REF – 20 106 Page 1 of 27

Following the submission of documents relating to the Planning Application 21/00953/FUL, comments, observations and requests for additional information have been received from the following consultees in respect of matters related to surface water drainage.

ANGLIAN WATER (REF 173078/1/0121009)

 "It is noted that the surface water drainage strategy involves discharge to the sewers in Whitehouse Lane. These sewers are not owned by Anglian Water, we are therefore unable to agree/make comment on the suitability of a discharge to this location."

SOUTH CAMBRIDGESHIRE DISTRICT COUNCIL / CAMBRIDGE CITY COUNCIL

2. "The flood risk assessment should include an assessment of the flood risk from all sources of flooding. The flood risk should include assessment of: fluvial flood risk, mapped surface water, flood risk associated with potential overland flow from adjacent steeply sloping land, groundwater flood risk, flooding from surface water, foul sewers and summary of historic flooding records (if any)"

CAMBRIDGE COUNTY COUNCIL LLFA (REF R/21-000154)

3. TREATMENT OF WATER

The system for treating water needs to accommodate for the highway water runoff on the access road. As it currently stands there is no treatment of the highways water runoff. This is not in line with the Pollution Hazard Indices within the CIRIA SuDS Manual (C753) Chapter 26. Additional surface water treatment is required on site to ensure all surface water runoff receives adequate treatment prior to discharging offsite. This could be through the use of open attenuation or permeable surfaces such as permeable paving over the access road. Until there is suitable treatment of surface water in line with the Pollution Hazard Indices we are unable to support this.

4. FSR vs FEH

The submitted calculations are using FSR rainfall data. However, FSR rainfall data is now outdated and there are more accurate data sets in FEH 1999 and 2013 models. This due to recording of rainfall over a longer period of time, as well as updated calculations behind the model. Therefore, FEH rainfall data is now required on all applications to ensure the hydraulic modelling is an accurate representation of the proposed network.

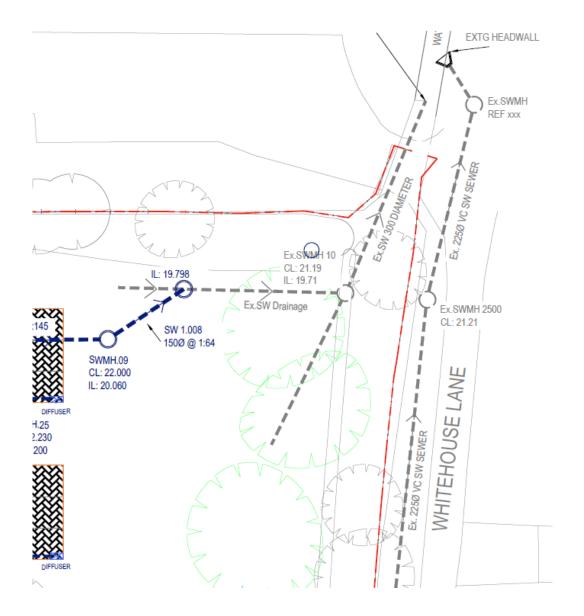
SUPLEMENTARY NOTES TO FRA AND DESIGN STRATEGY REPORT FELIX HOTEL, WHITEHOUSE LANE, CAMBRIDGE REF – 20 106 Page 2 of 27

5. PERMISSION TO DISCHARGE INTO ANGLIAN WATER CONNECTION

The applicant plans to discharge surface water from the site into an existing Anglian Water surface water network. Although it is thought that the site currently drains into an existing Anglian Water sewer, no assumption should be made that this historic connection still exists and therefore the application must be assessed as if there is no existing connection. Until agreement in principle with Anglian Water has been submitted, we are unable to support this application.

6. ATTENUATION VOLUMES

The applicant has used a 'Quick Storage Estimate' to calculate the volume of attenuation required. This is not a suitable method for calculating the volume of attenuation for a full planning application where a greater level of detail is required.

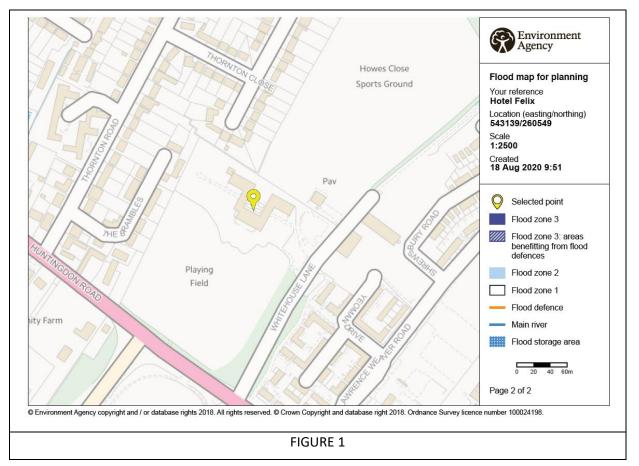

This note has been complied to address the above aspects.

SUPLEMENTARY NOTES TO FRA AND DESIGN STRATEGY REPORT FELIX HOTEL, WHITEHOUSE LANE, CAMBRIDGE REF – 20 106 Page 3 of 27

1. ANGLIAN WATER

Further investigation has been undertaken which shows that the surface water drainage does not connect to the public sewer in Whitehouse Lane as originally expected. It has been determined that the surface water discharges to the adjacent water course to the east of the site via a 300mm diameter pipe leaving ex SWMH 10 on the site boundary. This is shown on plan below with photographs in Appendix A.

The proposed strategy for discharge of surface water has been amended to be discharge to watercourse, subject to the necessary consents.



REF – 20 106 Page 4 of 27

2. SOUTH CAMBRIDGESHIRE DISTRICT COUNCIL / CAMBRIDGE CITY COUNCIL

FLUVIAL FLOOD RISK

As noted in figure 1 below the site is not at risk from fluvial flooding.

PLUVIAL FLOOD RISK

The Government website <u>Your long term flood risk assessment - GOV.UK (flood-warning-information.service.gov.uk)</u> has been consulted in relation to the risk of surface water flooding, which confirms the site is at low risk of surface water flooding. This is explored further in the subsequent pages.

REF – 20 106 Page 5 of 27

HOTEL FELIX, HUNTINGDON ROAD, GIRTON, CAMBRIDGE, CB3 OLX

Surface water

Low risk

What this information means

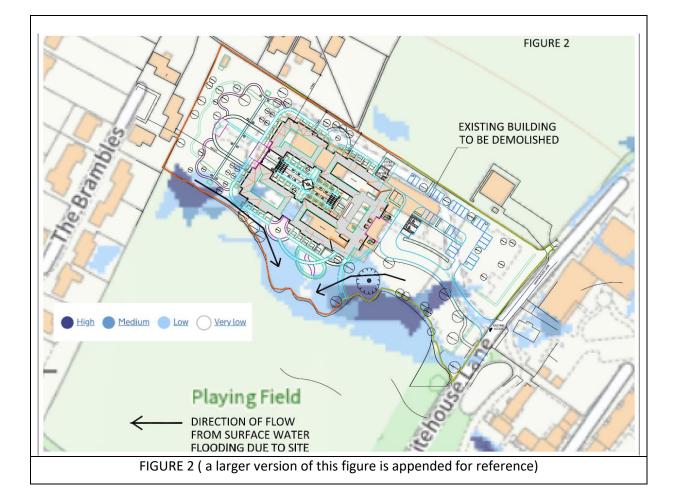
This flood risk summary reports the highest risk from surface water within a 20m radius of this property.

Low risk means that each year this area has a chance of flooding of between 0.1% and 1%.

