

DRAINAGE STRATEGY REPORT 20106-ARC-XX-00-RP-D-0001-P3

PROJECT FELIX HOTEL, WHITEHOUSE LANE, CAMBRIDGE

PROJECT NUMBER 20 106

CLIENT CASSEL HOTELS (CAMBRIDGE) LIMITED

REPORT DATE FEBRUARY 2021

> 3 CADMAN COURT MORLEY LEEDS LS27 ORX

T: 0113 253 3904

DRAINAGE DESIGN STRATEGY REPORT FELIX HOTEL, WHITEHOUSE LANE, CAMBRIDGE

DOCUMENT CONTROL

PROJECT NAME Felix Hotel, Whitehouse Lane, Cambridge

PROJECT NUMBER 20 106

CLIENT Cassel Hotels (Cambridge) Limited

REVISION	DATE	WRITTEN BY	REVIEWED BY
PO	December 2020	LA	AC
P1	February 2021	LA	RS
P2	February 2021	LA	
Р3	February 2021	LA	

CONTENTS

ntroduction	3
ite Description	4
lood Risk	7
lood Risk Assessment	8
Surface Water Drainage Strategy	10
uDS Assessment	13
uDS Maintenance	14
Nater Quality Management	18
oul Water Drainage Strategy	20

APPENDICES

Appendix A	Site Layout Plan
Appendix B	Site Topography
Appendix C	Infiltration Test Results
Appendix D	EA Map of Flood Risk Zone
Appendix E	Surface Water Drainage Calculations
Appendix F	Proposed Site Drainage GA
Appendix G	Foul Water Drainage Calculations

Introduction

Arc Engineers Ltd have been commissioned by Cassel Hotels (Cambridge) Limited to provide a flood risk assessment and drainage strategy for both foul and surface water disposal for the proposed care home at Whitehouse Lane, Cambridge (to be referred hereafter as 'the site').

The project comprises the demolition of the existing hotel and the construction of an 80-bed care home. A site layout plan is included in Appendix A.

This report sets out the investigations undertaken to determine the most appropriate and suitable means of disposing of surface and foul water for the site. The report aims to follow the guidance set out in the following documents:

- National Planning Policy Framework 2019 (NPPF)
- National Planning Policy Guidance
- SuDS Manual 2015 (C753)
- South Cambridgeshire Local Plan
- Cambridgeshire Flood and Water SPD

The following data was reviewed as part of this assessment:

- Online Flood mapping
- British Geological Survey (BGS) on-line maps
- Utility drainage records for the local area.

Site Description

Existing Site

The existing site is occupied by a former hotel with associated car park hardscaping. The site extends to approximately 1.39 hectares (ha) and is centred on approximate Ordnance Survey (OS) grid reference 543140, 260564.

The site is bound to the east by Whitehouse Lane with two-storey residential houses beyond, to the west by two-storey residential houses, and to the north and south by playing fields.

Fig. 1: Existing site, Whitehouse Lane, Cambridge from OpenStreetMap.

A review of the topographic survey in Appendix B shows that the site falls from west to east. Ground levels to the west of the site are circa 22.38m above ordnance datum (mAOD) falling to circa 20.78m in the east.

FELIX HOTEL, WHITEHOUSE LANE, CAMBRIDGE

Geology

(http://mapapps.bgs.ac.uk/geologyofbritain/home.html)

On 30 November 2020, soakaway tests were carried out at 2 locations within the site boundary. The results show that the infiltration rate for the site ranges from 3.04×10^{-6} to 1.69×10^{-7} m/s which means infiltration is not feasible. The soakaway test results can be found in Appendix C.

DRAINAGE DESIGN STRATEGY REPORT FELIX HOTEL, WHITEHOUSE LANE, CAMBRIDGE

Hydrology Surface water features

There is a land drainage ditch approx. 270m north of the site within third party land.

Surface watercourses

Public Drain lies over 1.2km north of the site and the River Cam is 2.2km south of the site.

Site sensitivity – Hydrogeology <u>http://magic.defra.gov.uk/MagicMap.aspx</u>

According to the Aquifer Designation Map (Bedrock & Superficial Drift) the site is unproductive.

Groundwater Vulnerability http://magic.defra.gov.uk/MagicMap.aspx

The vulnerability of groundwater is considered to be unproductive. The site is located on the edge of an area shown as Soluble Rock Risk.

Source Protection Zone

The site is not within source protection zone.

Proposed Site

The proposal is for the demolition of the existing hotel and the construction of an 80-bed care home with associated hard and soft landscaping (see site layout plan in Appendix A).

Permeable & Impermeable Areas

Areas	Existing (ha)	% of Total	Proposed (ha)	% of Total	Difference ha (%)
		Area		Area	
Permeable	1.036	75	0.837	60	-15
Impermeable	0.354	25	0.553	40	+15
Total Area	1.39		1.39		

Flood Risk

Fluvial and Tidal Flooding

The Environment Agency (EA) Flood Map indicates the development site to be located within Flood Zone 1; an area where flooding from rivers and the sea is very unlikely. There is less than 0.1% (1 in 1000) chance of flooding occurring each year. See Appendix D.

Surface Water Flooding

Ground levels on the site fall gradually from west to east.

Refer to the EA flood map below which shows the majority of the site is considered to be at very low risk from surface water flooding. There is an area along the southern boundary of the site which has a high risk of surface water flooding, there will be no development in this area so overland flow routes can be maintained.

As the site is approximately 1.39 Ha, a Flood Risk Assessment will need to be carried out.

Flood Risk Assessment

Proposed Site

The proposal is for the construction of an 80-bed care home. The site boundary covers a total area of 1.39 ha and the site layout plan is shown in Appendix A.

Development Vulnerability

According to Table 2 in the NPFF the proposed use of the site as a residential care and dwellings comes under the classification of "More Vulnerable"

Table 2: Flood risk vulnerability classification

Essential infrastructure Essential transport infrastructure (including mass evacuation routes) which has to cross the area at risk. Essential utility infrastructure which has to be located in a flood risk area for operational reasons, including electricity generating power stations and grid and primary substations; and water treatment works that need to remain operational in times of flood. Wind turbines. Highly vulnerable Police stations, ambulance stations and fire stations and command centres and telecommunications installations required to be operational during flooding. Emergency dispersal points. Basement dwellings. Caravans, mobile homes and park homes intended for permanent residential use3. Installations requiring hazardous substances consent⁴. (Where there is a demonstrable need to locate such installations for bulk storage of materials with port or other similar facilities, or such installations with energy infrastructure or carbon capture and storage installations, that require coastal or water-side locations, or need to be located in other high flood risk areas, in these instances the facilities should be classified as "essential infrastructure")⁵. More vulnerable Hospitals. Residential institutions such as residential care homes, children's homes, social services homes, prisons and hostels. Buildings used for dwelling houses, student halls of residence, drinking establishments, nightclubs and hotels. · Non-residential uses for health services, nurseries and educational establishments. Landfill and sites used for waste management facilities for hazardous waste⁶. Sites used for holiday or short-let caravans and camping, subject to a specific warning and evacuation plan.⁷ Less vulnerable · Police, ambulance and fire stations which are not required to be operational during flooding.

Buildings used for shops, financial, professional and other services,

Sequential Test

According to NPPF, the Sequential Test gives preference to locating new development in Flood Zone 1 (FZ1 - least risk of flooding). However, if there is no allocated land within FZ1 which meets the policy aims of the published Local Authority Local Plan or Local Development Framework then other sites in higher flood risk categories, FZ2 or FZ3 can be considered for that development.

As the proposed site lies within Flood Zone 1, the sequential test is not required as the development falls within an area with the lowest probability of flooding.

Exception Test

The site for this development, a residential care home which is classified as 'More Vulnerable', is located within Flood Zone 1. According to Table 3 of the NPPF, this "development is appropriate".

Flo vuli clas (se	od risk nerability ssification e table 2)	Essential infrastructure	Water compatible	Highly vulnerable	More vulnerable	Less vulnerable
÷	Zone 1	×	~	~	~	~
ble 1)	Zone 2	~	~	Exception Test required	~	~
ne (see ta	Zone 3a	Exception Test required	~	×	Exception Test required	~
Flood zor	Zone 3b functional floodplain	Exception Test required	~	×	×	×

Table 3: Flood risk vulnerability and flood zone 'compatibility'

Key: ✓ Development is appropriate.

* Development should not be permitted.

Surface Water Drainage Strategy

Existing Run-Off Rates

To estimate the pre-development surface water discharge into the existing drainage system a network has been simulated in Micro Drainage with a positively drained brownfield catchment area of 3382m² (0.339ha). The system is based on a single 300 dia connection to the existing surface water system. A critical 60-minute duration has been assumed to obtain the pre-development rates.

The remainder of the 1.39 ha site can be considered as greenfield and the rates for this area site have been calculated using Micro Drainage ICP SUDS method. All existing rates are shown below.

Return Period	QBrownfield	QGreenfield	QTotal
	(I/s)	(I/s)	(I/s)
1 in 1 year	29.6	2.3	31.9
1 in 30 year	69.2	6.3	75.5
1 in 100 year	92.3	9.4	101.7

Surface water run-off from the existing site is not to attenuated nor restricted prior to discharge.

Pre-developed Greenfield Run-off Rates

The pre-developed greenfield run-off rates for this site have been calculated using Micro Drainage ICP SUDS method. The rates presented below are what would be typical of a site with an equivalent surface area which remains undeveloped / covered in grass or vegetation.

The equivalent greenfield run-off rate is tabled below:

Return Period	QGreenfield (1/s)
	(1/3)
Qbar	3.5
1 in 1 year	3.0
1 in 30 year	8.4
1 in 100 year	12.4

Proposed surface water discharge rates and attenuation requirements

In accordance with Cambridgeshire County Council and South Cambridgeshire District Council requirements, the run-off from the proposed development will be restricted to pre-development Greenfield rates for the whole site. In accordance with South Cambridgeshire Local Plan policy CC/9, we have taken Qbar to size the attenuation required for this development.

The proposed development includes circa 4273m² of building and hard standing car parking that are considered to be positively drained. Where possible all patio areas will be laid to falls towards areas of soft landscaping.

DRAINAGE DESIGN STRATEGY REPORT FELIX HOTEL, WHITEHOUSE LANE, CAMBRIDGE

A quick storage estimate for the 1 in 100 year storm event, plus 40% for climate change, using Micro Drainage, indicates that 282m³ - 383m³ of attenuation is required to limit the peak surface water discharge 3.5 l/s.

🖌 Quick Storage	Estimate		
Variables Variables Results Design Overview 2D Overview 3D Vt	FSR Rainfall Retum Period (years) 100 Region England and Wales Map M5-60 (mm) 20.000 Ratio R 0.400	Cv (Summer) Cv (Winter) Impermeable Area (ha) Maximum Allowable Discharge (l/s) Infiltration Coefficient (m/hr) Safety Factor Climate Change (%)	0.750 0.840 0.485 3.5 0.00000 2.0 40
		Analyse OK	Cancel Help
	Enter Climate Change	e between -100 and 600	

🖌 Quick Storage	Estimate		
	Results		
Micro Drainage	Global Variables require approximate storage of between 282 m ³ and 383 m ³ .		
-	These values are estimates only and should not be used for design purposes.		
Variables			
Results			
Design			
Overview 2D			
Overview 3D			
Vt			
Analyse OK Cancel Help			
Enter Climate Change between -100 and 600			

FELIX HOTEL, WHITEHOUSE LANE, CAMBRIDGE

Proposed surface water drainage

National Planning Policies state that "the aim should be to discharge surface runoff as high up the following hierarchy of drainage options as reasonably practicable:

- 1. Into the ground (infiltration)
- 2. To a surface water body;
- 3. To a surface water sewer, highway drain or another drainage system;
- 4. To a combined sewer."

