	2.26E+02	7.94E+01	2.59E+00	2.56E+00	5.33E+02
Semi-Volatile Organic Compounds														
Acenaphthene		3.205+00	2.18E+02	3.46E+03	2.05E+02	5.70E+01	5.08E+02	8.54E+03	4.79E+02	1.41E+02	1.06E+03	2.03E+04	1.01E+03	3.36E+02
Acenaphthylene		4.20E+00	1.78E+02	3.27E+03	1.68E+02	8.61E+01	4.17E+02	8.03E+03	3.97E+02	2.12E+02	8.90E+02	1.91E+04	8.51E+02	5.06E+02
Anthracene		2,106-02	2.31E+03	1.08E+05	2.26E+03	1.17E+00	5.03E+03	2.65E+05	4.93E+03	2.91E+00	9.33E+03	6.15E+05	9.19E+03	6.96E+00
Benzo(a)anthracene		3.80E-03	7.00E+00	5.55E+00	3.10E+00	1.71E+00	8.98E+00	9.83E+00	4.69E+00	4.28E+00	1.01E+01	1.41E+01	5.88E+00	1.03E+01
Benzo(b)fluoranthene		2.00E-03	8.06E+00	1.79E+01	5.56E+00	1.22E+00	9.78E+00	1.97E+01	6.53E+00	3.04E+00	1.07E+01	2.05E+01	7.02E+00	7.29E+00
Benzo(g,h,i)perylene		2.60E-04	6.68E+01	1.27E+02	4.38E+01	1.54E-02	7.04E+01	1.32E+02	4.59E+01	3.85E-02	7.19E+01	1.34E+02	4.68E+01	9.23E-02
Benzo(k)fluoranthene		8.006-04	1.25E+01	2.66E+01	8.51E+00	6.87E-01	1.44E+01	2.83E+01	9.56E+00	1.72E+00	1.53E+01	2.91E+01	1.00E+01	4.12E+00
Chrysene		2.00E-03	8.76E+00	1.95E+01	6.00E+00	4.40E-01	1.20E+01	2.45E+01	8.04E+00	1.10E+00	1.41E+01	2.72E+01	9.27E+00	2.64E+00
Dibenzo(a,h)anthracene		6.00E.04	1.19E+00	2.13E+00	7.62E-01	3.93E-03	1.33E+00	2.42E+00	8.58E-01	9.82E-03	1.39E+00	2.56E+00	9.03E-01	2.36E-02
Fluoranthene		2.306-01	2.59E+02	2.69E+04	2.57E+02	1.89E+01	4.67E+02	6.23E+04	4.63E+02	4.73E+01	6.78E+02	1.28E+05	6.74E+02	1.13E+02
Fluorene		1 90 6+00	1.70E+02	4.35E+03	1.63E+02	3.09E+01	3.91E+02	1.07E+04	3.77E+02	7.65E+01	8.00E+02	2.54E+04	7.76E+02	1.83E+02
Indeno(1,2,3-cd)pyrene		2.006-04	4.58E+00	1.04E+01	3.18E+00	6.13E-02	5.74E+00	1.17E+01	3.85E+00	1.53E-01	6.37E+00	1.22E+01	4.19E+00	3.68E-01
Phenanthrene		5.306-01	9.35E+01	5.04E+03	9.18E+01	3.60E+01	2.04E+02	1.23E+04	2.01E+02	8.96E+01	3.81E+02	2.86E+04	3.76E+02	2.14E+02
Pyrene		130E-01	5.69E+02	6.18E+04	5.63E+02 0.26F_04	2.20E+00	1.05E+03	1.44E+05	1.04E+03	5.49E+00	1.56E+03	2.97E+05	1.56E+03	1.32E+01
Benzo(a)pyrene		3.80E-03		Z.62E+UU	8.20E-UI	9.11E-01	1.4ZE+UU	2.81E+00	9.43E-01	2.28E+00	1.52E+00	2.90E+00	9.98E-01	5.46E+00