This information is suitable for identifying:

- which parts of streets or parcels of land are at risk, or have the most risk
- the extent, depth and approximate velocity of flooding

It's very likely to be reliable for identifying the risk to:

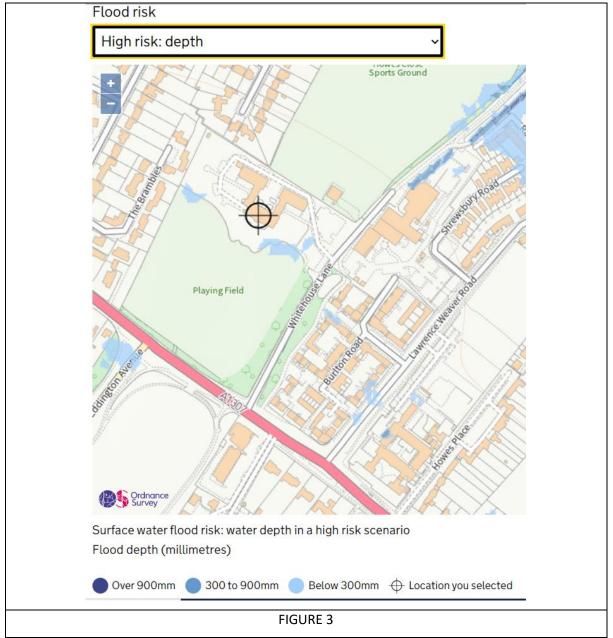

- local areas of land
- individual properties though not whether they will flood internally

The EA map showing the extent of potential surface water flooding on the site is shown in figure 2. This has been superimposed with the site plan of the proposed development. There is a small area to the south side of the development that may be subject to low level surface water flooding, however, this can be managed and diverted around the building by means of soft landscaping and footpaths. It should also be noted that the high-risk areas (dark blue) are predominantly outside the redline boundary to the west.

The watercourse to the east of the site flows away from the site in an easterly direction and does not present a flood risk to the proposed development.

REF – 20 106 Page 6 of 27

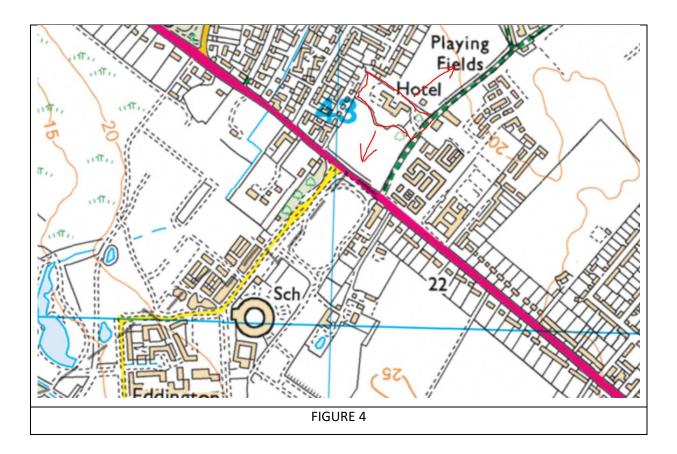
High risk means that each year this area has a chance of flooding of greater than 3.3%. Flooding from surface water is difficult to predict as rainfall location and volume are difficult to forecast. In addition, local features can greatly affect the chance and severity of flooding.


Medium risk means that each year this area has a chance of flooding of between 1% and 3.3%. Flooding from surface water is difficult to predict as rainfall location and volume are difficult to forecast. In addition, local features can greatly affect the chance and severity of flooding.

Low risk means that each year this area has a chance of flooding of between 0.1% and 1%. Flooding from surface water is difficult to predict as rainfall location and volume are difficult to forecast. In addition, local features can greatly affect the chance and severity of flooding

REF – 20 106 Page 7 of 27

When viewing the depth of the potential surface water flooding, Figure 3, the maximum depth of water is expected to be less than 300mm deep and is in fact found largely off site, presenting little or no risk to the proposed development.

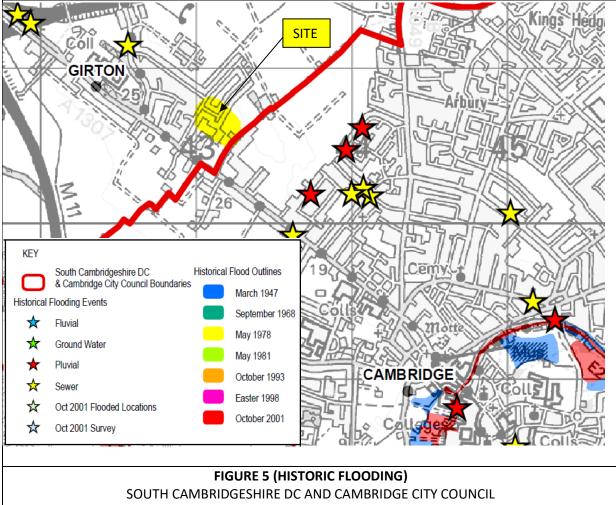

From the topographical survey of the site, the ground level at the location of the proposed building is generally around +22.00 to +22.50 mAOD, with the ground falling away to the site boundaries.

REF – 20 106 Page 8 of 27

This is further demonstrated with reference to the extract from the ordnance survey map, figure 4, showing contours at +20.00 mAOD to the east and west of the site which demonstrates the site is not at risk from surface water flooding from steeply sloping adjacent land.

Whilst the final finished floor level of the building is yet to be set, it is anticipated it will be similar to the existing property and will provide a resilient defence to shallow surface or foul water flooding

GROUNDWATER FLOODING


An intrusive ground investigation was undertaken in January 2021 and no groundwater was encountered during these works. To mitigate against any potential ground water flooding, a suspended precast concrete floor will be used for the property with a sub-floor void of 200mm provided with ventilation ducts. This should be adequate protection should groundwater flooding occur in the future.

REF – 20 106 Page 9 of 27

HISTORIC FLOODING

From reviewing the maps available in the Level SFRA for South Cambridge and Cambridge City, there are no records or evidence of historic flooding on or close to the site, either foul or surface water. See Figure 5 below

LEVEL 1 SFRA, HISTORICAL DATA 1402 - B - 3.5

REF – 20 106 Page 10 of 27

CAMBRIDGE COUNTY COUNCIL LLFA (REF R/21-000154)

3. TREATMENT OF WATER

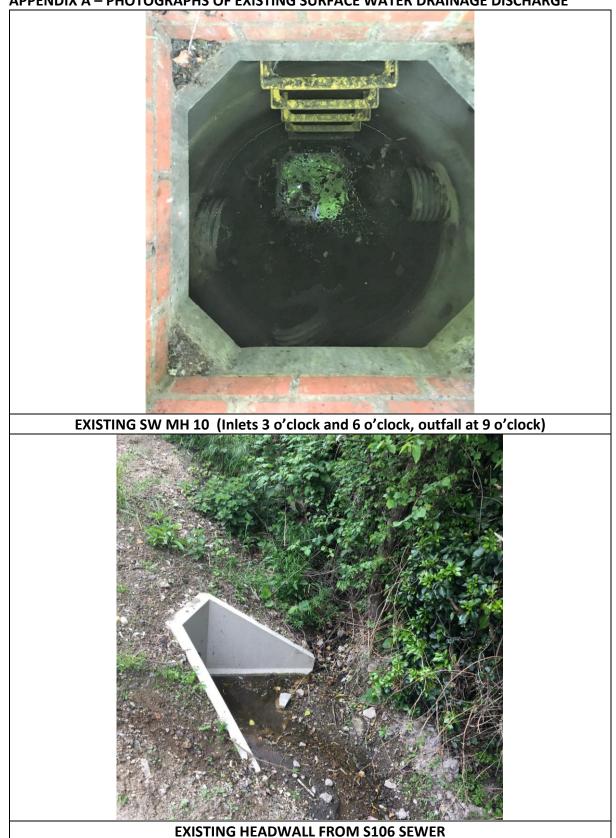
The proposals have been updated to include drainage to the access road and drained permeable paving to the car parking areas. Downstream Defenders (details provided in Appendix B) are to be included to capture sediment and pollution from the highway / access road prior to water entering the attenuation.

Permeable paving is to be included with a sub base to provide means of filtration and improvement of water quality prior to entering the attenuation tank.

4. FSR vs FEH

Calculations have been carried out using the FEH rainfall data. These are included in Appendix C.

5. PERMISSION TO DISCHARGE INTO ANGLIAN WATER CONNECTION


As noted in (1) it is no longer proposed to discharge surface water to Anglian Water Sewers

6. ATTENUATION VOLUMES

The volume of attenuation has been updated to reflect the MicroDrainage model rather than a quick estimate. Calculations are enclosed in Appendix C.