Infiltration tests from the site show that soakaways will not be possible (see Appendix C).

There are no watercourses within the site boundary or bordering the site, therefore this option is not practicable for the discharge of surface water from the site.

The existing drainage network currently discharges into the Anglian Water surface water sewer within Whitehouse Lane and it proposed to reuse the existing connection from the site to discharge the proposed surface water runoff.

The surface water system will accommodate flows on-site up to and including the 1 in 100-year critical duration event, with an allowance for climate change. A total storage capacity of up to 400m³ will be provided and the system will have a flow control device limiting surface water discharge to Qbar - 3.5 l/s.

Initial calculations of onsite storage and discharge rates can be found in Appendix E.

The drainage general arrangement drawing is shown in Appendix F.

SuDS Assessment

National Planning Policy Framework (the NPPF) and South Cambridgeshire Local Plan policy CC/9 state that SuDS should be incorporated in all new developments unless evidence of unsuitability is provided.

SuDS Component	Site Suitability	Comments	
Rainwater harvesting	×	Not considered suitable due to the nature of the	
		development and potential health concerns for residents.	
Green/Blue roof	×	Not considered viable due to plant and access.	
Soakaway	×	Ground conditions unsuitable.	
Pervious pavement	✓	Potentially suitable for use in carpark areas and courtyard as	
		supplementary attenuation.	
Filter strip	?	Potentially suitable for use in the soft landscaped areas	
		around the building and car park.	
Filter trench	×	Ground conditions unsuitable.	
Infiltration trench	×	Ground conditions unsuitable.	
Swale	×	Unsuitable due to site layout and safety concerns from	
		varying levels with end users.	
Bioretention	?	Potentially suitable for use in the soft landscaped areas	
		around the building and car park.	
Geocellular system	✓	Proposed to be used to attenuate surface water run-off.	
(Attenuation Tanks)			
Infiltration basin	×	Unsuitable due to ground conditions.	
Detention basin	×	Not considered suitable due to the nature of the	
Pond	×	dovelopment and health & cafety concerns for residents.	
Stormwater wetlands	×	development and nearch & safety concerns for residents.	

× Not suitable

? Potentially suitable subject to further investigation

√ Suitable

Based on a review of the suitability of the SUDs components, it is proposed that the Hotel Felix development incorporate the following:

- Lined permeable paving to car parking area in order to provide a level of treatment and local storage (conservatively ignored at this stage)
- Install attenuation tank below ground to provide runoff storage.
- Provide a flow control and underground storage to limit runoff from the site to acceptable limits.
- Utilise the extensive soft landscaping as filter strips and bioretention to reduce peak flows and volumes (conservatively ignored at this stage)

SuDS Maintenance

The following section describes the required maintenance for each SuDS feature in turn. The maintenance requirements listed below should be reviewed after the first 5 years, with a view to agreeing a new regime for the ongoing maintenance.

Notwithstanding the routine inspections and maintenance requirements, after severe storm events all features shall be inspected to clear debris and repair damaged structures or features. Records of the maintenance carried out shall be prepared by the owner/management company.

Maintenance Schedule	Required Action	Typical Frequency
	Inspect and identify any areas that are not operating correctly. If required, take remedial action	Monthly for 3 months then annually
	Remove debris from the catchment surface (where it may cause risks to performance)	Monthly
Regular Maintenance	For systems where rainfall infiltrates into the tank from above, check surface of filter for blockage by sediment, algae or other matter; remove and replace surface infiltration medium as necessary	Annually
	Remove sediment from pre- treatment structures and/or internal forebays	Annually, or as required
Remedial Actions	Repair/rehabilitate inlets, outlets, overflows and vents	As required
Monitoring	Inspect/check all inlets, outlets, vents and overflows to ensure that they are in good condition and operating as designed	Annually
	Survey inside of tank for sediment build up and remove if necessary	Every 5 years or as required

Geocellular system (Attenuation Tanks)

Pervious Pavement

Maintenance Schedule	Required Action	Typical Frequency
Regular Maintenance	Brushing and vacuuming (standard cosmetic sweep over the whole surface)	Once a year, after autumn leaf fall, or reduced frequency as required, based on site-specific observations of clogging or manufacturer's recommendations – pay particular attention to areas where water runs onto pervious surface from adjacent impermeable areas as this area is most likely to collect the most sediment
	Stabilise and mow contributing and adjacent areas	As required
Occasional Maintenance	Removal of weeds or management using glyphosate applied directly into the weeds by an applicator rather than spraying	As required- once per year on less frequently used pavements
Remedial Actions	Remediate any landscaping which, through vegetation maintenance or soil slip, has been raised to within 50mm of the level of the paving	As required
	Remedial work to any depressions, rutting and cracked or broken blocks considered detrimental to the structural performance or a hazard to users, and replace lost jointing material	As required
	Rehabilitation of surface and upper substructure by remedial sweeping	Every 10 to 15 years or as required (if infiltration performance is reduced due to significant clogging)
Monitoring	Initial inspection	Monthly for three months after inspection
	Inspect for evidence of poor operation and/or weed growth – if required take remedial action	Three monthly 48h after large storms in first six months
	Inspect slit accumulation rates and establish appropriate brushing frequencies Monitor inspection chambers	Annually

FELIX HOTEL, WHITEHOUSE LANE, CAMBRIDGE

Bioretention

Maintenance Schedule	Required Action	Typical Frequency
Due las	Inspect infiltration surfaces for silting and ponding, record de-watering time of the facility and assess standing water levels in underdrain (if appropriate) to determine if maintenance is necessary	Quarterly
Inspections	Check operation of underdrains by inspection of flows after rain	Annually
	Assess plants for disease infection, poor growth, invasive species etc and replace as necessary	Quarterly
	Inspect inlets and outlets for blockage	Quarterly
	Remove litter, surface debris and weeds	Quarterly (or more frequently for tidiness or aesthetic reasons)
Regular	Replace any plants to maintain density	As required
Maintenance	Remove sediment, litter and debris build-up from around inlets or forebays	Quarterly to biannually
Occasional	Infill any holes or scour in the filter medium, improve erosion protection if required	As required
Maintenance	Repair minor accumulations of silt by raking away surface mulch, scarifying surface of medium and replacing mulch	As required
Remedial Actions	Remove and replace filter medium and vegetation above	As required but likely to be > 20 years

FELIX HOTEL, WHITEHOUSE LANE, CAMBRIDGE

Flow Control Device

Maintenance Schedule	Required Action	Typical Frequency
Regular	Manhole: Clear out sump	Bi annual – after leaf fall and after first large storm
Maintenance	Manhole: Check pivoting bypass door is operational	Annually in dry weather
Remedial Actions	Manhole: Activate pivoting bypass door to release the water. Once system is empty check and remove blockages and silt deposits	As required
	Outlet Pipe Damaged/ blocked: Repair pipe/unblock pipe Clear out all silt from catch pit	As required
Monitoring	Check manhole to ensure emptying is occurring satisfactorily	Annually – during heavy storm conditions and If water builds up in swales
Worntoring	Check for blockages or pipe damage	Annually

Water Quality Management

South Cambridgeshire Local Plan 2018 Policy CC/7 states that developments need to protect and enhance water quality and that appropriate consideration is given to incorporating appropriate Sustainable Drainage Systems (SuDS) measures.

This chapter will assess water quality of surface runoff in accordance with Chapter 26 of CIRIA SuDS Manual.

Defining pollution hazards

The proposed development is a care home and using Table 26.2, residential roofs are classified as having a "Very low" hazard level. Traffic movements within the car parking areas is considered to be "Low".

Land use	Pollution hazard level	Total suspended solids (TSS)	Metals	Hydro- carbons	
Residential roofs	Very low	0.2	0.2	0.05	
Other roofs (typically commercial/ ndustrial roofs)	Low	0.3	0.2 (up to 0.8 where there is potential for metals to leach from the roof)	0.05	
Individual property driveways, residential car parks, low traffic roads (eg cul de sacs, homezones and general access roads) and non- residential car parking with infrequent change (eg schools, offices) ie < 300 traffic movements/day	Low	0.5	0.4	0.4	
Commercial yard and delivery areas, non-residential car parking with frequent change (eg hospitals, retail), all roads except low traffic roads and trunk roads/motorways ¹	Medium	0.7	0.6	0.7	
Sites with heavy pollution (eg haulage vards, lorry parks, highly frequented orry approaches to industrial estates, waste sites), sites where chemicals and uels (other than domestic fuel oil) are o be delivered, handled, stored, used or manufactured; industrial sites; trunk pads and motorways!	High	0.82	0.82	0.9 ²	

Total hazard index: Roof – 0.45 <u>Car Parks – 1.3</u> Total – 1.75

DRAINAGE DESIGN STRATEGY REPORT FELIX HOTEL, WHITEHOUSE LANE, CAMBRIDGE

Determining SuDS Mitigation

As per Chapter 6 of this report, SuDS components have been assessed in relation to their suitability for this site and type of development.

	Mitigation indices ¹				
Type of SuDS component	TSS	Metals	Hydrocarbons		
Filter strip	0.4	0.4	0.5		
Filter drain	0.4 ²	0.4	0.4		
Swale	0.5	0.6	0.6		
Bioretention system	0.8	0.8	0.8		
Permeable pavement	0.7	0.6	0.7		
Detention basin	0.5	0.5	0.6		
Pond ⁴	0.73	0.7	0.5		
Wetland	0.8 ^s	0.8	0.8		
Proprietary treatment systems ^{5,8}	These must demonstrate t acceptable levels for freque period event, for inflow con	hat they can address each ent events up to approximate contrations relevant to the	of the contaminant types ately the 1 in 1 year return contributing drainage an		

Permeable paving will be used in the car park as means of attenuation and treatment along with bioretention, which will provide a mitigation index score of 4.4 which is greater than the hazard index score of 1.75.

In addition to permeable paving, catch pits shall be installed on the surface water drainage network to provide silt traps prior to the attenuation tank.

Foul Water Drainage Strategy

Using calculations based on BS EN 752 - 4:1998, the peak foul flow rate has been based on the following assumptions:

Care Home

- 80 ensuite bedrooms in total
- 2 assisted bathrooms on the ground and first floors
- 2 washing machines in the laundry room
- 3 dishwashers (2 in the kitchen, 1 in the staff room)
- 2 sinks in the hairdressers.

The total peak foul flow rate from the proposed buildings is estimated to be 11.4 l/s (see calculations in Appendix D).

Under the Water Industry Act (1991), developers have a right to connect foul water flows from new developments to public sewer.

The Act places a general duty on sewerage undertakers to provide the additional capacity that may be required to accommodate additional flows and loads arising from new domestic development. New public sewer connections will be subject to a Section 106 (Water Industry Act 1991) application to Anglian Water for adoption.