4.32E+02 1.74E+05

171E+00

1.83E+02 8.15E+04

3.70E+00

3.36E+01

7.64E+01 4.16E+04

.54E+00

ą

H PRIVATE GARDENS	
F	
RESIDENTIAL	
Ë	
N HEALT	
HUMA	
FOR	
CRITERIA	
ASSESSMENT	
GENERIC	

Table 7

(mg) Ontime Instantion Continued Instantion Continued Instantion Continued Instantion Continued Instantion Continued Instantion Continued Instantion		No	GrAC	SAC Appropri	SAC Appropriate to Pathway SOM 1% (mg/kg)	OM 1% (ma/ka)	Coll Coturation	SAC Appropria	SAC Appropriate to Pathway SOM 2.5% (mg/kg)	M 2.5% (ma/ka)	Coll Caturation	SAC Appropris	SAC Appropriate to Pathwav SOM 6% (mg/kg)	0M 6% (ma/ka)	Coll Caturation
International protectional International	punoduc	tes	(mg/l)	Oral	Inhalation	Combined	Limit (mg/kg)	Oral	Inhalation	Combined	Limit (mg/kg)	Oral	Inhalation	Combined	Limit (mg/kg)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	al Petroleum Hvdrocarbons														
	hatic hydrocarbons ECs-EC6		1.00E+01	4 79E+03	2.98E+01	2.97E+01	3.04E+02	1.08E+04	5.47E+01	5.46E+01	5.58E+02	2 35E+04	1.13E+02	1.13E+02	1.15E+03
Interforment SC, Circlin D SC (0) SER(0)	hatic hydrocarbons >EC ₆ -EC ₈		5 40E+00	143E+04	7.27E+01	7.26E+01	1.44E+02	3.21E+04	1.62E+02	1.62E+02	3.22E+02	6 36E+04	3.72E+02	3.71E+02	7.36E+02
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	natic hydrocarbons >EC ₈ -EC ₁₀		2.30E-01	1 46E+03	1.89E+01	1.88E+01	7.77E+01	2.44E+03	4.60E+01	4.58E+01	1.90E+02	3 30E+03	1.09E+02	1.08E+02	4.51E+02
Inclusion 15(-::::::::::::::::::::::::::::::::::::	hatic hydrocarbons >EC10-EC12		3 406-02	3 52E+03	9.34E+01	9.28E+01	4.75E+01	4.01E+03	2 32E+02	2 29E+02	1.18E+02	4 24E+03	557E+02	5 37E+02	2.83E+02
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	latic hydrocarbons >EC ₁₂ -EC ₁₆		7.60E-04	4.37E+03	7.82E+02	7 44E+02	2.37E+01	4.40E+03	1.95E+03	1.69E+03	5.91E+01	4.41E+03	4.68E+03	3 03E+03	1.42E+00
$ \left $	atic hydrocarbons >EC ₁₆ -EC ₃₅	(c)		4.51E+04		,	8.48E+00	6.38E+04			2.12E+01	7.61E+04			5.09E+01
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	atic hydrocarbons >EC ₃₅ -EC ₄₄	(c)		4.51E+04		,	8.48E+00	6.38E+04			2.12E+01	7.61E+04	,		5.09E+01
mile control c	latic hydrocarbons >EC ₈ -EC ₉ (styrene)		7.40E+00	1.66E+02	2.65E+02	1.33E+02	6.20E+02	3.92E+02	6.47E+02	3.16E+02	1.52E+03	8.50E+02	1.54E+03	7.02E+02	3.61E+03
Instruction	latic hydrocarbons >EC ₉ -EC ₁₀		7.40E+00	5.55E+01	3.33E+01	2.69E+01	6.13E+02	1.31E+02	8.16E+01	6.54E+01	1.50E+03	2.84E+02	1.94E+02	1.51E+02	3.58E+02
Interformation Interfo	atic hydrocarbons >EC10-EC12		2 50E+01	7.97E+01	1.82E+02	6.91E+01	3.64E+02	1.86E+02	4.48E+02	1.62E+02	8.99E+02	3.87E+02	1.07E+03	3.46E+02	2.15E+03
Instructions Exception Instruction Exception Instruction	atic hydrocarbons >EC12-EC16		5.805+00	1.40E+02	2.00E+03	1.38E+02	1.69E+02	3.13E+02	4.96E+03	3.08E+02	4.19E+02	6.01E+02	1.18E+04	5.93E+02	1.00E+03
ality formations = EG ₁₁ , EG ₁₁ (c) · ality formation c 4.88±-00 111E-03 · 121E-01 122E-03 · · 122E-03 · · 122E-03 · · · 122E-03 ·	latic hydrocarbons >EC ₁₆ -EC ₂₁	(c)	,	2.47E+02	,	,	5.37E+01	4.82E+02			1.34E+02	7.66E+02			3.21E+02
alid hydroachors FCx_FCx_ (p) · 12E-00 · 12E-00 · 12E-01	atic hydrocarbons >EC ₂₁ -EC ₃₅	(c)		8.88E+02		,	4.83E+00	1.11E+03			1.21E+01	1.22E+03			2.90E+01
st encound is not value and there and there fore no pathway, or an absence of bucklogical data. The accound is not value and there and there fore no pathway, or an absence of bucklogical data. The accound is not value and there are an absence of bucklogical data. The accound is not value and there are an assence of bucklogical data. The accound is not value and there are an assence of bucklogical data. The accound is not value and there in the calour cooper and automore and there in the calour cooper and automore and attention. The accound is not value and the indoor and outdoor vapour pathway. Is tell a sposure is calour cooper depending upon whether the sol is aturation limit has been exceedances since the contribution of the indoor and outdoor vapour pathway. Is tell a sposure is calour cooper and automore and antibut and may significantly since the contribution of the indoor and outdoor vapour pathway. Is tell a sposure is calour cooper accound since and antibut and may significantly and the value of the indoor and outdoor vapour pathway. Is tell a sposure is calour cooper accound since and antibut and may significantly and the value of the indoor and outdoor vapour pathway. Is tell a sposure is calour cooper accound since and antibut and may significant than the assence and antibut and and antibut and may significant that and any significant in the indoor and outdoor vapour pathway to tell a sposure is calour cooper accound since and antibut and antibut and and antibut and antis and antin the anote and antin ant	atic hydrocarbons >EC ₃₅ -EC ₄₄	(c)		8.88E+02	,	,	4.83E+00	1.11E+03		,	1.21E+01	1.22E+03			2.90E+01