REF – 20 106 Page 11 of 27

APPENDIX A – PHOTOGRAPHS OF EXISTING SURFACE WATER DRAINAGE DISCHARGE

REF – 20 106 Page 12 of 27

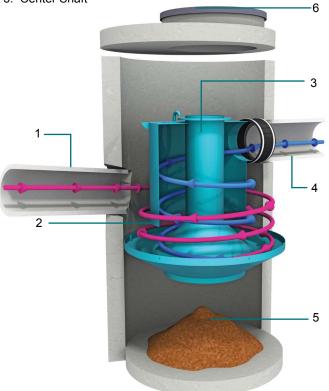
REF – 20 106 Page 13 of 27

APPENDIX B – DOWNSTREAM DEFENDER

Downstream Defender®

High-Level Treatment in a Small Footprint

Product Profile


The Downstream Defender[®] is an advanced vortex separator used to treat stormwater runoff in pretreatment or stand-alone applications. Its unique flow-modifying internal components distinguish the Downstream Defender[®] from conventional and simple swirl separators that typically bypass untreated peak flows to prevent washout of captured pollutants. Its wide treatment flow range, low headloss, small footprint and low-profile make it a compact and economical solution for capturing nonpoint source pollution.

Components

- 1. Inlet to Precast Vortex Chamber
- 2. Cylindrical Baffle
- 3. Center Shaft

Outlet Pipe
 Sediment Storage Sump

6. Access Lid

Fig.1 The Downstream Defender[®] has internal components designed to maximize pollutant capture and minimize pollutant washout.

Applications

- Removal of total suspended solids (TSS), floatable trash and petroleum products from stormwater runoff
- New construction or redevelopment of commercial and residential sites
- Pollutant hotspots such as maintenance yards, parking lots, gas stations, streets, highways, airports and transportation hubs
- · Site constrained LID or green infrastructure based developments
- LEED[®] development projects

Advantages

- Special internal components maximize pollutant capture and minimize footprint, headloss and washout
- · Captures and retains a wide range of TSS particles
- · High peak treatment flow rates
- Treats the entire storm with no washout or untreated bypass flows
- Low maintenance requirements no dredging required, and no screens or media to block
- Variable inlet/outlet angles for ease of site layout

How it Works

Advanced hydrodynamic vortex separation is a complex hydraulic process that augments gravity separation with low-energy rotary forces. The flow modifying internal components used in the Downstream Defender[®] harness the energy from vortex flow and maximize the time for separation to occur while deflecting high scour velocities (**Fig.1**).

Polluted stormwater is introduced tangentially into the side of the precast vortex chamber to establish rotational flow. A cylindrical baffle with an inner center shaft creates an outer (magenta arrow) and inner (blue arrow) spiraling column of flow and ensures maximum residence time for pollutant travel between the inlet and outlet.

Oil, trash and other floating pollutants are captured and stored on the surface of the outer spiraling column. Low energy vortex motion directs sediment into the protected sump region. Only after following a long three-dimensional flow path is the treated stormwater discharged from the outlet pipe. Maintenance ports at ground level provide access for easy inspection and clean-out.

Downstream Defender®

Drainage Profile

The Downstream Defender[®] is designed with a submerged tangential inlet to minimize turbulence within the device. Turbulence increases system headlosses and reduces performance by keeping pollutant particles in suspension.

The inlet elevation of the Downstream Defender[®] is located one inlet pipe diameter lower than the elevation of the outlet invert (**Fig.2**). This arrangement ensures that influent flows are introduced to the treatment chamber quiescently below the water surface elevation, minimizing turbulence.

The unique flow-modifying internal components also minimize hydraulic losses. There are no internal weirs or orifices; large clear openings ensure low headloss at peak flow rates with little risk of blockages that cause upstream flooding.

Inspections, Repairs and Clean-out

Nobody maintains our systems better than we do. To ensure optimal, ongoing device performance, be sure to recommend Hydro International as a preferred service and maintenance provider to your clients.

Call **1 (800) 848-2706** to schedule an inspection and clean-out or learn more at **hydro-int.com/service**

Sizing & Design

The Downstream Defender[®] can be used to meet a wide range of stormwater treatment objectives. It is available in 5 precast models that fit easily into the drainage network (**Table 1**). Selection and layout of the appropriate Downstream Defender[®] model depends on site hydraulics, site constraints and local regulations. Both online (**Fig.3a**) and offline (**Fig.3b**) configurations are common.

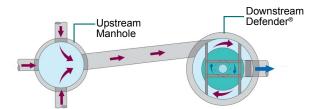


Fig.3a The Downstream Defender® in an online configuration.

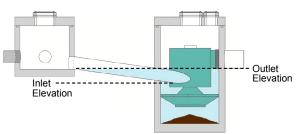


Fig.2 The Downstream Defender® has a submerged inlet that reduces headloss and improves efficiency of pollutant capture.

Table 1. Downstream Defender[®] Design Chart.

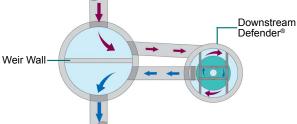


Fig.3b The Downstream Defender[®] in an offline configuration.

Free Stormwater Sizing Tool

This simple online tool will recommend the best separator, model size and online/offline arrangement based on site-specific data entered by the user.

Go to hydro-int.com/sizing to access the tool.

Numb	odel per and meter	Pea Treatme Ra	nt Flow	Maximum Pipe Diameter		Oil Storage Capacity		Sediment Storage Capacity		Storage		Minir Distanc Outlet Ir Top of	e from	Standard from Out to Sum	let Invert
(ft)	(m)	(cfs)	(L/s)	(in)	(mm)	(gal)	(L)	(yd³)	(m³)	(ft)	(m)	(ft)	(m)		
4	1.2	3.0	85	12	300	70	265	0.70	0.53	2.8	0.85	4.1	1.25		
6	1.8	8.0	227	18	450	216	818	2.10	1.61	3.2	0.98	5.9	1.80		
8	2.4	15.0	425	24	600	540	2,044	4.65	3.56	4.2	1.28	7.7	2.35		
10	3.0	25.0	708	30	750	1,050	3,975	8.70	6.65	5.0	1.52	9.4	2.85		
12*	3.7	38.0	1,076	36	900	1,770	6,700	14.70	11.24	5.6	1.71	11.2	3.41		

*Not available in all areas. Contact Hydro International for details.

Hydro International, 94 Hutchins Drive, Portland, ME 04102 Tel: (207) 756-6200 Fax: (207) 756-6212 Email: stormwaterinquiry@hydro-int.com Web: www.hydro-int.com SUPLEMENTARY NOTES TO FRA AND DESIGN STRATEGY REPORT FELIX HOTEL, WHITEHOUSE LANE, CAMBRIDGE REF – 20 106 Page 14 of 27

APPENDIX C – UPDATED CALCULATIONS FOR FEH RAINFALL DATA

MicroDrainage Calculations

1. These calculations provide the hydraulic analysis of the proposed surface water system for the proposed Hotel Felix, Whitehouse Lane, Cambridge. They should be read in conjunction with ARC Engineers Drainage GA drawing.

The calculations have been based on modelling the proposed network in Microdrainage and simulation of all storm durations on the system to ensure that no flooding occurs.

2. They are based on the following criteria:-

FEH Rainfall data
Storm Return period: 1 in 100 years.
Climate Change Factor: +40%.
(No urban creep allowance provided as no extensions envisaged).
Maximum permitted discharge to watercourse 3.5l/s

3. Main system details:

Piped system on site. Flow control using hydrobrake. Attenuation storage provided by cellular storage system. Permeable paving (underdrained) to majority of car parking areas. Gullies to access road.

4. MicroDrainage criteria.

Return Period storm 1 in 100 year Climate change +40% Cv for winter storms = 0.84 FEH Rainfall data MADD Factor = 1

5. Contributing Drainage Areas

The following contributing areas have been determined for the drainage network, based on the pipe number. Pipe numbers are shown on the Drainage GA drawing.

REF – 20 106 Page 15 of 27

Pipe Number (PN)	Contributing area	Pipe Number (PN)	Contributing area
	(Hectare)		(Hectare)
1.000	0.019	3.004	0
1.001	0.018	3.005	0
2.000	0.051	3.006	0
2.001	0.054	5.000	0.022
1.002	0.066	6.000	0.063
1.003	0	6.001	0
1.004	0	7.000	0.053
1.005	0	5.001	0
3.000	0.016	5.002	0
3.001	0.077	5.003	0
3.002	0.021	1.006	0
3.003	0	1.007	0
4.000	0.039	1.008	0
3.004	0	TOTAL	0.499

6. Microdrainage results.

The Microdrainage program has been used to model the surface water system on this scheme and the 1 in 100 year storm + 40% climate change. The system has been designed so that no flooding occurs within the 1 in 100 year plus 40% climate change storm and the discharge rate does not exceed 3.5l/s

All durations of storm has been simulated on the system to determine the critical storm event. The critical storm event for the system is the 480 minute storm. This has been determined on water levels within the system and discharge rate.