The foul drainage will connect to the existing foul sewer that runs south towards Huntingdon Road, through the adjacent land.

FELIX HOTEL, WHITEHOUSE LANE, CAMBRIDGE

APPENDIX A

SCI SIT	HEDULE OF ACCOMN	10DATION 1.39 Ha (3.43 acres)
CA	RE HOME	
GR FIR RO	OUND FLOOR ST FLOOR OF SPACE	40 BEDS + SERVICE AREAS 40 BEDS + SPA SERVICE AREAS
ТО	TAL	80 BEDROOMS
GR	OSS INTERNAL FLOO	R AREA
GR FIR RO	OUND FLOOR ST FLOOR OF SPACE	2,275m² 2,100m² 280m²
то	TAL GIFA:	4,655m²
SP	ACE PER RESIDENT	58.2m ²

RKING 31 BAYS INCL. 2 DISABLE BAYS

EXISTING TREES

PROPOSED TREES

EXISTING TREES WITH TPO ORDER

	UED FUR PLAN	INING APPLI	CATION			РК	MM	12.02.20)21
Rev. De	scription					Author	Checked	Dat	e
	a	C A	ARL "	ESS www.carless	+ A [-adams.co.uk	ЭΑМ	S	6 Progr Business C Whittle Pa Slough, SL tel : 01628	ess Centre, rkway, 1 6DQ 665131
	ASSEL HI	OTFLS (CAME) I IMITE	D			
C			CAIVIL			U			
^{>} roject									
Н	OTELFE	LIX, CAI	VIBRIL	IGE					
Fitle CI								C+A no.	
^{⊺itle} SI	TE PLAN							C+A no. A-846	
^{Fitle} SI	TE PLAN							C+A no. A-846	
Fitle SI	TE PLAN 1:500	author PK		chk'd M	M	^{date} Feb	. 10, 21	C+A no. A-846	 A1
Title S	TE PLAN 1:500	author PK	level.	chk'd M	M role.	date Feb	. 10, 21	C+A no. A-846 sheet size status.	A1 rev.
Fitle S	TE PLAN 1:500 org. C+A	author PK	level.	chk'd M	M role. A	date Feb	. 10, 21 num. 04	C+A no. A-846 sheet size status.	A1 rev. A
Title S scale project. 846	TE PLAN 1:500 org. C+A	author PK	level.	type.	M role. A	date Feb	. 10, 21 num. 04	C+A no. A-846 sheet size status.	A1 rev. A

FELIX HOTEL, WHITEHOUSE LANE, CAMBRIDGE

APPENDIX B

260450N E005675	260500N	260550N	260600N	260650N
Huntingdon Road Girton, Cambridge, CB3 0LX TTLE Topographical Survey SCALE A1@ 1: 500 DATE 03.03.20 DATE A1@ 1: 500 QUALITY REF JK2 GH7099 Level datum See note See note GH7099 Level datum See note JK2 GH7099 Level datum See note GH7099 Comments Rev. T See note Job number See note Job number See note Job number Rev. Job number Rev.	Image: Street Engineering Street Engineering Street Engineering Street Engineering Street & BIM Models Image: Street & BIM Models Image: Street Engineering Street & BIM Models Rowan House Revit & BIM Models Image: Street & BIM Models Rowan House Revit & BIM Models Tel (01332) 830044 Fax (01332) 830055 admin@greenhatch-group.co.uk Tel (01332) 830044 Fax (01332) 830055 admin@greenhatch-group.co.uk St Albans Newcastle Newside Studios Newcastle Bus, Park Newcastle Bus, Park Newcastle-Bus, Park	Description of the second signed from the second signed	OS Note: Some services may have been omitted due to parked vehicles. Survey has been orientated to the Ordnance Survey (O.S) National Grid OSGB36(15) via Global Navigational Satellite Systems (GNSS) and the O.S. Active Network (OS Net). A true OSGB36 coordinate has been established near to the site centre via a transformation models. The survey has been correlated to this point and a further one or more OSGB36 (15) points established to create a true O.S. bearing for angle orientation. No scale factor has been applied to the survey therefore the coordinates shown are arbitrary & not true O.S. Coordinates which have a scale factor applied. Please refer to Survey Station Table to enable establishment of the on-site ord and datum.	N Station Information: Station Easting (m) Northing (m) Level (m) GH1 543240.372 260521.406 21.332 GH2 543214.176 260486.528 21.912 GH3 543186.968 260455.676 22.482 GH4 543191.841 260556.872 21.197 GH6 543105.889 2606066.595 22.014 GH7 543082.200 260564.485 22.232

FELIX HOTEL, WHITEHOUSE LANE, CAMBRIDGE

APPENDIX C

Solmek Ltd. 12 Yarm Road Stockton on Tees TS18 3NA www.solmek.com

Tel: 01642 607083 Fax: 01642 612355 E-mail: south@solmek.com

15th December 2020

Cassel Hotels (Cambridge) Ltd

SOAKAWAY LETTER REPORT

HOTEL FELIX, CAMBRIDGE S201112

Authorisation

The site investigation works described in this letter report were carried out by Solmek Ltd to the instructions of Cassel Hotels (Cambridge) Ltd on a parcel of land at Hotel Felix, Huntingdon Road, Girton, Cambridge, CB3 0LX. Figure 1 attached shows the site location.

Scope of Works

Solmek visited the above site on Thursday 30th November 2020 to carry out eight machine excavated trial pits TP1 to TP8 inclusive, with shallow percolation testing in two pits (TP1 and TP8) for proposed permeable drainage design.

Please find attached a plan showing the position of the trial pit locations and the details of the percolation tests along with the trial pit logs. The testing was generally carried out in accordance with BRE Digest 365: Soakaway Design.

The trial pits were excavated to a maximum depth of 3.00mbgl using a Terex 890 excavator with a 0.60m wide bucket, the strata logged and then water was poured into TP1 and TP8 for soakaway testing.

Below gives a summary of the related infiltration rate for TP1 and TP8.

Test Number	Infiltration Rate (m/s)	Description of Base stratum	Notes
TP1	3.04 ×10⁻ ⁶	Blueish grey slightly gravelly CLAY	Pocket of granular material at 1.20 – 1.80mbgl. Perched groundwater at 1.40mbgl.
TP8	1.69 x10 ⁻⁷	Blueish grey slightly gravelly CLAY	Clay found to be consistent across the site.

We would like to take this opportunity to thank you for using Solmek.

Yours sincerely For and on behalf of Solmek Ltd

hats 6m

C Gray Geo-Environmental Engineer

12-16 Yarm Road, Stockton on Tees, TS18 3NA Tel: 01642 607083 Email: info@solmek.com
Figure Title
Site Location Plan
Project Number
S201112
Project Name
Felix Hotel, Cambridge
Client
Arc Engineers
Date
December 2020
DRG Number
Figure 1
Scale
1:5000 @ A4 [DO NOT SCALE]
Legend Key Project Bounds - Project Bounds

SOLMEK
12-16 Yarm Road, Stockton on Tees, TS18 3NA Tel: 01642 607083 Email: info@solmek.com
Figure Title
Trial Pit Location Plan
Project Number
S201112
Project Name
Felix Hotel, Cambridge
Client
Arc Engineers
Date
December 2020
DRG Number
Figure 2
Scale
1:1500 @ A4 [DO NOT SCALE]
Legend Key ○ Locations By Type - Empty ◆ Locations By Type - BH 仑 Locations By Type - CP ▲ Locations By Type - TP ● Project Bounds - Project Bounds

		S 12	olmek Ltd 2-16 Yarm Road					TrialPit	No
	SOLM	EK T	tockton on Tees S18 3NA			-	Trial Pit Log	TP1	
		E	mail: info@solmek.c	om			1	Sheet 1	of 1
Projec	^t Felix Hotel, (Cambrid	ge	Proje	ect No.		Co-ords: E - N	Date	
Diant	-			S20 ⁻	1112		Level:	30/11/20 Scale	020
Used:	JCB 3CX						(m):	1:26	
Client:							Depth o	Logge	d
۳e	Sample	s & In Situ	I Testing	Denth	Laurt		3.00	CG	
Wate Strik	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description		
	0.40 - 0.60	ES		0.20			sand. Gravel is subangular, fine to coarse of brick and flint. Common roots. MADE GROUND: Light brown/bluish grey silty, sa gravelly clay. Gravel is subangular, fine to coarse pottery, chalk and flint. Loose yellowish brown sandy, subangular, fine to GRAVEL of flint and occasional chalk. Stiff consistency bluish grey, slightly gravelly, high CLAY. Gravel is subangular, fine to medium of cha flint.	coarse	2
				3.00			End of Pit at 3.000m		4
Rema	rks: 1. Groundwa	ater enc	ountered at 1.40)m.	1	_1			
Stabili	ty:								

		5 1	olmek Ltd 2-16 Yarm Road					TrialPit	No
	SOLM	EK ^s	Stockton on Tees			-	Trial Pit Log	TP8	
		E	imail: info@solmek.com				1	Sheet 1	of 1
Projec	t Felix Hotel	Cambrid	lae	Proje	Project No.		Co-ords: E - N	Date	
Name		oumbrid	.90	S201	1112		Level:	30/11/20)20
Plant	JCB 3CX						Dimensions	Scale	•
Oseu.							Depth	Logge	d
Client:							3.00	CG	
Water Strike	Sample Depth	es & In Site	resting Results	Depth (m)	Level (m)	Legend	Stratum Description		
	0.20 - 0.40 0.80 - 1.00	ES		0.60			MADE GROUND: Dark brown, clayey, silty, slight gravelly sand. Gravel is subangular, fine to coarse chalk and flint. Common roots. Firm consistency light brown, slightly sandy, slight gravelly, silty, medium strength CLAY. Gravel is subangular, fine to medium of chalk and flint. Con	ly e of brick, tly nmon	
						×			- - 1
Rema	rks: 1. No grour	ndwater	encountered.	3.00			Stiff consistency bluish grey, slightly gravelly, high CLAY. Gravel is subangular, fine to medium of cha flint. Occasional roots.	a strength alk and	2
Rema	rks: 1. No grour	dwater	encountered.		1	1	1		1
Stabili	tv:								
Jan	чу .								