EA mode louput is colour coded depending upon whether the soil saturation limit has been exceeds. The mode louput is colour coded depending upon whether the soil saturation limit and may significantly effect the interpretation of any exceedances since the contribution of the indoor and outdoor vapour pathway to total exposure is Toris. This stading has also been used for the RBCA output where the theoretical solubility limit has been exceeded. The SAC has been sected and SAC with the saturation limit shown in bructed and the indoor and outdoor vapour pathway to total exposure is <10%. This stading has also been used for the RBCA output where the theoretical solubility limit has been exceeded. The SAC has been exceeded soil saturation limit. Calculated SAC exceeds soil saturation limit. Calculated SAC does not exceed the soil saturation limit. Calculated SAC does not exceed the soil saturation limit. Calculated SAC has been exceeded in production of the GrAC, these cells have also been hatched red. Calculated solubility limit within RBCA has been exceeded in production of the indoor and outdoor vapour pathway to total exposure is <10%. Calculated SAC exceeds soil saturation limit. Calculated SAC does not exceed the soli saturation limit. Calculated SAC has been exceeded in production of the GrAC, these cells have also been hatched red. Calculated solution of the indoor and outdoor vapour pathway to total exposure is <10%. Calculated SAC has been exceeded in production of the indoor and outdoor vapour pathway to total exposure is <10%. Calculated solution in the formation solution of the indoor and outdoor vapour pathway to total exposure is <10%. Calculated SAC exceeds and the solicit calculated solution of the indoor and outdoor vapour pathway to total exposure is <10%. Calculated SAC exceeds and the solicit calculated solution of the indoor and outdoor vapour pathway of to total solution of the indoor and outdoor vapour pathway out to total solution of the indoor and outdoor vapour pathway out t	aric assessment criteria not calculated e compound is not volatile and therefr quivalent carbon. GrAC - groundwater	d owing t fore a soi r assessr	to low volatility of il saturation limit r ment criteria. SA	substance and the not calculated with C - soil assessmer	erefore no pathway, in CLEA nt criteria.	, or an absence of	toxicological data.								
Calculated SAC exceeds soil saturation limit and may significantly effect the interpretation of any exceedances since the contribution of the indoor and outdoor vapour pathway to total exposure is > 10%. This shading has also been used for the RBCA output where the theoretical solublity limit has been exceeded. The SAC has been set as the model calculated SAC with the saturation limits shown in br Calculated SAC exceeds soil saturation limit but will not effect the SSV significantly since the contrbution of the indoor vapour pathway to total exposure is <10%. This shading has also been used for the RSCA output where the theoretical solublity limit has been exceeded. The SAC has been set as the model calculated SAC with the saturation limits shown in br calculated SAC exceeds soil saturation limit but will not effect the SSV significantly since the contrbution of the indoor vapour pathway to total exposure is <10%. This shading has also been exceeded in production of the GrAC, these cells have also been hatched red. C for organic compounds are dependent upon soil organic matter (SOM) (%) content. To obtain SOM from total organic carbon (TOC) (%) divide by 0.88. 