The following Microdrainage results are appended.

1 in 100 year plus 40% climate change (MADD Factor 1.0).

480 minute duration storm simulation details.420 minute and 540 minute summaries.

REF – 20 106 Page 16 of 27

		Page 1
	FELIX HOTEL	
	CAMBRIDGE	Micro
Date 13/05/2021 12:33	Designed by HM	
File FELIX SW.MDX	Checked by	Drainag
licro Drainage	Network 2020.1	1
STORM SEWER DE	SIGN by the Modified Ra	tional Method
Desig	n Criteria for FELIX SW	.SWS
Pipe Siz	es STANDARD Manhole Sizes S	TANDARD
	FEH Rainfall Model	
Retur	n Period (years)	2
FEH	Rainfall Version	2013
	Site Location GB 543146 2	260556 TL 43146 60556
	Data Type	Point
Maximum	Rainfall (mm/hr)	10
Maximum Time of Conc	entration (mins)	30
Foul	Sewage (l/s/ha)	0.000
Volumetr	ic Runoff Coeff.	0.750
	PIMP (%)	100
Add Flow / Cl	imate Change (%)	0
Minimum Bac	kdrop Height (m)	0.000
Maximum Bac	kdrop Height (m)	0.000
Min Design Depth for	Optimisation (m)	1.200
Min Vel for Auto D	1777 N	0.75
Min Slope for Op		500
	Designed with Level Soffits	
	Design Table for FELIX	сы сыс

PN	Length	Fall	Slope	I.Area	T.E.	Ba	se	k	HYD	DIA	Section Type
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(1/s)	(mm)	SECT	(mm)	
1.000	21.881	0.200	109.4	0.019	5.00		0.0	0.600	0	150	Pipe/Conduit
1.001	31.889	0.225	141.7	0.018	0.00		0.0	0.600	0	150	Pipe/Conduit
2.000	6.585	0.257	25.6	0.051	5.00		0.0	0.600	0	150	Pipe/Conduit
2.001	23.862	0.168	142.0	0.054	0.00		0.0	0.600	0	225	Pipe/Conduit
1.002	42.564	0.300	141.9	0.066	0.00		0.0	0.600	0	300	Pipe/Conduit
1.003	14.295	0.700	20.4	0.000	0.00		0.0	0.600	0	300	Pipe/Conduit
1.004	2.908	0.150	19.4	0.000	0.00		0.0	0.600	0	300	Pipe/Conduit

Network Results Table

	T.C.	05/11	Σ I.Area	2: E	Base	FOUL	Add Flow	Vel	Cap	Flow
(mm/hr)	(mins)	(m)	(ha)	Flow	(1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)
10.00	5.38	22.000	0.019		0.0	0.0	0.0	0.96	17.0	0.5
10.00	6.01	21.800	0.037		0.0	0.0	0.0	0.84	14.9	1.0
10.00	5.05	22.000	0.051		0.0	0.0	0.0	2.00	35.3	1.4
10.00	5.42	21.668	0.105		0.0	0.0	0.0	1.10	43.5	2.8
10.00	6.55	21.425	0.208		0.0	0.0	0.0	1.32	93.2	5.6
10.00	6.62	21.125	0.208		0.0	0.0	0.0	3.49	247.0	5.6
10.00	6.63	20.425	0.208		0.0	0.0	0.0	3.59	253.6	5.6
	10.00 10.00 10.00 10.00 10.00 10.00	10.00 5.38 10.00 6.01 10.00 5.05 10.00 5.42 10.00 6.55 10.00 6.55 10.00 6.62	10.00 5.38 22.000 10.00 6.01 21.800 10.00 5.05 22.000 10.00 5.42 21.668 10.00 6.55 21.425 10.00 6.62 21.125	10.00 5.38 22.000 0.019 10.00 6.01 21.800 0.037 10.00 5.05 22.000 0.051 10.00 5.42 21.668 0.105 10.00 6.55 21.425 0.208 10.00 6.62 21.125 0.208	10.00 5.38 22.000 0.019 10.00 6.01 21.800 0.037 10.00 5.05 22.000 0.051 10.00 5.42 21.668 0.105 10.00 6.55 21.425 0.208 10.00 6.62 21.125 0.208	10.00 5.38 22.000 0.019 0.0 10.00 6.01 21.800 0.037 0.0 10.00 5.05 22.000 0.051 0.0 10.00 5.42 21.668 0.105 0.0 10.00 6.55 21.425 0.208 0.0 10.00 6.62 21.125 0.208 0.0	10.00 5.38 22.000 0.019 0.0 0.0 10.00 6.01 21.800 0.037 0.0 0.0 10.00 5.05 22.000 0.051 0.0 0.0 10.00 5.42 21.668 0.105 0.0 0.0 10.00 6.55 21.425 0.208 0.0 0.0 10.00 6.62 21.125 0.208 0.0 0.0	10.00 5.38 22.000 0.019 0.0 0.0 0.0 10.00 6.01 21.800 0.037 0.0 0.0 0.0 10.00 5.05 22.000 0.051 0.0 0.0 0.0 10.00 5.42 21.668 0.105 0.0 0.0 0.0 10.00 6.55 21.425 0.208 0.0 0.0 0.0 10.00 6.62 21.125 0.208 0.0 0.0 0.0	10.00 5.38 22.000 0.019 0.0 0.0 0.0 0.96 10.00 6.01 21.800 0.037 0.0 0.0 0.0 0.84 10.00 5.05 22.000 0.051 0.0 0.0 0.0 2.00 10.00 5.42 21.668 0.105 0.0 0.0 0.0 1.10 10.00 6.55 21.425 0.208 0.0 0.0 1.32 10.00 6.62 21.125 0.208 0.0 0.0 3.49	10.00 5.38 22.000 0.019 0.0 0.0 0.0 0.96 17.0 10.00 6.01 21.800 0.037 0.0 0.0 0.0 0.84 14.9 10.00 5.05 22.000 0.051 0.0 0.0 0.0 2.00 35.3 10.00 5.42 21.668 0.105 0.0 0.0 0.0 1.10 43.5 10.00 6.55 21.425 0.208 0.0 0.0 0.0 1.32 93.2 10.00 6.62 21.125 0.208 0.0 0.0 0.0 3.49 247.0

REF – 20 106 Page 17 of 27

										Page 2
					FELIX	HOTEL				
					CAMBR	LIDGE				
										Micro
Date 13/0	5/2021	12:3	3		Desig	ned by HM				Drainage
File FELI	X SW.M	DX			Check	ed by				Diamage
Micro Dra	inage				Netwo	ork 2020.1	8			·
			117 (A) 148	01 1755 - 56	100 TE 100	10 Miles 10 Miles			~	
		N	letwor!	k Desig	gn Tab	le for FEI	LIX SV	W.SWS		
PN	Length	Fall	Slope	I.Area	T.E.	Base	k	HYD	DIA	Section Type
	(m)	(m)	(1:X)	(ha)		Flow (l/s)	(mm)	SECT		
1.005	17.987	0.050	359.7	0.000	0.00	0.0	0.600	0	300	Pipe/Conduit
3.000	21.837	0.210	104.0	0.016	5.00	0.0	0.600	0	150	Pipe/Conduit
3.001	74.568	0.790	94.4	0.077	0.00	0.0	0.600	0	225	Pipe/Conduit
3.002	31.429	0.250	125.7	0.021	0.00	0.0	0.600	0	225	Pipe/Conduit
3.003	7.589	0.170	44.6	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit
4.000	17.482	0.825	21.2	0.039	5.00	0.0	0.600	0	150	Pipe/Conduit
3.004	6.073	0.100	60.7	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit
3.005	3.483	0.050	69.7	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit
3.006	28.697	0.050	573.9	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit
5.000	24.341	0.175	139.1	0.022	5.00	0.0	0.600	0	225	Pipe/Conduit
6.000	19.687	0.375	52.5	0.063	5.00	0.0	0.600	0	225	Pipe/Conduit
6.001	3.249	0.225	14.4	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit
7.000	21.450	0.375	57.2	0.053	5.00	0.0	0.600	0	225	Pipe/Conduit
5.001	5.530	0.100	55.3	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit
5.002	2.390	0.075	31.9	0.000	0.00	0.0	0.600	0		Pipe/Conduit
				Netw	ork Re	sults Tab	10			