	SOAKAWAY DE	SIGN IN ACCORD	ANCE WITH BRE	DIGEST 365: 199	1	
Client	Casaal Hatala (Ca	BRE DIGEST 365	, Figure 2, Page 5			
Client:	Cassel Hotels (Ca	ridgo				
Job No:	S201112	lidge				
Pit No:	TP1		Test No:	1		
	CALCO					
Time (min)	Depth (m)		Dit Dimonolone	Length (m) =	1.90	
0	1.42		Pit Dimensions	Width (m) =	0.60	
0.5	1.42			Depth (m) =	3.00	
1	1.43					
2	1.44		Depth at s	start of test (m) =	1.420	
3	1.44		Depth at	t end of test (m)=	1.460	
4	1.44		-	75% level (m)=	1.430	
5	1.44		50%	6 Effective Depth	1.560	
6	1.44			25% level (m)=	1.450	
7	1.45					
8	1.45		Base	area of pit (m ²) =	1.140	
9	1.45			$Vp_{75,25}$ (m ³) =	0.023	
10	1.45			$a_{res}(m^2) =$	8.940	
15	1.45					
20	1.46			From the graph:		
25	1.46			tp 75 (min) =	1	
30	1.46			tp 25 (min) =	15	
40	1.46					
50	1.46	Soil infiltration	rate, f, (m/s) =	3.04E-06	normal test	
50 60	1.46 1.46	Soil infiltration	rate, f, (m/s) =	3.04E-06	normal test	
50 60 90	1.46 1.46	Soil infiltration	rate, f, (m/s) =	3.04E-06	normal test	
50 60 90 120	1.46 1.46	Soil infiltration	rate, f, (m/s) = CG	3.04E-06	normal test 30/11/2020	
50 60 90 120 180	1.46 1.46	Soil infiltration Input by: Checked by:	rate, f, (m/s) = CG RW	3.04E-06 Date: Date:	normal test 30/11/2020 30/11/2020	
50 60 90 120 180	1.46 1.46	Soil infiltration Input by: Checked by: Tin	rate, f, (m/s) = <u>CG</u> <u>RW</u> ne (mins)	3.04E-06 Date: Date:	normal test 30/11/2020 30/11/2020	
50 60 90 120 180	1.46 1.46 0 20 4(Soil infiltration Input by: Checked by: Tii 0 60 8(rate, f, (m/s) = CG RW ne (mins)	3.04E-06 Date: Date: 0 140 16	normal test 30/11/2020 30/11/2020 0 180	
50 60 90 120 180 1.415 1.42	1.46 1.46 0 20 40	Soil infiltration Input by: Checked by: Til 0 60 80	rate, f, (m/s) = CG RW ne (mins)	3.04E-06 Date: Date: 0 140 16	normal test 30/11/2020 30/11/2020	
50 60 90 120 180 1.415 1.42 1.425	1.46 1.46 0 20 40	Soil infiltration Input by: Checked by: Tin 0 60 8(rate, f, (m/s) = CG RW ne (mins) 100 12	3.04E-06 Date: Date: 0 140 16	normal test 30/11/2020 30/11/2020 0 180	
50 60 90 120 180 1.415 1.425		Soil infiltration Input by: Checked by: Tin 0 60 8(rate, f, (m/s) = CG RW ne (mins) 100 12	3.04E-06 Date: Date: 0 140 16	normal test 30/11/2020 30/11/2020 0 180	
50 60 90 120 180 1.415 1.425 1.425 1.43		Soil infiltration Input by: Checked by: Tii 0 60 80	rate, f, (m/s) = CG RW ne (mins) 100 12	3.04E-06 Date: Date: 0 140 16	normal test 30/11/2020 30/11/2020	
50 60 90 120 180 1.415 1.425 1.425 1.433 Ē 1.435		Soil infiltration Input by: Checked by: Ti 0 60 80	rate, f, (m/s) = CG RW ne (mins) 100 12	3.04E-06 Date: Date: 0 140 16	normal test 30/11/2020 30/11/2020 0 180	
50 60 90 120 180 1.415 1.425 1.425 1.433 €1.435 €1.443 €1.444		Soil infiltration Input by: Checked by: Tin 0 60 8(rate, f, (m/s) = CG RW ne (mins)) 100 12 	3.04E-06 Date: Date: 0 140 16	normal test 30/11/2020 30/11/2020 0 180 180	
50 60 90 120 180 1.415 1.425 1.425 1.435 1.435 1.435 1.445		Soil infiltration Input by: Checked by: Tin D 60 80	rate, f, (m/s) = CG RW ne (mins)) 100 12 	3.04E-06 Date: Date: 0 140 16	30/11/2020 30/11/2020 30/11/2020	
50 60 90 120 180 1.415 1.425 1.425 1.433 (E)1.435 (E)1.435 (E)1.445		Soil infiltration Input by: Checked by: Ti 0 60 80	rate, f, (m/s) = CG RW ne (mins) 100 12	3.04E-06 Date: Date: 0 140 16	normal test 30/11/2020 30/11/2020 0 180	
50 60 90 120 180 1.415 1.425 1.425 1.433 (m1.435 tgt 1.444 01.445 1.445 1.445		Soil infiltration Input by: Checked by: Tii 0 60 80	rate, f, (m/s) = CG RW ne (mins)) 100 12	3.04E-06 Date: Date: 0 140 16	normal test 30/11/2020 30/11/2020 0 180	
50 60 90 120 180 1.415 1.425 1.425 1.425 1.433 (m)1.435 1.445 1.445 1.445 1.455		Soil infiltration Input by: Checked by: Tir 0 60 8(rate, f, (m/s) = CG RW ne (mins)) 100 12	3.04E-06 Date: Date: 0 140 16	normal test 30/11/2020 30/11/2020 0 180	
50 60 90 120 180 1.415 1.425 1.425 1.435 (m)1.435 (m)1.445 1.445 1.445 1.445 1.455 1.455 1.46		Soil infiltration	rate, f, (m/s) = CG RW ne (mins) 100 12	3.04E-06 Date: Date: 0 140 16	anormal test 30/11/2020 30/11/2020 0 180 180 180 180	
50 60 90 120 180 1.415 1.425 1.425 1.435 1.435 1.445 1.445 1.445 1.455 1.465		Soil infiltration	rate, f, (m/s) = CG RW ne (mins) 0 100 12	3.04E-06 Date: Dat	normal test 30/11/2020 30/11/2020 0 180 - -	
50 60 90 120 180 1.415 1.425 1.43 (m1.435 1.435 1.445 1.445 1.445 1.445 1.455 1.455 1.465		Soil infiltration	rate, f, (m/s) = CG RW ne (mins)) 100 12	3.04E-06 Date: Date: 0 140 16	normal test 30/11/2020 30/11/2020 0 180	

	SOAKAWAY DE	SIGN IN ACCORD		DIGEST 365: 199)1		
Client:	Cassel Hotels (Ca	mbridge) Ltd	o, Figure 2, Page o				
Sito:	Lassel Holeis (Ca	ridgo		(
Job No:	S201112						
Pit No:	TP8		Test No [.]	1			
		I ATION OF SC		ON RATE			
	UALUU						
Time (min)	Depth (m)		Bit Dimonsions	Length (m) =	1.90		
0	1.35		Fit Dimensions	Width (m) =	0.60		
0.5	1.36			Depth (m) =	3.00		
1	1.36						
2	1.36		Depth at s	start of test (m) =	1.350		
3	1.36		Depth at	t end of test (m)=	1.360		
4	1.36			75% level (m)=	1.353		
5	1.36		50%	6 Effective Depth	1.645		
6	1.36	25% level (m)= 1.358					
7	1.36				•		
8	1.36		Base	area of pit (m ²) =	1.140		
9	1.36		Vp_{75-25} (m ³) = 0.006				
10	1.36			$a_{p50} (m^2) =$	9.365		
15	1.36						
20	1.36			From the graph:			
25	1.36			tp 75 (min) =	0		
30	1.36			tp 25 (min) =	60		
40	1.26						
40	1.30						
40 50	1.36	Soil infiltration	n rate, f, (m/s) =	1.69E-07	normal test		
40 50 60	1.36 1.36 1.36	Soil infiltration	n rate, f, (m/s) =	1.69E-07	normal test		
40 50 60 90	1.36 1.36 1.36	Soil infiltratior	n rate, f, (m/s) =	1.69E-07	normal test		
40 50 60 90 120	1.36 1.36 1.36	Soil infiltration	n rate, f, (m/s) = CG	1.69E-07	normal test 30/11/2020		
40 50 60 90 120 180	1.36 1.36 1.36	Soil infiltration Input by: Checked by:	n rate, f, (m/s) = CG RW	1.69E-07 Date: Date:	normal test 30/11/2020 30/11/2020		
40 50 60 90 120 180	1.36 1.36 	Soil infiltration Input by: Checked by: Ti	n rate, f, (m/s) = CG RW me (mins)	1.69E-07 Date: Date:	normal test 30/11/2020 30/11/2020		
40 50 60 90 120 180	1.36 1.36 1.36 0 20 44	Soil infiltration Input by: Checked by: Ti 0 60 8	n rate, f, (m/s) = CG RW me (mins) 0 100 12	1.69E-07 Date: Date: 0 140 16	normal test 30/11/2020 30/11/2020		
40 50 60 90 120 180 1.348 1.348		Soil infiltration Input by: Checked by: Ti O 60 8	n rate, f, (m/s) = CG RW me (mins) 0 100 12	1.69E-07 Date: Date: 0 140 16	normal test 30/11/2020 30/11/2020 30/11/2020		
40 50 60 90 120 180 1.348 1.35	1.36 1.36 1.36 0 20 4	Soil infiltration Input by: Checked by: Ti O 60 8	n rate, f, (m/s) = CG RW me (mins) 0 100 12	1.69E-07 Date: Date: 0 140 16	normal test 30/11/2020 30/11/2020 30/11/2020		
40 50 60 90 120 180 1.348 1.35 1.352 £1 354	1.36 1.36 1.36 0 20 4	Soil infiltration Input by: Checked by: Ti O 60 8	n rate, f, (m/s) = CG RW me (mins) 0 100 12	Date: Date: 0 140 16	normal test 30/11/2020 30/11/2020 30 180		
40 50 60 90 120 180 1.348 1.35 1.352 (£1.354 tg1 356	0 20 4	Soil infiltration Input by: Checked by: Ti O 60 8	n rate, f, (m/s) = CG RW me (mins) 0 100 12	1.69E-07 Date: Date: 0 140 16	normal test 30/11/2020 30/11/2020 30/11/2020 30 180		
40 50 60 90 120 180 1.348 1.35 1.352 () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () (Soil infiltration Input by: Checked by: Ti O 60 8	n rate, f, (m/s) = CG RW me (mins) 0 100 12	1.69E-07 Date: Date: 0 140 16	normal test 30/11/2020 30/11/2020 50 180 50 180 5		
40 50 60 90 120 180 1.348 1.35 1.352 () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () (Soil infiltration Input by: Checked by: Ti O 60 8	n rate, f, (m/s) = CG RW me (mins) 0 100 12	1.69E-07 Date: Date: 0 140 16 0 140 16	normal test 30/11/2020 30/11/2020 30/11/2020 30 180 180 180 180		
40 50 60 90 120 180 1.348 1.35 1.352 E 1.354 tg 1.356 1.358 1.358 1.358 1.358		Soil infiltration Input by: Checked by: Ti O 60 8	n rate, f, (m/s) = CG RW me (mins) 0 100 12	1.69E-07 Date: Date: 0 140 16 0 140 16 0 140 16 0 140 16	anormal test 30/11/2020 30/11/2020 30 180		
40 50 60 90 120 180 1.348 1.352 1.352 (E)1.354 40 1.352 1.355 1.356 1.358 1.358 1.358 1.358 1.362		Soil infiltration Input by: Checked by: Ti O 60 8	n rate, f, (m/s) = CG RW me (mins) 0 100 12	1.69E-07 Date: Date: 0 140 16 - - - - 0 140 16 - 0 140 16 - 0 140 16 - 0 140 16 - 0 140 16 - 0 140 16 - 0 140 16 - 0 140 16 - 0 140 16 - 0 140 16 - 0 140 16 - 0 140 16 - 0 140 16 - 0 140 16 - 0 140 16 - 16 16 - 16 17 16 - 16 16 16 16	anormal test 30/11/2020 30/11/2020		

FELIX HOTEL, WHITEHOUSE LANE, CAMBRIDGE

APPENDIX D

Flood map for planning

Your reference Hotel Felix Location (easting/northing) **543139/260549**

Created **18 Aug 2020 9:51**

Your selected location is in flood zone 1, an area with a low probability of flooding.