1% SOM is 0.58% TOC. DL Rowell Soil Science: Methods and Applications. Longmans, 1994. TPH fractions, polycylic aromatic hydrocarbons. MTBE, BTEX and timethylberczene compounds were produced using an attenuation factor for the indoor air initiation pathway of 10 to reduce conservatism associated with the vapour tation pathway, section 10.1.1, SR3. Steen from the Environment Agency SOT regotis published 2080. C for enrich the form the Environment Agency SOT for section data. SAC for arsenic is only based on oral contrbution (rather than combined) owing to he relative small total for and in condition form inhalation mattwe Affect SOT for zinc.	EA model output is colour coded depr	bending u	upon whether the	soil saturation limi	it has been exceed	ed.									
resistency where the theoretical solubility limit within RBCA has been exceeded in production of the GrAC, these cells have also been hatched red. C for organic compounds are dependent upon sol organic mater (SOM) (%) content. To obtain SOM from total organic carbon (TOC) (%) divide by 0.58. 1% SOM is 0.58% TOC. DL Rowell Sol Science: Methods and Applications, Longmans, 1994. ar TPH fractions, polycycic aromatic hydrocarbons, MTBE, BTEX and timethylbenzene compounds were produced using an attenuation factor for the indoor air inhalation pathway of 10 to reduce conservatism associated with the vapour altation pathway, section 10.1.1. SR3 nativity analysis undertaken on SECH equation and CLEA model, considered reasonable in absence of UK specific data C for selenitom, alphatic and comment Agency SCV reports published 2009.			Calculated SAC e: >10%. This Calculated SAC e: Calculated SAC do	xceeds soil saturat shading has also t xceeds soil saturat oes not exceed the	tion limit and may s been used for the F tion limit but will not s soil saturation limi	significantly effect th RBCA output where t effect the SSV sig it.	ne interpretation of ar the theoretical solub inificantly since the co	ny exceedances since sility limit has been ex ontribution of the indo	e the contribution of ceeded. The SAC I or and outdoor vap.	the indoor and outd has been set as the our pathway to total	loor vapour pathway model calculated S/ exposure is <10%.	to total exposure is AC with the saturati	s on limits shown in t	orackets.	
AC for organic compounds are dependent upon soil organic matter (SOM) (%) content. To obtain SOM from total organic carbon (TOC) (%) divide by 0.58. 1% SOM is 0.58% TOC. DL Rowell Soil Science: Methods and Applications, Longmans, 1994. or TPH fractions, polycyclic aromatic hydrocarbons, MTBE, BTEX and trimethylberizene compounds were produced using an attenuation factor for the indoor at inhalation pathway of 10 to reduce conservatism associated with the vapour nation pathway, section 10.1.1, SR3 methory analysis undertaken on SEGH equation and CLEA model, considered reasonable in absence of UK specific data C taken from the Environment Agency SGV reports published 2009. C taken from the Environment Agency SGV reports published 2009.	onsistency where the theoretical solubili	lity limit v	within RBCA has	been exceeded in	production of the G	3rAC, these cells h	ave also been hatch.	ed red.							
	AC for organic compounds are depend or TPH fractions, polycyclic aromatic hy halation pathway, section 10.1.1, SR3	dant upo iydrocart	n soil organic ma oons, MTBE, BTE	ttter (SOM) (%) cor ∃X and trimethylber	ntent. To obtain SC nzene compounds	DM from total orgar were produced usi	nic carbon (TOC) (%) ng an attenuation fac	divide by 0.58. 1% { tor for the indoor air i	SOM is 0.58% TOC nhalation pathway c	. DL Rowell Soil Sci of 10 to reduce cons	ience: Methods and ervatism associated	Applications, Longi I with the vapour	mans, 1994.		
	misitivity analysis undertaken on SEGH AC taken from the Environment Agency C for selenium, aliphatic and aromatic tritibution from inhalation in accordance	H equatio y SGV re hydroca e with th∈	n and CLEA mod sports published 2 irbons >EC16 dot s SGV report. The	del, considered rea 2009. es not include inha e same approach f	tsonable in absence llation pathway owli has been adopted fi	e of UK specific dal ng to absence of to or zinc.	ta ∖xicity data. SAC for i	arsenic is only based	on oral contribution	rather than combii) ר	ned) owing to the rel	lative small			