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow	
	(mm/hr)	(mins)	(m)	(ha)	Flow (1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)	
1.005	10.00	7.00	20.275	0.208	0.0	0.0	0.0	0.82	58.2	5.6	
3.000	10.00	5.37	22.000	0.016	0.0	0.0	0.0	0.99	17.4	0.4	
3.001	10.00	6.29	21.715	0.093	0.0	0.0	0.0	1.35	53.5	2.5	
3.002	10.00	6.74	20.925	0.114	0.0	0.0	0.0	1.16	46.3	3.1	
3.003	10.00	6.81	20.675	0.114	0.0	0.0	0.0	1.96	78.1	3.1	
4.000	10.00	5.13	21.400	0.039	0.0	0.0	0.0	2.20	38.8	1.1	
3.004	10.00	6.87	20.500	0.153	0.0	0.0	0.0	1.68	66.8	4.1	
3.005	10.00	6.90	20.400	0.153	0.0	0.0	0.0	1.57	62.4	4.1	
3.006	10.00	7.79	20.350	0.153	0.0	0.0	0.0	0.54	21.4	4.1	
5.000	10.00	5.37	20.700	0.022	0.0	0.0	0.0	1.11	44.0	0.6	
6.000	10.00	5.18	21.200	0.063	0.0	0.0	0.0	1.81	71.9	1.7	
6.001	10.00	5.20	20.825	0.063	0.0	0.0	0.0	3.46	137.6	1.7	
7.000	10.00	5.21	20.900	0.053	0.0	0.0	0.0	1.73	<mark>68.</mark> 9	1.4	
5.001	10.00	5.42	20.525	0.138	0.0	0.0	0.0	1.76	70.1	3.7	
5.002	10.00	5.44	20.425	0.138	0.0	0.0	0.0	2.33	92.5	3.7	
				@1092_1	2020 Innov	1170					_
				ST 902-2	LOLO INNOV	Y2C					_

REF – 20 106 Page 18 of 27

		Page 3
	FELIX HOTEL	
	CAMBRIDGE	
		Mirro
Date 13/05/2021 12:33	Designed by HM	Desinado
File FELIX SW.MDX	Checked by	Diamaye
Micro Drainage	Network 2020.1	1

Network Design Table for FELIX SW.SWS

PN	Length	Fall	Slope	I.Area	T.E.	Ba	se	k	HYD	DIA	Section Type
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(1/s)	(mm)	SECT	(mm)	
5.003	22.225	0.050	444.5	0.000	0.00		0.0	0.600	0	225	Pipe/Conduit
1.006	3.386	0.050	67.7	0.000	0.00		0.0	0.600	0	300	Pipe/Conduit
1.007	16.639	0.115	144.7	0.000	0.00		0.0	0.600	0	150	Pipe/Conduit
1.008	4.385	0.165	26.6	0.000	0.00		0.0	0.600	0	150	Pipe/Conduit

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Ba	ase	Foul	Add Flow	Vel	Cap	Flow	
	(mm/hr)	(mins)	(m)	(ha)	Flow ((1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)	
5.003	10.00	6.04	20.350	0.138		0.0	0.0	0.0	0.61	24.4	3.7	
1.006	10.00	7.82	20.225	0.499		0.0	0.0	0.0	1.91	135.2	13.5	
1.007	10.00	8.15	20.175	0.499		0.0	0.0	0.0	0.83	14.7	13.5	
1.008	10.00	8.19	20.060	0.499		0.0	0.0	0.0	1.96	34.7	13.5	

1200

1200 1200 1200

REF – 20 106 Page 19 of 27

								Page 4
					FELIX H	OTEL		
					CAMBRID	GE		Micco
e 13/05/	2021 1	12:33			Designe	d by HN	М	
e FELIX	SW MDS	2			Checked	22		Draina
cro Drain					Network	100	1	
CIO DIAIN	ayc);	NCCWOIN	2020.	L	
		PI	IPELI	INE SCHE	EDULES	for FEI	JIX SW.SWS	
				Ups	tream M	lanhole		
PN	Hyd	Diam	MH (C.Level :	L.Level	D. Depth	MH I	MH DIAM., L*W
	and the second se	(mm) 1		(m)	(m)	(m)	Connection	(mm)
		((,	()	(,		()
1.00	0 0	150	1	22.720	22.000	0.570	Open Manhole	1200
1.00	1 o	150	2	22.720	21.800	0.770	Open Manhole	1200
2.00		150					Open Manhole	1200
2.00	1 o	225	12	22.820	21.668	0.927	Open Manhole	1200
Sets (dawn	27	and the second	2220	NUMBER OF DESIGNATION	ignige instances	ton susses	1990 - 20 an	
1.00		300		22.720			Open Manhole	1200
1.00		300					Open Manhole	1200
1.00		300					Open Manhole	1200
1.00	5 o	300	6	22.370	20.275	1.795	Open Manhole	1200
2 00		1 5 0	10	00 700	00 000	0 570	Onen Menhele	1000
3.00		150					Open Manhole	1200
3.00							Open Manhole	1200
3.00							Open Manhole	1200
3.00	3 о	225	16	22.720	20.675	1.820	Open Manhole	1200
4.00	0 O	150	20	22.490	21.400	0.940	Open Manhole	1200
3.00	4 o	225	17	22.340	20 500	1 615	Open Manhole	1200
3.00		225		22.340			Open Manhole	1200
3.00				22.340			Open Manhole	1200
	0 0	220	10					1200
				Down	stream	Mannol	<u>e</u>	
PN	Length	and the second states		C.Level	I.Level	a company second second	h MH	MH DIAM., L*W
	(m)	(1:X)	Name	(m)	(m)	(m)	Connection	(mm)
1 000	21 001	109 /	2	22 720	21 000	0 770	Open Manhele	1200
	21.881						0 Open Manhole 5 Open Manhole	
1.001	31.009	141.1	0	22.120	21.075	0.993	open Mannoie	1200
2.000	6.585	25.6	12	22.820	21.743	0.92	7 Open Manhole	1200
							5 Open Manhole	
2,001			9					
1.002	42.564	141.9	4	22.580	21.125	1.155	5 Open Manhole	1200
							5 Open Manhole	
							5 Open Manhole	
				22.290			5 Open Manhole	
2.000			1		20.000			2200
	21.837	104.0	14	22.720	21.790	0.780	0 Open Manhole	1200
3.000								
	74.568	94.4	15	21.780	20.925	0.630	0 Open Manhole	1200
3.001				21.780			0 Open Manhole 0 Open Manhole	

4.000 17.482 21.2 17 22.340 20.575 1.615 Open Manhole

 3.004
 6.073
 60.7
 18
 22.340
 20.400
 1.715 Open Manhole

 3.005
 3.483
 69.7
 19
 22.300
 20.350
 1.725 Open Manhole

 3.006
 28.697
 573.9
 7
 22.290
 20.300
 1.765 Open Manhole

©1982-2020 Innovyze

REF – 20 106 Page 20 of 27

		Page 5
	FELIX HOTEL CAMBRIDGE	Micro
Date 13/05/2021 12:33	Designed by HM	Desinado
File FELIX SW.MDX	Checked by	Diginarie
Micro Drainage	Network 2020.1	

PIPELINE SCHEDULES for FELIX SW.SWS

Upstream Manhole

PN	Hyd	Diam	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	Sect	(mm)	Name	(m)	(m)	(m)	Connection	(mm)
5.000	0	225	21	21.700	20.700	0.775	Open Manhole	1200
6.000	0	225	25	22.230	21.200	0.805	Open Manhole	1200
6.001	0	225	26	22.060	20.825	1.010	Open Manhole	1200
7.000	0	225	27	22.220	20.900	1.095	Open Manhole	1200
5.001	0	225	22	22.060	20.525	1.310	Open Manhole	1200
5.002	0	225	23	22.100	20.425	1.450	Open Manhole	1200
5.003	0	225	24	22.100	20.350	1.525	Open Manhole	1200
1.006	0	300	7	22.290	20.225	1.765	Open Manhole	1200
1.007	0	150	8	22.270	20.175	1.945	Open Manhole	1200
1.008	0	150	9	22.000	20.060	1.790	Open Manhole	1200