This means:

- you don't need to do a flood risk assessment if your development is smaller than 1 hectare and not affected by other sources of flooding
- you may need to do a flood risk assessment if your development is larger than 1 hectare or affected by other sources of flooding or in an area with critical drainage problems

Notes

The flood map for planning shows river and sea flooding data only. It doesn't include other sources of flooding. It is for use in development planning and flood risk assessments.

This information relates to the selected location and is not specific to any property within it. The map is updated regularly and is correct at the time of printing.

The Open Government Licence sets out the terms and conditions for using government data. https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/

© Environment Agency copyright and / or database rights 2018. All rights reserved. © Crown Copyright and database right 2018. Ordnance Survey licence number 100024198.

FELIX HOTEL, WHITEHOUSE LANE, CAMBRIDGE

APPENDIX E

3 Cadman Court Hotel Felix Leeds Whitehouse Lane LS27 ORX Cambridge Date 14/09/2020 09:51 Designed by AC File EXISTING BROWNFIELD RUN Checked by LA Innovyze Network 2020.1
Leeds LS27 ORX Date 14/09/2020 09:51 File EXISTING BROWNFIELD RUN Innovyze STORM SEWER DESIGN by the Modified Patienal Method
LS27 ORX Cambridge Micro Date 14/09/2020 09:51 Designed by AC File EXISTING BROWNFIELD RUN Checked by LA Innovyze Network 2020.1
Date 14/09/2020 09:51 Designed by AC File EXISTING BROWNFIELD RUN Checked by LA Innovyze Network 2020.1
File EXISTING BROWNFIELD RUN Checked by LA Innovyze Network 2020.1
Innovyze Network 2020.1
STORM SEWER DESIGN by the Modified Pational Mathad
STORM SEWER DESIGN by the Modified Pational Mathad
JUNN SEWER DESIGN BY THE MOULTER RATIONAL METHOD
Network Design Table for Storm
PN Length Fall Slope I.Area T.E. Base k HYD DIA Section Type Auto
(m) (m) (1:X) (ha) (mins) Flow (l/s) (mm) SECT (mm) Design
1.000 25.000 0.125 200.0 0.339 5.00 0.0 0.600 o 300 Pipe/Conduit 0 1.001 5.000 0.062 80.6 0.000 0.00 0.0 0.600 o 300 Pipe/Conduit 0
Network Results Table
PN Rain T.C. US/IL Σ I.Area Σ Base Foul Add Flow Vel Cap Flow
(mm/hr) (mins) (m) (ha) Flow (l/s) (l/s) (l/s) (m/s) (l/s) (l/s)
1.000 52.98 5.38 20.600 0.339 0.0 0.0 0.0 1.11 78.3 48.6
1.001 52.77 5.42 20.475 0.339 0.0 0.0 0.0 1.75 123.9 48.6
Free Flowing Outfall Details for Storm
Outfall Outfall C. Level I. Level Min D,L W
Pipe Number Name (m) (m) I. Level (mm) (mm) (m)
1.001 22.100 20.413 0.000 0 0
Simulation Criteria for Storm
Volumetric Runoff Coeff 0 750 Additional Flow - % of Total Flow 0 000
Areal Reduction Factor 1.000 MADD Factor * 10m ³ /ha Storage 2.000
Hot Start (mins) 0 Inlet Coefficient 0.800
Hot Start Level (mm) 0 Flow per Person per Day (l/per/day) 0.000
Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 60
rour sewage per nectare (1/S) 0.000 Output interval (mins) i
Number of Input Hydrographs 0 Number of Storage Structures 0
Number of Online Controls O Number of Time/Area Diagrams O
Number of Offine Controls 0 Number of Real Time Controls 0
Synthetic Rainfall Details
Rainfall Model FSR Profile Type Summer
Return Period (years) 1 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
Ratio R 0.400
©1982-2020 Innovyze

3 Cadman Court Leeds Leeds Leeds Leeds Date 14/09/2020 09:51 Peigned by AC Pile EXISTING BROWNFIELD RUN Checked by LA Innovyze Network 2020.1 Summary Wizard of 60 minute 1 year Summer I+03 for Storm <u>Simulation Criteria</u> Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start [wins] 0 MADD Factor 100*/hs Storage 2.000 Hot Start Level [mm] 0 Intel Coefficient 0.800 Manhole Readioss Coeff (Global) 0.500 Flow per Person per Day (L/per/day) 0.000 Foul Sewage per hoctare (1/3) 0.000 Number of Input Fydrographs 0 Number of Storage Structures 0 Number of Coffine Controls 0 Number of Fael The Coefficient 0.800 Macor Goffine Controls 0 Number of Storage Structures 0 Number of Coffine Controls 0 Number of Storage Structures 0 Number of Coffine Controls 0 Number of Real The Coefficient 0.840 Margin for Flood Risk Marning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inet Status OFF DDS Status ON Profile(s) Summer and Winter Duration(s) (mins) 60 Return Period(s) (years) 1. 30, 100 Climate Change (%) 0, 0, 0 Water Storm Level Degth Volume Flow / Overflow Time Flow PN Name Rank (m) (m) (m) Cap. (1/a) (mins) (1/a) Status 1.000 1 5 20.738 -0.162 0.000 0.47 2.3.6 OK	ARC Engineers Ltd		Page 2	
Leeds Multichause Lane Lac27 0RX Cambridge Designed by AC File EXISTING BROWNFIELD RUN Checked by LA Innovyz Network 2020.1 Checked by LA Innovyz Network 2020.1 Checked by LA Checked by LA	3 Cadman Court	Hotel Felix		
L327 ONX Cambridge Designed by AC Date 14/09/2020 09:51 Designed by AC Decomposition (Checked by LA) Innovyze Network 2020.1 Decomposition (Checked by LA) Summary Mizard of 60 minute 1 year Summer 1+03 for Storm Decomposition (Checked by LA) March 1990 Number 0 for Storage Store (Checked by CA) Decomposition (Checked by CA) March 1990 O MADE Pactor + 100*/hs Storage 2.000 Not Start Level (ma) 0 Intel Coefficient C.800 Namber of Input Hydrographs 0 Number of Storage Structures 0 Number of Online Controls 0 Number of Storage Structures 0 Number of Online Controls 0 Number of Storage Structures 0 Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Online Controls 0 Number of Storage Structures 0 Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Online Controls 0 Number of Storage Structures 0 Number of Input Hydrographs 1 Number of Storage Structures 0 Number of Storage Structures 0 Diracio (Checke Structures 0 Number of Storage Structures 0 Diraci for Flood (Struct	Leeds	Whitehouse Lane		
Date 14/09/2020 09:51 File EXISTING BROWNFIELD RUN Checked by LA Network 2020.1 Summary Wizard of 60 minute 1 year Summar I+03 for Storm Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - 5 of Total Flow 0.000 Nato Start ferein Headloss Corff (Sichal) 0.500 Flow per Person per Day (1/per/400 0.000 Foul Sewage per hectare (1/s) 0.000 Number of Input Hydrographs 0 Number of Scorage Structures 0 Number of Offine Controls 0 Number of Time/Area Diagrams 0 Number of Offine Controls 0 Number of Time/Area Diagrams 0 Number of Offine Controls 0 Number of Real Time Controls 0 Number of Offine Controls 0 Number of Real Time Controls 0 Number of Offine Controls 0 Number of Scorage Structures 0 Number of Offine Controls 0 Number of Real Time Controls 0 Number of Offine Controls 0 Number of Scorage Structures 0 Number of Offine Controls 0 Number of Scorage Structures 0 Number of Offine Controls 0 Number of Neal Time Controls 0 Number of Offine Controls 0 Number of Scorage Structures 0 Number of Offine Controls 0 Number of Neal Time Controls 0 Number of Offine Controls 0 Number of Neal Time Controls 0 Number of Offine Controls 0 Number of Neal Time Controls 0 Number of Offine Controls 0 Number of Neal Time 0.400 Margin for Flood Risk Warning (mh) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status 0FF DEVENT Period (4) (years 0 1 3 0, 100 Climate Change (8) 0, 0, 0 Name Rank (m) (m) (m') Cap. (1/s) (mine) (1/s) Status 1.000 1 2 5 20.622 -0.153 0.000 0.42 29.2 OK	LS27 ORX	Cambridge	Micco	
Pile EXISTING BROWNFIELD RUN Checked by LA Innovyze Network 2020.1 Autork 2020.1 Checked by LA Summary Mizard of 60 minute 1 year Summer 1408 for Stores Checked by LA Summary Mizard of 60 minute 1 year Summer 1408 for Stores Checked by LA Summary Mizard of 60 minute 1 year Summer 1408 for Stores Checked by MADD Pactor * 0 of Total Elew 0.000 Not Start (mins) 0 MADD Pactor * 0 of Total Elew 0.000 Mino Start (mins) 0 MADD Pactor * 0 of Total Elew 0.000 Mino Start (wins) 0 Mino Start (wins) 0 Mino Controls 0 Number of Storage Structures 0 Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Input Hydrographs 0 Number of Storage Structures 0 Mino Controls 0 Number of Storage Structures 0 Number of Input Hydrographs 0 Number of Storage Structures 0 Mino Controls 0 Number of Storage Structures 0 Mino Controls 0 Number of Storage Structures 0 Mino Flow Mino Controls	Date 14/09/2020 09:51	Designed by AC		
Innovyze Network 2020.1 Summary Wizard of 60 minute 1 year Summer I+05 for Storm Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start Level (m) 0 MDD Factor + 10m*/ha Storage 2.000 Not Start Level (m) 0 D Total Flow - % of Total Flow 0.000 Foul Sewage per hectare (1/s) 0.000 Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Time / Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0 Number of Offline Controls 0 Number of Real Time Controls 0 Number of Offline Controls 0 Number of Real Time Controls 0 Number of Offline Controls 0 Number of Real Time Controls 0 Number of Offline Controls 0 Number of Neal Time Controls 0 Number of Offline Controls 0 Number of Neal Time Controls 0 Number of Offline Controls 0 Number of Neal Time Controls 0 Number of Offline Controls 0 Number of Neal Time Controls 0 Number of Input Hydrographs 0 Number of Neal Time Controls 0 Number of Offline Controls 0 Number of Neal Time Controls 0 Number of Offline Controls 0 Number of Neal Time Controls 0 Number of Offline Controls 0 Number of Neal	File EXISTING BROWNFIELD RUN	Checked by LA	Dialitaye	
Summary Wizard of 60 minute 1 year Summer I+0% for Storm Summary Wizard of 60 minute 1 year Summer I+0% for Stor Mono Summary Wizard of 60 minute 1 year Summer I+0% for Storal Flow 0.000 MADD Factors 1 10m / host Storage 2.000 MADD Factors 1 10m / host Storage 2.000 MADD Factors 1 10m / host Storage 5.000 MADD Factors 1 10m / host Storage 5.000 Sumber of Time Controls 0 Number of Storage Structures 0 Number of Time for Storage 5.000 Structure 0 Number of Time/Face Diagram Number of Time/Face Diagram Number of Time Controls 0 Number of Time/Face Diagram Number of Time Controls 0 Number of Time/Face Diagram Number of Time Controls 0 Number of Time/Face Diagram Number of Time Controls 0 Number of Time/Face Diagram Margin for Flood Kawarning (m) 200.0 OVD VD Status OFF Name and Winter Datation Status OF Name Face Name and Winter Status colspan= Plow Name Face Name Face Name Face Name Name Face Name Face Name Face Name <td co<="" td=""><td>Innovyze</td><td>Network 2020.1</td><td></td></td>	<td>Innovyze</td> <td>Network 2020.1</td> <td></td>	Innovyze	Network 2020.1	
Number of ninput hydrographs 0 Number of Sträde Sträders Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0 <u>Synthetic Rainfall Details</u> Rainfall Model FSR Ratio R 0.400 Region England and Wales Cv (Summer) 0.750 M5-60 (mm) 20.000 Cv (Winter) 0.840 Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF DTS Status ON Profile(s) Summer and Winter Duration(s) (mins) 60 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 0, 0 Water Surcharged Flooded Half Drain Pipe US/MH Storm Level Depth Volume Flow / Overflow Time Flow PN Name Rank (m) (m) (m ³) Cap. (1/s) (mins) (1/s) Status 1.000 1 5 20.738 -0.162 0.000 0.42 29.2 OK 1.001 2 5 20.622 -0.153 0.000 0.47 29.6 OK	Summary Wizard of 60 m Sin Areal Reduction Factor 7 Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) (Foul Sewage per hectare (1/s) (inute 1 year Summer I+0% for mulation Criteria 1.000 Additional Flow - % of Tot. 0 MADD Factor * 10m³/ha 0 Inlet Coeff 0.500 Flow per Person per Day (1/p. 0.000	Storm al Flow 0.000 Storage 2.000 iecient 0.800 er/day) 0.000	
Synthetic Rainfall Detailf Rainfall Model FSR Ratio R 0.400 Region England and Wales Cv (Summer) 0.730 M5-60 (mm) 20.000 Cv (Winter) 0.840 Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON Profile(s) Summer and Winter Duration(s) (mins) 60 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 0, 0 VMH Storm Level Depth Volume Flow / Overflow Time Flow PN Name Rank (m) (m') Cap. (1/s) (mins) (1/s) Status 1.000 1 5 20.738 -0.162 0.000 0.47 29.6 OK 1.001 2 5 20.622 -0.153 0.000 0.47 29.6 OK	Number of Input Hydrogr Number of Online Cont Number of Offline Cont	aphs 0 Number of Storage Structure rols 0 Number of Time/Area Diagram rols 0 Number of Real Time Control	:5 0 15 0 .5 0	
Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON Frofile(s) Summer and Winter Duration(s) (mins) 60 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 0, 0 Water Surcharged Flooded Half Drain Pipe US/MH Storm Level Depth Volume Flow / Overflow Time Flow FN Name Rank (m) (m) (m ³) Cap. (1/s) (mins) (1/s) Status 1.000 1 5 20.738 -0.162 0.000 0.42 29.2 OK 1.001 2 5 20.622 -0.153 0.000 0.47 29.6 OK	<u>Synthe</u> Rainfall Model Region Eng M5-60 (mm)	tic Rainfall Details FSR Ratio R 0.400 land and Wales Cv (Summer) 0.750 20.000 Cv (Winter) 0.840		
Profile(s) Summer and Winter Duration(s) (mins) 60 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 0, 0 Water Surcharged Flooded Half Drain Pipe US/MH Storm Level Depth Volume Flow / Overflow Time Flow FN Name Rank (m) (m) (m ³) Cap. (1/s) (mins) (1/s) Status 1.000 1 5 20.738 -0.162 0.000 0.42 29.2 OK 1.001 2 5 20.622 -0.153 0.000 0.47 29.6 OK	Margin for Flood Risk W Analys	Marning (mm) 300.0 DVD Status sis Timestep Fine Inertia Status DTS Status ON	OFF OFF	
US/MI Storm Level Depth Volume Flow / Overflow Time Flow PN Name Rank (m) (m) (m ³) Cap. (1/s) (mins) (1/s) Status 1.000 1 5 20.738 -0.162 0.000 0.42 29.2 OK 1.001 2 5 20.622 -0.153 0.000 0.47 29.6 OK	Duration Return Period(Climate	Profile(s) Summer and Winter (s) (mins) 60 s) (years) 1, 30, 100 Change (%) 0, 0, 0		
1.000 1 5 20.738 -0.162 0.000 0.42 29.2 OK 1.001 2 5 20.622 -0.153 0.000 0.47 29.6 OK	Water Surcharged US/MH Storm Level Depth PN Name Rank (m) (m)	d Flooded Half Dra Volume Flow / Overflow Time (m ³) Cap. (l/s) (mins)	in Pipe Flow (l/s) Status	
1.001 2 5 20.622 -0.153 0.000 0.47 29.6 OK	1.000 1 5 20.738 -0.162	2 0.000 0.42	29.2 OK	
@1002 - 2020 Transmuss	1.001 2 5 20.622 -0.153	3 0.000 0.47	29.6 OK	
©1982-2020 Innovyze	©198	32-2020 Innovyze		