GENERIC ASSESSMENT CRITERIA FOR HUMAN HEALTH - RESIDENTIAL WITH PRIVATE GARDENS

Table 8 Human Health Generic Assessment Criteria for Residential Scenario - Private Gardens

	GrAC for Groundwater (mg/l)	SAC for Soil SOM 1% (mg/kg)	SAC for Soil SOM 2.5% (mg/kg)	SAC for Soil SOM ((mg/kg)
/letals				
vrsenic	-	32	32	32
Cadmium	-	10	10	10
Chormium (III) - oxide	-	3,000	3,000	3,000
Chromium (VI) - hexavalent	-	4.3	4.3	4.3
Copper	-	2,300	2,300	2,300
ead	-	300	300	300
Elemental Mercury (Hg ⁰)	0.009	0.17	0.42	1.0
norganic Mercury (Hg ²⁺)	-	170	170	170
Nethyl Mercury (Hg ⁴⁺)	20	7.4	9.6	11
lickel	-	130	130	130
Selenium	-	350	350	350
inc	-	3,800	3,800	3,800
Cyanide	-	3.7	3.7	3.7
/olatile Organic Compounds				
Benzene	7	0.079	0.157	0.33
oluene	1,900	120	270	610
thylbenzene	260	65	154	350
Vlene - m	100	44	103	240
ylene - o	87	45	106	250
ylene - p	84	42	98	230
otal xylene	84	44	103	240
lethyl tertiary butyl ether (MTBE)	2,200	1.8	3.7	7.4
richloroethene	1.8	0.11	0.2	0.49
etrachloroethene	3.6	0.94	2.1	4.8
,1,1-Trichloroethane	26	6.2	12.7	28
,1,1,2Tetrachloroethane	14	0.89	2.1	4.8
,1,2,2-Tetrachloroethane	14	1.4	2.87	6.3
Carbon Tetrachloride	0.055	0.018	0.039	0.089
,2-Dichloroethane	0.30	0.0053	0.0080	0.014
/inyl Chloride	0.019	0.00047	0.0006	0.001
,2,4-Trimethylbenzene ,3,5-Trimethylbenzene	0.075	0.35	0.85	2.1
,3,5-1 rimetnyibenzene	0.047	0.46	1.1	2.6
emi-Volatile Organic Compounds				
cenaphthene	3.2	210	480	1,000
cenaphthylene	4.2	170	400	850
Inthracene	0.021	2,300	4,900	9,200
Benzo(a)anthracene	0.0038	3.1	4.7	5.9
senzo(b)fluoranthene	0.0020	5.6	6.5	7.0
Benzo(g,h,i)perylene	0.00026	44	46	47
Benzo(k)fluoranthene	0.00080	8.5	9.6	10
Chrysene	0.0020	6.0	8.0	9.3
Dibenzo(a,h)anthracene	0.00060	0.76	0.86	0.90
luoranthene	0.23	260	460	670
luorene	1.9	160	380	780
ndeno(1,2,3-cd)pyrene	0.0002	3.2	3.8	4.2
Phenanthrene	0.53	92	200	380
Pyrene	0.13	560	1,000	1,600
Benzo(a)pyrene	0.0038	0.83	0.94	1.0
laphthalene Phenol	19	1.5 180	3.7 290	8.7
TIETIOI	-	160	250	420
otal Petroleum Hydrocarbons				
	10	30	55	110
liphatic hydrocarbons FCFC-		73		370
liphatic hydrocarbons EC ₅ -EC ₆				3/0
liphatic hydrocarbons >EC6-EC8	5.4		160	110
liphatic hydrocarbons >EC ₆ -EC ₈ liphatic hydrocarbons >EC ₈ -EC ₁₀	0.23	19	46	110
liphatic hydrocarbons >EC ₆ -EC ₈ liphatic hydrocarbons >EC ₈ -EC ₁₀				110 540 (283)
liphatic hydrocarbons >EC ₆ -EC ₈ liphatic hydrocarbons >EC ₈ -EC ₁₀ liphatic hydrocarbons >EC ₁₀ -EC ₁₂	0.23	19	46	