Downstream Manhole

PN	Length (m)	Slope (1:X)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
5.000	2 <mark>4.34</mark> 1	139.1	22	22.060	20.525	1.310	Open Manhole	1200
6.000 6.001	19.687 3.249	52.5 14.4	26 22	22.060 22.060			Open Manhole Open Manhole	1200 1200
7.000	21.450	57.2	22	22.060	20.525	1.310	Open Manhole	1200
5.001 5.002 5.003	5.530 2.390 22.225	55.3 31.9 444.5	23 24 7	22.100 22.100 22.290	20.425 20.350 20.300	1.525	Open Manhole Open Manhole Open Manhole	1200 1200 1200
	3.386 16.639 4.385	67.7 144.7 26.6	8 9 10	22.270 22.000 21.000	20.175 20.060 19.895	1.790	Open Manhole Open Manhole Open Manhole	1200 1200 1200

Simulation Criteria for FELIX SW.SWS

Volumetric Runoff Coeff	0.840	Foul Sewage per hectare (1/s) 0.000
Areal Reduction Factor	1.000 2	Additional Flow - % of Total Flow 40.000
Hot Start (mins)	0	MADD Factor * 10m³/ha Storage 1.000
Hot Start Level (mm)	0	Run Time (mins) 2000
Manhole Headloss Coeff (Global)	0.500	Output Interval (mins) 8
Number of Input Hydrogi	caphs 0	Number of Offline Controls 0
Number of Online Cont	rols 1	Number of Storage Structures 3

REF – 20 106 Page 21 of 27

Pate 13/05/2021 12:33 Designed by HM Description Micro Drainage Network 2020.1 Simulation Criteria for FELIX SW.SWS Micro Drainage Network 2020.1 Simulation Criteria for FELIX SW.SWS Number of Time/Area Diagrams 0 Synthetic Rainfall Details Number of Time/Area Diagrams 0 Synthetic Rainfall Version 2013 Simulation (Stalide 260556 TL 43146 60556 Date Type Summer Storms Winter Storms Or (Summer) Or (Summer) Storm Duration (mins)			Page 6
Date 13/05/2021 12:33 Designed by HM Micro File FELIX SW.MDX Checked by Designed by HM Micro Drainage Network 2020.1 Network 2020.1 Simulation Criteria for FELIX SW.SWS Number of Time/Area Diagrams 0 Synthetic Rainfall Details Rainfall Model FEH Return Period (years) 100 FEH Rainfall Version 2013 Site Location GB 543146 260556 TL 43146 60556 Data Type Point Summer Storms No Winter Storms Yes Cv (Summer) 0.750 Cv (Winter) 0.840			
File FELIX SW.MDX Checked by Uldings Micro Drainage Network 2020.1 Simulation Criteria for FELIX SW.SWS Number of Time/Area Diagrams 0 Synthetic Rainfall Details Rainfall Model FEH Return Period (years) 100 FEH Rainfall Version 2013 Site Location GB 543146 260556 TL 43146 60556 Data Type Summer Storms No Winter storms Yes CV (Summer) 0.750 CV (Winter) 0.840		CAMBRIDGE	Micco
Micro Drainage Network 2020.1 <u>Simulation Criteria for FELIX SW.SWS</u> Number of Time/Area Diagrams 0 <u>Synthetic Rainfall Details</u> Rainfall Model FEH Return Period (years) 100 FEH Rainfall Version 2013 Site Location GB 543146 260556 TL 43146 60556 Data Type Point Summer Storms No Winter Storms Yes CV (Summer) 0.750 CV (Winter) 0.840	Date 13/05/2021 12:33	Designed by HM	
Simulation Criteria for FELIX SW.SWS Number of Time/Area Diagrams 0 Synthetic Rainfall Details Rainfall Model FEH Return Period (years) 100 FEH Rainfall Version 2013 Site Location GB 543146 260556 TL 43146 60556 Data Type Summer Storms No Winter Storms Yes Cv (Summer) 0.750 Cv (Winter) 0.840	File FELIX SW.MDX	Checked by	Diamaye
Number of Time/Area Diagrams 0Synthetic Rainfall DetailsRainfall ModelFEHReturn Period (years)100FEH Rainfall Version2013Site Location GB 543146 260556 TL 43146 60556Data TypeData TypePointSummer StormsNoWinter StormsYesCv (Summer)0.750Cv (Winter)0.840	Micro Drainage	Network 2020.1	78
	File FELIX SW.MDX Micro Drainage <u>Simulation</u> Number <u>Synthe</u> Rainfall Mc Return Period (yea FEH Rainfall Vers Site Locat Data 7 Summer Sto Winter Sto CV (Sum CV (Winter	Checked by Network 2020.1 Criteria for FELIX SW.SWS of Time/Area Diagrams 0 etic Rainfall Details odel ars) sion 2 tion GB 543146 260556 TL 43146 66 Type Pro- porms orms mer) 0 ter) 0	FEH 100 2013 0556 pint No Yes .750 .840
©1982-2020 Innovyze			