ARC Engineers Ltd					E	Page 3	
3 Cadman Court	Hotel	Felix					
Leeds	White	house :	Lane				
LS27 ORX	Cambr	idge				Mirro	
Date 14/09/2020 09:51	Desig	ned by	AC			Drainago	
File EXISTING BROWNFIELD RUN	Check	ed by i	LA			Diamage	
Innovyze	Innovyze Network 2020.1						
Innovyze <u>Summary Wizard of 60 m</u> <u>Si</u> Areal Reduction Factor Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) Foul Sewage per hectare (1/s) Number of Input Hydrog: Number of Online Cont Number of Offline Cont <u>Synth</u> Rainfall Model Region En. M5-60 (mm) Margin for Flood Risk Analy Duration Return Period Climate	Netwo inute 	rk 2021 rk 2021 30 yean Addition Addition MAI low per Number Number Number Number Number Number Mallow FSR d Wales 20.000 (mm) 30 estep F catus (s) Sum ns) rs) (%)	D.1 <u>Summer</u> <u>Sia</u> phal Flow DD Factor I Person pe of Storage of Storage of Time/A: of Real T: <u>etails</u> Ratio Cv (Summer Cv (Winter ON mer and W. 1, 30 0,	<pre>I+0% for - % of Tota * 10m³/ha S inlet Coeffi er Day (1/pe e Structures rea Diagrams ime Controls o R 0.400 er) 0.750 er) 0.840 ovD Status C ia Status C inter 60 , 100 0, 0</pre>	Storn l Flow torage ecient r/day) s 0 s 0 s 0 FF FF	1 0.000 2.000 0.800 0.000	
Water Surcharged US/MH Storm Level Depth PN Name Rank (m) (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	
1.000 1 3.20.901 0.001	0.000	0.99			69.2	SURCHARGED	
1.000 2 3 20.776 0.001	0.000	1.11			69.2	SURCHARGED	

ARC Engineers Ltd		Page 4
3 Cadman Court	Hotel Felix	
Leeds	Whitehouse Lane	
LS27 ORX	Cambridge	Micro
Date 14/09/2020 09:51	Designed by AC	Dcainago
File EXISTING BROWNFIELD RUN	Checked by LA	Diamaye
Innovyze	Network 2020.1	
Innovyze <u>Summary Wizard of 60 mi</u> <u>Sim</u> Areal Reduction Factor 1 Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) (Foul Sewage per hectare (1/s) (Number of Input Hydrogra Number of Online Cont: Number of Offline Cont: <u>Synthe</u> Rainfall Model Region Eng M5-60 (mm) Margin for Flood Risk W	Network 2020.1 nute 100 year Summer I- nulation Criteria .000 Additional Flow - % 0 MADD Factor * 1 0 Inle .500 Flow per Person per D .000 aphs 0 Number of Storage St rols 0 Number of Time/Area rols 0 Number of Real Time tic Rainfall Details FSR Ratio R land and Wales Cv (Summer) 20.000 Cv (Winter) farning (mm) 300.0 DVD	<u>-0% for Storm</u> of Total Flow 0.000 Om ³ /ha Storage 2.000 t Coeffiecient 0.800 ay (l/per/day) 0.000 :ructures 0 Diagrams 0 Controls 0 0.400 0.750 0.840 Status OFF
Duration Return Period(Climate US/MH Storm Level Depth PN Name Rank (m) (m)	IS TIMESTEP Fine Inertia DTS Status ON Profile(s) Summer and Winter (s) (mins) 6 s) (years) 1, 30, 10 Change (%) 0, 0, 0, Plooded Hal Hal Volume Flow / Overflow (m³) (m³) Cap. (1/s) (mage)	er 50 70 0 .f Drain Pipe Time Flow (mins) (1/s) Status
	0 000 1 32	92 1 SURCHARGED
1.001 2 1 20.835 0.060	0.000 1.48	92.3 SURCHARGED
©198	2-2020 Innovyze	

ARC Engineers Ltd		Page 1
3 Cadman Court	Hotel Felix	
Leeds	Cambridge	
LS27 ORX	Existing Greenfield Rate	Mirro
Date 22/12/2020 13:37	Designed by LA	Desinado
File	Checked by	Diamage
Innovyze	Source Control 2020.1	

ICP SUDS Mean Annual Flood

Input

Return	Period	(ye	ears)	100		Soil	0.40	00
	Ar	rea	(ha)	1.051		Urban	0.00	00
	SA	AR	(mm)	538	Region	Number	Region	5

Results 1/s

QBAR Rural 2.6 QBAR Urban 2.6 Q100 years 9.4 Q1 year 2.3 Q30 years 6.3 Q100 years 9.4

ARC Engineers Ltd		Page 1
3 Cadman Court	Hotel Felix	
Leeds	Cambridge	
LS27 ORX	Greenfield Run-off Rates	Micro
Date 21/12/2020 13:36	Designed by LA	Desinado
File	Checked by	Diamage
Innovyze	Source Control 2020.1	

ICP SUDS Mean Annual Flood

Input

Return Period (years)100Soil0.400Area (ha)1.390Urban0.000SAAR (mm)538RegionNumberRegion

Results 1/s

QBAR Rural 3.5 QBAR Urban 3.5 Q100 years 12.4 Q1 year 3.0 Q30 years 8.4 Q100 years 12.4