$\label{eq:liphatic hydrocarbons > EC_8-EC_8} \\ liphatic hydrocarbons > EC_8-EC_{10} \\ liphatic hydrocarbons > EC_{10}-EC_{12} \\ liphatic hydrocarbons > EC_{12}-EC_{16} \\ \\ liphatic hydrocarbons > EC_{12}-EC_{16} \\ \\ \end{tabular}$	0.23	19 93 (48) 744 (24)	46 230 (118) 1,700 (59)	540 (283) 3,000 (142)
$\label{eq:liphatic hydrocarbons > EC_6-EC_8} \\ liphatic hydrocarbons > EC_6-EC_{10} \\ liphatic hydrocarbons > EC_{10}-EC_{12} \\ liphatic hydrocarbons > EC_{12}-EC_{16} \\ liphatic hydrocarbons > EC_{16}-EC_{35} \\ \\ liphatic hydrocarbons > EC_{16}-EC_{35} \\ \\ \end{tabular}$	0.23	19 93 (48) 744 (24) 45,100 (8.48)	46 230 (118) 1.700 (59) 64,000 (21)	540 (283) 3,000 (142) 76,000
$\label{eq:response} \begin{split} & \text{Iphatic hydrocarbons} > \text{EC}_8\text{-}\text{EC}_8\\ & \text{Iiphatic hydrocarbons} > \text{EC}_8\text{-}\text{EC}_{10}\\ & \text{Iiphatic hydrocarbons} > \text{EC}_{10}\text{-}\text{EC}_{12}\\ & \text{Iiphatic hydrocarbons} > \text{EC}_{12}\text{-}\text{EC}_{16}\\ & \text{Iiphatic hydrocarbons} > \text{EC}_{16}\text{-}\text{EC}_{35}\\ & \text{Iiphatic hydrocarbons} > \text{EC}_{35}\text{-}\text{EC}_{44} \end{split}$	0.23 0.034 0.00076 - -	19 93 (48) 744 (24) 45,100 (8.48) 45,100 (8.48)	46 230 (118) 1.700 (59) 64,000 (21) 64,000 (21)	540 (283) 3,000 (142) 76,000 76,000
$\label{eq:constraint} \begin{split} & \text{liphatic hydrocarbons} > \text{EC}_8-\text{EC}_8 \\ & \text{liphatic hydrocarbons} > \text{EC}_8-\text{EC}_{10} \\ & \text{liphatic hydrocarbons} > \text{EC}_{10}-\text{EC}_{12} \\ & \text{liphatic hydrocarbons} > \text{EC}_{12}-\text{EC}_{16} \\ & \text{liphatic hydrocarbons} > \text{EC}_{16}-\text{EC}_{35} \\ & \text{liphatic hydrocarbons} > \text{EC}_{35}-\text{EC}_{44} \\ & \text{romatic hydrocarbons} > \text{EC}_8-\text{EC}_9 \ (styrene) \end{split}$	0.23	19 93 (48) 744 (24) 45,100 (8.48) 45,100 (8.48) 130	46 230 (118) 1,700 (59) 64,000 (21) 64,000 (21) 316	540 (283) 3,000 (142) 76,000 76,000 700