REF – 20 106 Page 22 of 27

							Page 7
			FELIX	HOTEL			
			CAMBRI	DGE			
							Micco
ate 13/05/20	21 12:3	3	Design	ed by HM			MICTO
ile FELIX SW			Checke				Drainag
icro Drainag	e			k 2020.1			
		Online	Controls f	or FELIX	SW.SWS		
Hydro-H	Brake® ()ptimum Ma	anhole: 8,	DS/PN: 1	.007, Vol	Lume (m³)	: 2.5
			Unit Referen	ce MD-SHE-	0089-3500-1	L000-3500	
			esign Head (1.000	
		Des	ign Flow (1/ Flush-Fl			3.5 alculated	
					se upstrear		
			Applicati		se appered	Surface	
			Sump Availab			Yes	
			Diameter (m			89	
			vert Level (100		20.175	
		-	Diameter (m Diameter (m			150 1200	
	Suggest				_		
					Flow (1/s)	
			l Points				
	De		Calculated) 1.000	3.		
	D		Calculated Flush-Flo) 1.000 ™ 0.300	3. 3.	5	
The hydrologi	Me cal calcu	esign Point ean Flow ov Nations ha	C (Calculated Flush-Flo Kick-Flo Ver Head Rang Ve been base) 1.000 ™ 0.300 © 0.632 e - d on the H	3. 3. 2. 3. ead/Dischar	5 8 1 rge relatio	
Hydro-Brake® Hydro-Brake O invalidated	M cal calcu Optimum a ptimum® k	esign Point ean Flow ou ulations ha as specifie be utilised	C (Calculated Flush-Flo Kick-Flo Ver Head Rang Ve been base d. Should a then these) 1.000 ™ 0.300 © 0.632 e - d on the H nother type storage roo	3. 3. 2. 3. ead/Dischar e of contro uting calcu	5 8 1 cge relation 1 device o 1 lations with	other than a ill be
Hydro-Brake® Hydro-Brake O invalidated Depth (m) Fl	M cal calcu Optimum a ptimum® k ow (l/s)	esign Point ean Flow ou ulations ha as specifie be utilised Depth (m)	C (Calculated Flush-Flo Kick-Flo Ver Head Rang Ve been base d. Should a then these Flow (1/s)) 1.000 ™ 0.300 © 0.632 e - d on the Henother type storage room pepth (m) H	3. 3. 2. 3. ead/Dischar e of contro uting calcu	5 8 1 ol device o 1 ations with Depth (m)	other than a ill be Flow (l/s)
Hydro-Brake® Hydro-Brake O invalidated Depth (m) Fl 0.100	M cal calcu Optimum a ptimum® k ow (1/s) 2.7	esign Point ean Flow ou ulations ha as specifie be utilised Depth (m) 1.200	C (Calculated Flush-Flo Kick-Flo Ver Head Rang Ve been base d. Should a then these Flow (1/s) I 3.8) 1.000 ™ 0.300 © 0.632 e - d on the Ho nother typo storage roo pepth (m) H 3.000	3. 3. 2. 3. ead/Dischar e of contro uting calcu Flow (1/s) 5.8	5 8 1 orge relation 1 device of 1 lations with Depth (m) 7.000	other than a ill be Flow (l/s) 8.7
Hydro-Brake® Hydro-Brake O invalidated Depth (m) Fl 0.100 0.200	M cal calcu Optimum a ptimum® k ow (1/s) 2.7 3.4	esign Point ean Flow ov nlations ha as specifie be utilised Depth (m) 1.200 1.400	C (Calculated Flush-Flo Kick-Flo Ver Head Rang Ve been base d. Should a then these Flow (1/s) I 3.8 4.1) 1.000 ™ 0.300 © 0.632 e - d on the H nother type storage row pepth (m) M 3.000 3.500	3. 3. 2. 3. ead/Dischar e of contro uting calcu Flow (1/s) 5.8 6.2	5 8 1 orge relation 1 device of 1 ations with Depth (m) 7.000 7.500	other than a ill be Flow (l/s) 8.7 9.0
Hydro-Brake® Hydro-Brake O invalidated Depth (m) Fl 0.100	M cal calcu Optimum a ptimum® k ow (1/s) 2.7	esign Point ean Flow ov nlations ha as specifie be utilised Depth (m) 1.200 1.400	C (Calculated Flush-Flo Kick-Flo Ver Head Rang Ve been base d. Should a then these Flow (1/s) I 3.8 4.1) 1.000 ™ 0.300 © 0.632 e - d on the Ho nother typo storage roo pepth (m) H 3.000	3. 3. 2. 3. ead/Dischar e of contro uting calcu Flow (1/s) 5.8 6.2	5 8 1 orge relation 1 device of 1 lations with Depth (m) 7.000	other than a ill be Flow (1/s) 8.7 9.0 9.2
Hydro-Brake® Hydro-Brake O invalidated Depth (m) Fl 0.100 0.200 0.300	Ma Optimum a ptimum® k ow (1/s) 2.7 3.4 3.5	esign Point ean Flow ou ulations ha as specifie be utilised Depth (m) 1.200 1.400 1.600	C (Calculated Flush-Flo Kick-Flo Ver Head Rang Ve been base d. Should a then these Flow (1/s) I 3.8 4.1 4.3 4.6) 1.000 ™ 0.300 © 0.632 e - d on the H nother type storage row pepth (m) I 3.000 3.500 4.000	3. 3. 2. 3. ead/Dischar e of contro uting calcu Flow (1/s) 5.8 6.2 6.7	5 8 1 cge relation 1 device of 1 ations with Depth (m) 7.000 7.500 8.000	other than a ill be Flow (1/s) 8.7 9.0 9.2 9.5
Hydro-Brake® Hydro-Brake O invalidated Depth (m) Fl 0.100 0.200 0.300 0.400 0.500 0.600	Mo Cal calcu Optimum@ k ow (1/s) 2.7 3.4 3.5 3.4 3.3 3.0	esign Point ean Flow ov ulations ha s specifie be utilised Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200	C (Calculated Flush-Flo Kick-Flo Ver Head Rang Ve been base d. Should a then these Flow (1/s) I 3.8 4.1 4.3 4.6 4.8 5.0) 1.000 ™ 0.300 © 0.632 e d on the Hend nother type storage row Depth (m) I 3.000 3.500 4.000 4.500 5.500	3. 3. 2. 3. ead/Dischar e of contro uting calco Flow (1/s) 5.8 6.2 6.7 7.0 7.4 7.7	5 8 1 cge relation 1 device of 1 ations w: Depth (m) 7.000 7.500 8.000 8.500	other than a ill be Flow (1/s) 8.7 9.0 9.2 9.5 9.8
Hydro-Brake® Hydro-Brake O invalidated Depth (m) Fl 0.100 0.200 0.300 0.400 0.500	Mo Cal calcu Optimum@ k ow (1/s) 2.7 3.4 3.5 3.4 3.5 3.4 3.3	esign Point ean Flow ov ulations ha s specifie be utilised Depth (m) 1.200 1.400 1.600 1.800 2.000	C (Calculated Flush-Flo Kick-Flo Ver Head Rang Ve been base d. Should a then these Flow (1/s) I 3.8 4.1 4.3 4.6 4.8 5.0) 1.000 ™ 0.300 © 0.632 e d on the H4 nother type storage rop Depth (m) I 3.000 3.500 4.000 4.500 5.000	3. 3. 2. 3. ead/Dischar e of contro uting calco Flow (1/s) 5.8 6.2 6.7 7.0 7.4	5 8 1 cge relation 1 device of 1 device of 1 device of	other than a ill be Flow (1/s) 8.7 9.0 9.2 9.5 9.8

REF – 20 106 Page 23 of 27

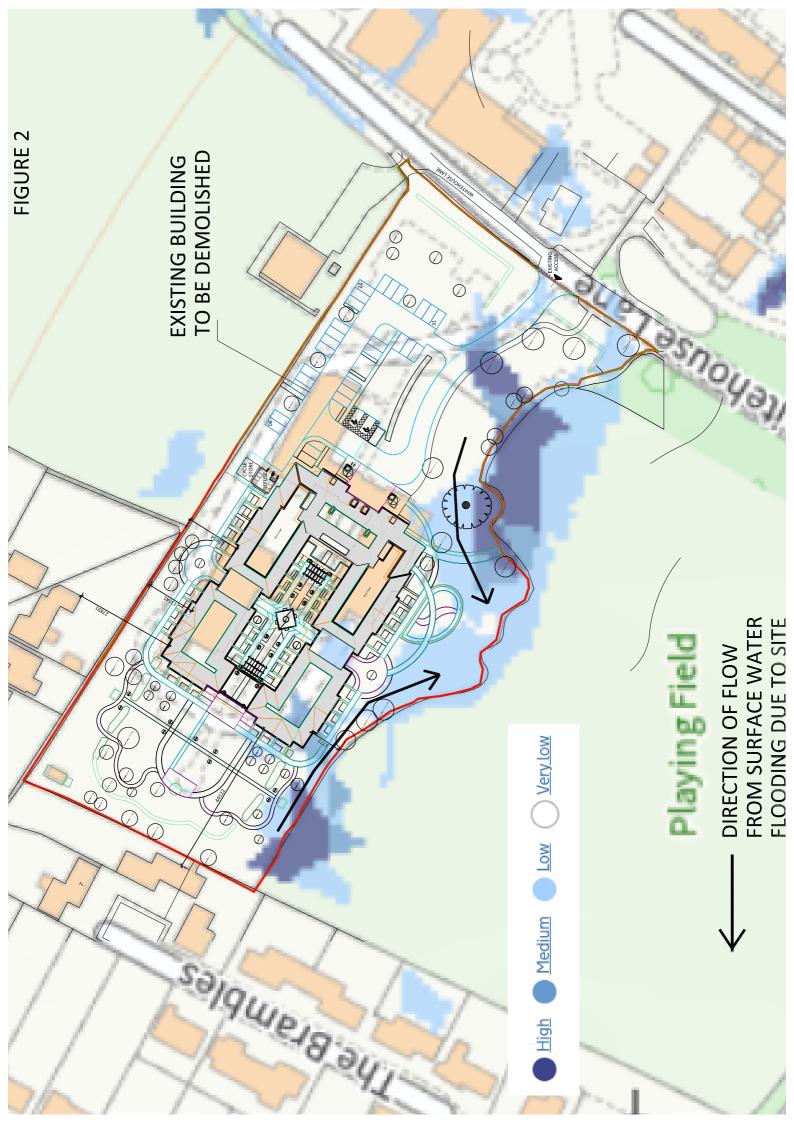
			Page 8
	FELIX HOTEL		
	CAMBRIDGE		Micro
Date 13/05/2021 12:33	Designed by HM		Drainago
File FELIX SW.MDX	Checked by		Diamay
Micro Drainage	Network 2020.1	4	124
<u>Porous Car</u> Infiltration Coefficient Membrane Percolat Max Percol Sa Inver <u>Porous Car</u> Infiltration Coefficient Membrane Percola Max Perco S	tion (mm/hr) 1000 Lation (1/s) 70.9 afety Factor 2.0 Dep Porosity 0.30 rt Level (m) 21.990 Park Manhole: 26,	DS/PN: 3.004 Width Length Slope (1 Dression Storage Evaporation (mm/o Membrane Depth DS/PN: 6.001 Width Length Slope (pression Storage Evaporation (mm/	(mm) 200 (m) 22.0 (m) 28.7 1:X) 0.0 (mm) 5 day) 3
Cellular S	torage Manhole: 7,	DS/PN: 1.006	
Infiltration Coeffi Infiltration Coeffi	torage Manhole: 7, 1 Invert Level (m) 20.2 cient Base (m/hr) 0.000 cient Side (m/hr) 0.000 f. Area (m ²) Depth (m)	25 Safety Factor 00 Porosity 00	0.95
Infiltration Coeffi Infiltration Coeffi	Invert Level (m) 20.2 cient Base (m/hr) 0.000 cient Side (m/hr) 0.000 f. Area (m ²) Depth (m)	25 Safety Factor 00 Porosity 00	0.95 cea (m²)
Infiltration Coeffi Infiltration Coeffi Depth (m) Area (m²) In 0.000 500.0	Invert Level (m) 20.2 cient Base (m/hr) 0.000 cient Side (m/hr) 0.000 f. Area (m²) Depth (m) 500.0 0.801	25 Safety Factor 00 Porosity 00 Area (m²) Inf. An	0.95 cea (m²)