ARC Engineers Ltd							Page 1
3 Cadman Court		Hote	el Feli	X			
Leeds		Camb	ridge				
LS27 ORX		Atte	Attenuation Sizing				Misso
Date 22/12/2020 15:2	2	Desi	aned h	τ. Δ			- MILLO
	K ST7ING	Chec	ked by	уши			Drainage
The ATTENDATION TAN.	N 5121NG	Cour		+ mol 2020) 1		
Innovyze		Sour	ce con	trol 2020).⊥		
Cummo mu	f Deculte	for 1(0	Dotumn	Dowind	(140%)	
<u>Summary o</u>	<u>DI Results</u>	IOT I	JU year	Return	Perioa	(+40%)	-
	Half Dr	ain Ti	me • 734	minutes			
	nutt bi		. , 9 1	minuceo.			
Storm	Max Max	M	lax	Max	Max	Max	Status
Event	Level Depth	Infil	tration	Control E	Outflow	Volume	
	(m) (m)	(1	./s)	(1/s)	(1/s)	(m³)	
15 min Summer	20.057 0.257		0.0	3.5	3.5	122.1	ОК
30 min Summer	20.135 0.335		0.0	3.5	3.5	159.3	0 K
60 min Summer	20.213 0.413		0.0	3.5	3.5	196.3	O K
120 min Summer	20.285 0.485		0.0	3.5	3.5	230.5	0 K
180 min Summer	20.321 0.521		0.0	3.5	3.5	247.3	0 K
240 min Summer	20.340 0.540		0.0	3.5	3.5	256.3	O K
360 min Summer	20.358 0.558		0.0	3.5	3.5	264.8	O K
480 min Summer	20.362 0.562		0.0	3.5	3.5	267.0	O K
600 min Summer	20.359 0.559		0.0	3.5	3.5	265.5	0 K
720 min Summer	20.351 0.551		0.0	3.5	3.5	261.9	O K
960 min Summer	20.335 0.535		0.0	3.5	3.5	254.3	OK
1440 min Summer	20.298 0.498		0.0	3.5	3.5	236.7	OK
2160 min Summer	20.242 0.442		0.0	3.0	3.5	105 0	OK
4320 min Summor	20.191 0.391		0.0	3.5	3.5	1/3 9	OK
5760 min Summer	20.103 0.303		0.0	3.5	3.5	110 6	0 K
7200 min Summer	19.981 0.181		0.0	3.5	3.5	86.1	0 K
8640 min Summer	19.944 0.144		0.0	3.4	3.4	68.5	0 K
10080 min Summer	19.919 0.119		0.0	3.3	3.3	56.3	ОК
15 min Winter	20.089 0.289		0.0	3.5	3.5	137.1	0 K
	Storm	Rain	Floodec	I Discharge	Time-Pe	eak	
	Event (mm/nr)	(m ³)	(m ³)	(mins)	
			()	(111)			
15	min Summer 1	38.153	0.0	123.9)	26	
30	min Summer	90.705	0.0	161.8		41	
60	min Summer	56.713	0.0	206.1		70	
120	min Summer	34.246	0.0	248.9	-	L28	
180	min Summer	25.149	0.0	274.2	1	188	
240	min Summer	20.0/8	0.0	291.9	· 2	240 364	
360	min Summer	11 622	0.0	, 310.1 1 337 6		182	
400	min Summer	9 7 7 9	0.0		, 2	102 500	
720	min Summer	8.424	0.0	355.1		584	
960	min Summer	6.697	0.0	386.9		794	
1440	min Summer	4.839	0.0	416.6	5 10	038	
2160	min Summer	3.490	0.0	456.8	14	416	
2880	min Summer	2.766	0.0	482.6	18	316	
4320	min Summer	1.989	0.0	520.8	25	560	
5760	min Summer	1.573	0.0	549.1	. 32	288	
7200	min Summer	1.311	0.0	571.8	39	968	
8640	min Summer	1.129	0.0	590.9	46	564	
10080	min Summer	0.994	0.0	607.3	53	336	
15	min Winter 1	38.153	0.0	138.5)	26	

©1982-2020 Innovyze

ARC Engineers Ltd							Page 2	2
3 Cadman Court		Hote	el Feli	Х				
Leeds		Camb	oridge					
LS27 0BX		Atte	enuatio	n Sizing			Mint	(m
$D_{2+0} = \frac{22}{12} \frac{2020}{2020} = 15$	• ? ?	Desi	aned h	11 0101119			MICI	
	· ZZ	Desi	Jacob Jacob	y iir			Drair	ade
FILE ATTENUATION T	ANK SIZING.	cnec	скеа ру					
Innovyze		Sour	ce Con	trol 2020	0.1			
Summar	<u>y of Result</u>	<u>s for 10</u>)0 year	Return	Period	(+40%)	-	
Storm	Max M	ax M	lax	Max	Max	Max	Status	
Event	(m) (ptn inrii m) (1	tration (e)	(1/e)	(1/e)	(m ³)		
	(111) (iii) (1	_/ 5)	(1/5)	(1/5)	(111)		
30 min Wint	er 20.177 0.	377	0.0	3.5	3.5	179.1	ОК	
60 min Wint	er 20.265 0.	465	0.0	3.5	3.5	221.0	ΟK	
120 min Wint	er 20.349 0.	549	0.0	3.5	3.5	260.6	ΟK	
180 min Wint	er 20.389 0.	589	0.0	3.5	3.5	279.9	ОК	
240 min Wint	er 20.412 0.	612 625	0.0	3.5	3.5	290.6	O K	
360 min Wint	er 20.435 0.	613 613	0.0	3.5 2 E	3.5 2 E	301.5 305 4	U K	
400 Min Wint	er 20.443 0	043 643		۵.۵ ۲ ۲	3.3 २ ८	305.4	OK	
720 min Wint	er 20.437 0	637	0.0	3.5	3.5	302.5	0 K	
960 min Wint	er 20.417 0.	617	0.0	3.5	3.5	293.0	0 K	
1440 min Wint	er 20.373 0.	573	0.0	3.5	3.5	272.2	ОК	
2160 min Wint	er 20.296 0.	496	0.0	3.5	3.5	235.6	ΟK	
2880 min Wint	er 20.214 0.	414	0.0	3.5	3.5	196.8	ΟK	
4320 min Wint	er 20.080 0.	280	0.0	3.5	3.5	133.1	ΟK	
5760 min Wint	er 19.985 0.	185	0.0	3.5	3.5	87.9	ОК	
7200 min Wint	er 19.927 0.	127	0.0	3.3	3.3	60.2	OK	
8640 min Wint	er 19.898 0.	098	0.0	3.1	3.1	46.6	OK	
	er 19.000 U.	000	0.0	2.0	2.0	40.0	Οĸ	
	Storm	Rain	Flooded	d Discharge	a Time-Pe	eak		
	Event	(mm/hr)	Volume	Volume	(mins)		
			(m³)	(m³)				
					_			
	30 min Winte	r 90.705	0.0	180.0	5	40		
1	ou min Winte	r = 56./13	0.0	230.8	5 2 ·	10		
1	180 min Winto	r 25 1/10	0.0	, ∠/o.č) 207 1	بر	184		
	240 min Winte	r 20.078	0.0) 327 () :	242		
	360 min Winte	r 14.585	0.0	355.6	5	358		
	180 min Winte	r 11.622	0.0) 377.2	2	472		
(500 min Winte	r 9.738	0.0) 394.4	1 !	582		
	720 min Winte	r 8.424	0.0	408.7	7 (692		
<u>_</u>	960 min Winte	r 6.697	0.0	431.5	5 8	394		
14	40 min Winte	r 4.839	0.0	461.7	/ 11	114		
21	160 min Winte	r 3.490	0.0	J 511.	/ 1	200 260		
28	20 min Winte	r 2.700	0.0) 540.0	5 0'	200 728		
43	760 min Winte	r 1.573	0.0) 615 (, ∠) २,	400		
72	200 min Winte	r 1.311	0.0	640.5	5 40	032		
86	540 min Winte	r 1.129	0.0	661.8	3 4	584		
100)80 min Winte	r 0.994	0.0	680.2	2 52	248		

©1982-2020 Innovyze

ARC Engineers Ltd	Page 3
3 Cadman Court	Hotel Felix
Leeds	Cambridge
LS27 ORX	Attenuation Sizing Micro
Date 22/12/2020 15:22	Designed by LA
File ATTENUATION TANK SIZING	Checked by
Innovyze	Source Control 2020.1
Rai	infall Details
Rainfall Model Return Period (years)	FSR Winter Storms Yes
Region Engla	and and Wales Cv (Winter) 0.840
M5-60 (mm)	20.000 Shortest Storm (mins) 15
Ratio R	0.400 Longest Storm (mins) 10080
Summer Storms	Yes Climate Change % +40
Tim	<u>ae Area Diagram</u>
Tota	al Area (ha) 0.485
Time (mins) Area Ti From: To: (ha) Fro	.me (mins) Area Time (mins) Area om: To: (ha) From: To: (ha)
0 4 0.162	4 8 0.162 8 12 0.162
'	

©1982-2020 Innovyze

ARC Engineers Ltd					Page 4				
3 Cadman Court	Hotel Fel	Lix							
Leeds	Cambridge	e							
LS27 ORX	Attenuati	ion Siz:	ing		Micco				
Date 22/12/2020 15:22	Designed	by LA							
File ATTENUATION TANK SIZING	Checked k	- VV			Dialinage				
Innovyze	Source Co	ontrol 2	2020.1						
Model Details									
Storage is Online Cover Level (m) 22.600									
<u>Cellula</u>	r Storage	Struct	ure						
Inver Infiltration Coefficient	rt Level (m) Base (m/hr)	19.800 0.00000) Safety Fac) Poros	tor 2.0 sity 0.95					
Infiltration Coefficient	Side (m/hr)	0.00000)	-					
Depth (m) Area (m²) Inf. Are	ea (m²) Dep	th (m) A:	rea (m²) In:	f. Area (m²)				
0.000 500.0 0.800 500.0	0.0 0.0	0.801	0.0		0.0				
<u>Hydro-Brake®</u>	Optimum	Outflow	Control						
		_							
Unit	Reference	MD-SHE-0	092-3500-08	00-3500					
Design	Flow (l/s)			3.5					
	Flush-Flo™		Cal	culated					
_	Objective	Minimis	e upstream	storage					
A	pplication			Surface					
Dia	meter (mm)			92					
Invert	Level (m)			19.790					
Minimum Outlet Pipe Dia	meter (mm)			150					
Suggested Manhole Dia	meter (mm)			1200					
Control Po	ints 1	Head (m)	Flow (l/s)						
Design Point (Ca	alculated)	0.800	3.5						
I	Flush-Flo™	0.238	3.5						
Mana Plan and I	Kick-Flo®	0.521	2.9						
Mean Flow over F	lead kange	-	3.0						
The hydrological calculations have b	een based o	n the He	ad/Discharge	e relatio	nship for the				
Hydro-Brake® Optimum as specified.	Should anot	her type	of control	device o	ther than a				
Hydro-Brake Optimum® be utilised the	n these sto	rage rou	ting calcula	ations wi	ll be				
invalidated									
Depth (m) Flow (1/s) Depth (m) Flow	v (l/s) Dep	th (m) F	low (l/s) De	epth (m)	Flow (l/s)				
0.100 2.9 1.200	4.2	3.000	6.5	7.000	9.7				
0.200 3.5 1.400	4.5	3.500	7.0	7.500	10.0				
0.300 3.5 1.600	4.8	4.000	7.4	8.000	10.3				
0.400 3.3 1.800	5.1	4.500	7.8	8.500	10.6				
0.600 3.1 2.000	5.6	5.500	°•∠ 8 6	9.500	11 2				
0.800 3.5 2.400	5.8	6.000	9.0	5.000	11.2				
1.000 3.9 2.600	6.0	6.500	9.3						
©198	32-2020 In	novvze							
		1 - 5							

FELIX HOTEL, WHITEHOUSE LANE, CAMBRIDGE

APPENDIX F

DO NOT SCALE

For the avoidance of doubt, no approvals, reviews, comments or indication of satisfaction given by ARC Engineers in terms of subcontract drawings, products or proposed materials shall reduce or extinguish the obligation of the sub-contractor or supplier to adhere to the specification, general arrangement drawings, statutory requirements and good working practice. ARC Engineer's accept no liability for the selection of materials or workmanship in the execution of the works.