$\label{eq:constraint} \begin{split} & \text{iphatic hydrocarbons} > \text{EC}_{6}\text{-}\text{EC}_{8} \\ & \text{liphatic hydrocarbons} > \text{EC}_{6}\text{-}\text{EC}_{10} \\ & \text{liphatic hydrocarbons} > \text{EC}_{10}\text{-}\text{EC}_{12} \\ & \text{liphatic hydrocarbons} > \text{EC}_{12}\text{-}\text{EC}_{16} \\ & \text{liphatic hydrocarbons} > \text{EC}_{16}\text{-}\text{EC}_{35} \\ & \text{liphatic hydrocarbons} > \text{EC}_{35}\text{-}\text{EC}_{44} \\ & \text{romatic hydrocarbons} > \text{EC}_{6}\text{-}\text{EC}_{9} (\text{styrene}) \end{split}$	0.23 0.034 0.00076 - -	19 93 (48) 744 (24) 45,100 (8.48) 45,100 (8.48)	46 230 (118) 1.700 (59) 64,000 (21) 64,000 (21)	540 (283) 3,000 (142) 76,000 76,000
$\label{eq:constraint} \begin{split} & \text{Iphatic hydrocarbons} > \text{EC}_8-\text{EC}_8 \\ & \text{Iphatic hydrocarbons} > \text{EC}_8-\text{EC}_{10} \\ & \text{Iphatic hydrocarbons} > \text{EC}_{10}-\text{EC}_{12} \\ & \text{Iphatic hydrocarbons} > \text{EC}_{12}-\text{EC}_{16} \\ & \text{Iphatic hydrocarbons} > \text{EC}_{16}-\text{EC}_{35} \\ & \text{Iphatic hydrocarbons} > \text{EC}_{68}-\text{EC}_{44} \\ & \text{romatic hydrocarbons} > \text{EC}_8-\text{EC}_9 \\ & \text{system}_{10} > \text{EC}_{10}-\text{EC}_{10} \\ & \text{romatic hydrocarbons} > \text{EC}_8-\text{EC}_{10} \\ \end{split}$	0.23 0.034 0.00076 - - 7.4	19 93 (48) 744 (24) 45,100 (8.48) 45,100 (8.48) 130	46 230 (118) 1,700 (59) 64,000 (21) 64,000 (21) 316	540 (283) 3,000 (142) 76,000 76,000 700
$\label{eq:constraint} \begin{split} & b hatichydrocarbons>EC_{6}\text{-}EC_{8} \\ & lp hatichydrocarbons>EC_{10}\text{-}EC_{12} \\ & lp hatichydrocarbons>EC_{12}\text{-}EC_{16} \\ & lp hatichydrocarbons>EC_{16}\text{-}EC_{35} \\ & lp hatichydrocarbons>EC_{35}\text{-}EC_{44} \\ & \text{romatic}hydrocarbons>EC_{9}\text{-}EC_{9} \\ & sycromatichydrocarbons>EC_{9}\text{-}EC_{10} \\ & \text{romatic}hydrocarbons>EC_{9}\text{-}EC_{10} \\ & \text{romatic}hydrocarbons>EC_{9}\text{-}EC_{10} \\ \end{split}$	0.23 0.034 0.00076 - - 7.4 7.4 25	19 93 (48) 744 (24) 45,100 (8.48) 45,100 (8.48) 130 27 69	46 230 (118) 1,700 (59) 64,000 (21) 64,000 (21) 316 65 160	540 (283) 3,000 (142) 76,000 76,000 700 150 346 346
$\label{eq:constraint} \begin{split} & b hatic\;hydrocarbons\;\!>\!\!EC_{6}\!\!-\!\!EC_{8} \\ & lphatic\;hydrocarbons\;\!>\!\!EC_{10}\!\!-\!\!EC_{12} \\ & lphatic\;hydrocarbons\;\!>\!\!EC_{12}\!\!-\!\!EC_{16} \\ & lphatic\;hydrocarbons\;\!>\!\!EC_{12}\!\!-\!\!EC_{16} \\ & lphatic\;hydrocarbons\;\!>\!\!EC_{16}\!\!-\!\!EC_{35} \\ & lphatic\;hydrocarbons\;\!>\!\!EC_{48}\!\!-\!\!EC_{48} \\ & romatic\;hydrocarbons\;\!>\!\!EC_{9}\!\!-\!\!EC_{10} \\ & romatic\;hydrocarbons\;\!>\!\!EC_{9}\!\!