REF – 20 106 Page 24 of 27

				DDI	TV UOT	177			Page 9
					JIX HOI				1.00
				CAN	IBRIDGE				
ate 13/	05/20	21 12:	33	Des	signed	bv HM			Micro
ile FEL	IX SW	.MDX			ecked b				Drainac
licro Dr	ainag	e		0.00000000	work 2				
Sui	mmary	of Re:	sults for	480 mi1	nute 10	00 year	Winter (FB	ELIX S	SW.SWS)
	Marg	gin for	Flood Risk						0.0
			Analy	sis Time DTS St		5 Second	Increment (H		ed) OFF
				DIS St DVD St					ON
			In	ertia St					ON
			Surcharged				Half Drain	· · · · · · · · · · · · · · · · · · ·	
	Chinese and the state	Level				Overflow		Flow	
PN	Name	(m)	(m)	(m ³)	Cap.	(1/s)	(mins)	(1/s)	Status
1.000	1	22.031	-0.119	0.000	0.10			1.6	OK
1.001		21.847						3.1	
2.000	11	22.038	-0.112	0.000	0.14			4.3	OK
2.001		21.739		0.000	0.22			8.8	OK
1.002	3	21.516 21.183	-0.209	0.000	0.20			17.4	OK
1.003	4	21.183	-0.242	0.000	0.08			17.4	OK
1.004	5	21.041	0.316	0.000				17.2	SURCHARGED
1.005	6	21.041	0.466	0.000				17.1	SURCHARGED
3.000		22.028						1.3	OK
3.001		21.773			0.15			7.8	
3.002		21.046	-0.104		0.22			9.5	OK
3.003		21.044							SURCHARGED
4.000		21.430						3.3	OK
3.004		21.043	0.318	0.000			760		SURCHARGED
3.005		21.042 21.042	0.417 0.467						SURCHARGED SURCHARGED
5.000		21.042	0.467						SURCHARGED
6.000		21.042						5.3	
6.001		21.043					200		
7.000		21.043		0.000			200	4.4	OK
5.001		21.042	0.292	0.000					SURCHARGED
5.002	23	21.042	0.392	0.000	0.28			10.9	SURCHARGED
5.003	24	21.041	0.466	0.000	0.49			10.8	SURCHARGED
1.006		21.039		0.000	0.06		1112	3.7	SURCHARGED
1.007	8	21.041	0.716	0.000	0.25				SURCHARGED
1.008	9	20.097	-0.113	0.000	0.14			3.5	OK
			-22	-1000 -					
			(©1982-2	020 In	novyze			

REF – 20 106 Page 25 of 27

e 13/(e FEL: ro Dra				FEI	JIX HOT	PFT.			r
e FEL					JTW HOI				
e FEL				CAN	IBRIDGE	Ξ			
e FEL	0E /00	01 10.	10	Dec	i an ad	br. IIM			- Micro
100 CENTRAL 100/00			40		signed				Draina
LO DIG				100000000	work 2				
	ainag	e		Net	WOLK 2	2020.1			
Sun	nmary	of Re:	sults for	420 min	nute 1	00 year	Winter (FE	LIX S	SW.SWS)
	Marc	gin for	Flood Risk	-		E Territoria			0.0
			Analy	DTS SIS		5 Second	Increment (H		ea) OFF
				DVD St	atus				ON
			In	ertia St	atus				ON
		Water	Surcharged	Flooded			Half Drain	Pipe	
	US/MH	Level	Depth			Overflow		Flow	
PN	Name	(m)	(m)	(m ³)	Cap.	(1/s)	(mins)	(1/s)	Status
1 000	1	00 000	0 117	0 000	0 11			1 0	
1.000		22.033 21.850		0.000	0.11			1.8 3.5	
2.000		22.040	-0.110					4.8	
2.000		21.743	-0.150		0.10			9.8	
1.002		21.521	-0.204		0.23			19.4	
1.003		21.187	-0.238		0.09			19.4	0
1.004		21.027	0.302		0.20			19.2	SURCHARGE
1.005	6	21.026	0.451	0.000	0.38			19.1	SURCHARGE
3.000	13	22.030	-0.120	0.000	0.09			1.5	0
3.001		21.776	-0.164	0.000	0.17			8.7	0
3.002		21.035	-0.115		0.25			10.6	0
3.003		21.032	0.132	0.000	0.18				SURCHARGE
4.000		21.432	-0.118	0.000	0.10			3.6	O
3.004		21.030	0.305	0.000	0.31		770		SURCHARGE
3.005		21.029	0.404		0.44				SURCHARGE
5.000		21.029	0.104		0.05				SURCHARGE
6.000		21.245	-0.180	0.000	0.09			5.9	
6.001	26	21.029	-0.021	0.000	0.09		224	5.9	0
7.000	27	21.030	-0.095	0.000	0.08			4.9	0
5.001		21.029	0.279	0.000	0.28				SURCHARGE
5.002		21.028	0.378	0.000	0.32				SURCHARGE
5.003		21.027	0.452	0.000	0.54		1105		SURCHARGE
1.006 1.007		21.025	0.500		0.06		1106		SURCHARGE SURCHARGE
1.008		20.097			0.14			3.5	
				©1982-2	020 Tr	novvze			


REF – 20 106 Page 26 of 27

									Page 1	
				FEI	IX HOI	'EL				
				CAM	IBRIDGE				Micro	
te 13/05/2021 12:35					Designed by HM					
le FEL					Checked by					
cro Dr		8010 (8496) 62		10 10 10 10 10 10 10 10 10 10 10 10 10 1	work 2					
a		C D	1	E 4 0	1 10	20				
Sui	mmary	OI Ke:	sults for	540 M11	nute I	00 Year	Winter (Fl	STIX :	SW.SWS)	
	Marc	jin for	Flood Risk			F		230		
			Analy	DTS St		5 Second	Increment (1		ea) DFF	
				DVD st					ON	
			In	ertia St	atus				ON	
		Water	Surcharged	Flooded			Half Drain	Pipe		
	US/MH	Level	Depth		Flow /	Overflow		Flow		
PN	Name	(m)	(m)	(m 3)	Cap.	(1/s)	(mins)	(1/s)	Status	
1.000	1	22.030	-0.120	0.000	0.09			1.4	OK	
1.001		21.845	-0.105		0.20			2.8	OK	
2.000		22.036	-0.114		0.13			3.9	OK	
2.001		21.736	-0.157		0.20			7.9	OK	
1.002		21.511	-0.214		0.18			15.7	OK	
1.003		21.180	-0.245		0.08			15.7	OK	
1.004		21.026	0.301	0.000	0.16				SURCHARGED	
1.005		21.026	0.451 -0.123		0.31			15.5	SURCHARGED OK	
3.000		21.770	-0.170		0.14			7.0	OK	
3.001		21.033	-0.117		0.20			8.6	OK	
3.003		21.030	0.130		0.15				SURCHARGED	
4.000		21.428	-0.122	0.000	0.08			3.0	OK	
3.004	17	21.029	0.304	0.000	0.26		774	11.4	SURCHARGED	
3.005		21.028	0.403	0.000	0.36			11.3	SURCHARGED	
3.006		21.027	0.452	0.000	0.56				SURCHARGED	
5.000		21.028	0.103		0.04				SURCHARGED	
6.000		21.240	-0.185		0.07		0.05	4.8	OK	
6.001		21.028	-0.022 -0.096	0.000	0.07		225		OK	
7.000 5.001		21.029 21.028		0.000	0.06			4.0	OK SURCHARGED	
5.001		21.020	0.270		0.25				SURCHARGED	
5.003		21.027	0.452		0.44				SURCHARGED	
1.006		21.024	0.499		0.06		1107		SURCHARGED	
1.007	8	21.041			0.25			3.5	SURCHARGED	
1.008	9	20.097	-0.113	0.000	0.14			3.5	OK	

APPENDIX D – FIGURE 2 - SURFACE WATER FLOOD RISK