-\!\!EC_{10} \\ & romatic\;hydrocarbons\;\!>\!\!EC_{10}\!\!-\!\!EC_{12} \\ & romatic\;hydrocarbons\;\!>\!\!EC_{12}\!\!-\!\!EC_{16} \\ \\ & romatic\;hydrocarbons\;\!>\!\!EC_{12}\!\!-\!\!EC_{16} \\ \end{split}$	0.23 0.034 0.00076 - - 7.4 7.4 25 5.8	19 93 (48) 744 (24) 45,100 (8.48) 45,100 (8.48) 130 27 69 140	46 230 (118) 1.700 (59) 64.000 (21) 64.000 (21) 316 65 160 310	540 (283) 3,000 (142) 76,000 76,000 700 150 346 593
$\label{eq:constraint} \begin{split} & b hatic\;hydrocarbons\;\!>\!EC_{6}\!\!=\!\!EC_{8} \\ & lp hatic\;hydrocarbons\;\!>\!\!EC_{2}\!\!=\!\!EC_{10} \\ & lp hatic\;hydrocarbons\;\!>\!\!EC_{12}\!\!=\!\!EC_{12} \\ & lp hatic\;hydrocarbons\;\!>\!\!EC_{12}\!\!=\!\!EC_{13} \\ & lp hatic\;hydrocarbons\;\!>\!\!EC_{35}\!\!=\!\!EC_{4} \\ & p hatic\;hydrocarbons\;\!>\!\!EC_{35}\!\!=\!\!EC_{4} \\ & romatic\;hydrocarbons\;\!>\!\!EC_{26}\!\!=\!\!EC_{9} \\ & ets\;\!e$	0.23 0.034 0.00076 - - 7.4 7.4 25 5.8 -	19 93 (48) 744 (24) 45,100 (8.48) 45,100 (8.48) 130 27 69 140 250	46 230 (118) 1,700 (59) 64,000 (21) 64,000 (21) 316 65 160 310 480	540 (283) 3,000 (142) 76,000 76,000 700 150 346 593 770 770
$\label{eq:response} \begin{split} & \text{Iphatic hydrocarbons} > \text{EC}_8\text{-}\text{EC}_8\\ & \text{Iiphatic hydrocarbons} > \text{EC}_8\text{-}\text{EC}_{10}\\ & \text{Iiphatic hydrocarbons} > \text{EC}_{10}\text{-}\text{EC}_{12}\\ & \text{Iiphatic hydrocarbons} > \text{EC}_{12}\text{-}\text{EC}_{16}\\ & \text{Iiphatic hydrocarbons} > \text{EC}_{16}\text{-}\text{EC}_{35}\\ & \text{Iiphatic hydrocarbons} > \text{EC}_{35}\text{-}\text{EC}_{44} \end{split}$	0.23 0.034 0.00076 - - 7.4 7.4 25 5.8	19 93 (48) 744 (24) 45,100 (8.48) 45,100 (8.48) 130 27 69 140	46 230 (118) 1.700 (59) 64.000 (21) 64.000 (21) 316 65 160 310	540 (283) 3,000 (142) 76,000 76,000 700 150 346 593

air inhalation pathway of 10 to reduce conservatism associated with the vapour inhalation pathway, section 10.1.1, SR3.

The SAC has been set as the model calculated SAC with the saturation limit shown in brackets. For consistency where the GrAC exceeds the solubility limit, GrAC has been set at the solubility limit. The GrAC conservative since concentrations of the chemical are very unlikely to be at sufficient concentration to result in an exceedance of the health criteria value at the point of exposure (i.e. indoor air) provided free-phase product is absent.