GENERAL NOTES

- Drawings not to be scaled.
 Dimensions are in millimetres unless specified otherwise.
 This drawing is to be read in accordance with all other relevant drawings, third party drawings, specifications and supporting documentation.
 All levels and dimensions to be checked on site by the contractor. Any discrepancies to be notified to the Engineer and further instructions obtained prior to further work being carried out.
 All work to comply with current Local Authority design standards and DFT Manual for Streets.

P0		INI	AC	LA	22.12.2020				
REV	EV DETAIL BY CHKD DATE								
INITIA	L ISSUE BASE	D ON ARCHITECTS D	RAWING NUMBER :-						
	arcengineers								
	CONS	ULTING S	TRUCTUR	AL AND CI	VILE	IGIN	EERS		
	3 CADMAN COURT, LEEDS, LS27 0RX Phone: 0113 253 3904 www.arc-engineers.co.uk								
CLI	ENT:								
	CASSEL HOTELS (CAMBRIDGE) LTD								
PROJECT:									
	HOTEL FELIX CAMBRIDGE								
TITL	TITLE:								
	EXISTING IMPERMEABLE AREAS								
DR/	WING ST	ATUS:							
PLANNING									
DRA	WN:	DATE:		CHECKED:	DATE:				
	AC	DECEME	3ER 2020	LA	DEC	ЕМВ	ER 2020		
CON	CONTRACT NO. SCALE @ A1: 20106 1:300								
PRO	PROJECT No. ORIGINATOR ZONE LEVEL TYPE DISCIPLINE NUMBER REVISION								
20	20106- ARC -XX-00 -DR - D - 0003 -P0								

© ARC ENGINEERS LTD 2020

DO NOT SCALE

For the avoidance of doubt, no approvals, reviews, comments or indication of satisfaction given by ARC Engineers in terms of subcontract drawings, products or proposed materials shall reduce or extinguish the obligation of the sub-contractor or supplier to adhere to the specification, general arrangement drawings, statutory requirements and good working practice. ARC Engineer's accept no liability for the selection of materials or workmanship in the execution of the works.

GENERAL NOTES

- Drawings not to be scaled.
 Dimensions are in millimetres unless specified otherwise.
 This drawing is to be read in accordance with all other relevant drawings, third party drawings, specifications and supporting documentation.
 All levels and dimensions to be checked on site by the contractor. Any discrepancies to be notified to the Engineer and further instructions obtained prior to further work being carried out.
 All work to comply with current Local Authority design standards and DFT Manual for Streets.

P2	Paved are	eas updated i	in line with land	iscape plans	LA	AC	16.02.21		
P1	Updated f	to revised site	e plan received	12.02.2021	AC	LA	15.02.2021		
P0		INI	TIAL ISSUE		AC	LA	22.12.2020		
REV			DETAIL		BY	СНКД	DATE		
INITIA	L ISSUE BASED	ON ARCHITECTS D	RAWING NUMBER :-						
	arcengineers								
	CONSU	LTING S	TRUCTUR	AL AND CI	VIL EN	IGIN	EERS		
	3 CADMAN COURT, LEEDS, LS27 0RX Phone: 0113 253 3904 www.arc-engineers.co.uk								
CLI	ENT:								
	CASSEL HOTELS (CAMBRIDGE) LTD								
PRO	DJECT:								
	HOTEL FELIX CAMBRIDGE								
TITL	TITLE:								
	PROPOSED IMPERMEABLE AREAS								
DRA	AWING STA	TUS:							
	PLANNING								
DRA	WN: D	ATE:		CHECKED:	DATE:				
	AC	DECEME	3ER 2020	LA	DEC	EMB	ER 2020		
CON	CONTRACT №. SCALE @ A1: 20 106 1:300								
PRO	PROJECT No. ORIGINATOR ZONE LEVEL TYPE DISCIPLINE NUMBER REVISION								
20	20106- ARC -XX-00-DR - D - 0004 -P2								
	© ARC ENGINEERS LTD 2020								

For the avoidance of doubt, no approvals, reviews, comments or indication of satisfaction given by ARC Engineers in terms of subcontract drawings, products or proposed materials shall reduce or extinguish the obligation of the sub-contractor or supplier to adhere to the specification, general arrangement drawings, statutory requirements and good working practice. ARC Engineer's accept no liability for the selection of materials or workmanship in the execution of the works.

GENERAL NOTES

- 1. Drawings not to be scaled. 2. Dimensions are in millimetres unless specified otherwise.
- 3. This drawing is to be read in accordance with all other relevant drawings, third party drawings, specifications and supporting documentation.
- 4. All levels and dimensions to be checked on site by the contractor. Any discrepancies to be notified to the Engineer and further instructions obtained
- prior to further work being carried out. 5. All work to comply with current Local Authority design standards and DFT Manual for Streets.

KEY:

SWMH.09

SWMH.(

FWMH (

 \mathbb{C}

(_)

 \mathbf{V} \mathbf{V} \mathbf{V} \mathbf{V}

+XX.XXX

PROJECT

FW 1.000 150Ø @ 1:60 SW 1.000 1500 @ 1:60

BACKDROP MANHOLE

INDICATIVE LINE OF EXISTING FW SEWER INDICATIVE LINE OF EXISTING SW SEWER EXISTING SEWER TO BE REMOVED

SURFACE WATER MANHOLE

FOUL WATER MANHOLE

HYDROBRAKE

POLYPROPYLENE INSPECTION CHAMBER

CONNECTION TO EXISTING FW SEWER

CONNECTION TO EXISTING SW SEWER

EXISTING MANHOLE

RG 🗖 🖛 🖛 🖉 ROAD GULLY

RE F - RODDING EYE

G 🗖 🖛 🖛 🗧 GULLY FG 🗖 🖛 ' 🖛 🛛 FOUL WATER GULLY

RWP 🗲 💳 💳 🖉 RAINWATER PIPE

ACO DRAINAGE CHANNEL (Built in falls)

SURFACE WATER ATTENUATION POLYSTORM-R OR SIMILAR APPROVED PRODUCT WITH 44 TONNES/m² COMPRESSIVE STRENGTH

SITE BOUNDARY

TREE ROOT PROTECTION ZONE

PROPOSED LEVEL

DENOTES PERMEABLE PAVING

CASSEL HOTELS (CAMBRIDGE) LTD

HOTEL FELIX CAMBRIDGE

DRAINAGE GA

DRAWING ST	DRAWING STATUS:							
PLANNING								
DRAWN:	DATE:		CHECKED:	DATE:				
AC	DECEME	BER 2020	LA	DECEMBER 2020				
CONTRACT No. SCALE @ A1:								
20	106	1:300						
PROJECT No.	ORIGINATOR	ZONE LEVE	EL TYPE DIS	CIPLINE NUMBER REVISION				
20106	ARC	-XX-00)-DR-	D-0001-P2				
© ARC ENGINEERS LTD 2020								

FELIX HOTEL, WHITEHOUSE LANE, CAMBRIDGE

APPENDIX G

		Project:			
		Hote	l Felix, Whiteh	ouse Lane, Camb	ridge
CANO	inders	Details:			Project Number:
EXTRACTS OF BUILDING REGS 2010					
		Produced By: Dat	e: Checke	d By: Date:	Section/Page No/Revision
			Dec-20	C Dec-20	1/2
		Calculations			Output
		calculations			output
RELEVANT EXTRA	CTS FROM APPR		NT H1 (as of N	/lay 2016)	
	0	NIINE	VERS	SION	
11 FOUL	DRAINAGE	T T Los A A T Date	A per til 5	JI O IX	
Table 12 Minim	num dimension	s for manhole	es		
Туре	Size of largest pipe (DN)	Min. internal dimensions 1		Min. clear opening size	, 1
		Rectangular length and width	Circular diameter	Rectangular ler and width	ngth Circular diameter
Manhole					
< 1.5m deep to soffit	≤ 150	750 x 675 7	1000 7	750 x 675 ²	na ³
	225	1200 x 675	1200	1200 x 675	2
	300	1200 x 750	1200		
_	>300	1800 x (DN+450)	The larger of 1 or (DN+450	800)	
1.5m deep to soffit	≤ 225	1200 x 1000	1200	600 x 600	600
	300	1200 x 1075	1200		
	375-450	1350 x 1225	1200		
	>450	1800 x (DN+775)	The larger of 1 or (DN+775	800)	
Manhole shaft *			1.171		
> 3.0m deep to	Steps 5	1050 x 800	1050	600 x 600	600
soffit of pipe	Ladder ^s	1200 x 800	1200		8 a. 8 a.
Bar darie e e	Winch 6	900 x 800	900	600 x 600	600
Notes:					
. Larger sizes may be re	equired for manholes on be	nds or where there are j	unctions.		10200
 May be reduced to 60 Not applicable due to 	o by 600 where required by working space needed	righway loading consi	derations, subject to a	sare system or work being	specined.
 Minimum height of chu 	amber in shafted manhole	2m from benching to un	derside of reducing size	ıb.	
5. Min. clear space betw	een ladder or steps and th	e opposite face of the st	haft should be approxi	mately 900mm.	
8. Winch only - no steps	or ladders, permanent or r	emovable.			
7. The minimum size of a	any manhole serving a sew	er (I.e. any drain serving	more than one proper	ly) should be 1200mm x 67	6mm rectangular
or 1200mm diameter.					
Table 13 Maxi	mum spacina	of access po	oints in metr	es	
	To Acce	ss Fitting			
From	Small	Large	To Juncti	on To Inspection	chamber To Manhol
Start of external drain	1 12	12	-	22	45

Rodding eye

Access fitting: small 150 diam. and 150 x 100 large 225 x 100

Inspection chamber shallow

chamber deep Notes:

Manhole and inspection

1. Stack or ground floor appliance

22

_

22

_

2. May be up to 200 for man-entry size drains and sewers

22

_

45

-

22

12 22

22

-

45

22 45

45

45

45

22 45

45

90 ²

Project:							
	Hotel Felix, Whitehouse Lane, Cambridge						
arcengineers		Details: FOUL WATER FLOW RATE				Project Number: 20106	
	Produced By: Date: Checked By: Date:			Date:	Section/Page No/Revision		
		LA	Dec-20	AC	Dec-20	1 /	3
Ref.		Calculation	<u> </u>	<u>I</u>	<u>.</u>	Output	
FOUL WATER DRAINAGE	FLOW RATE	S					
BASED ON BS EN 752 - 4:1	.998						
			Ту	pe of Applia	nce		
		Hand			Kitchen	M/a abina	Diah
Building	WC	Wash	Baths	Showers	sink /	wasning	DISH
		Basin			sluice	machine	wasner
CH Ground floor	50	50	2	42	6	0	2
CH First floor	49	51	2	43	4	0	0
CH Second floor	45	1	0	45	1	2	1
	4			+		2	1
							
		L					
Total No. Provided	103	105	4	89	11	2	3
Typical Discharge Unit	1.8	0.3	0.8	0.4	0.6	0.8	0.5
Total Discharge Unit	185.4	31.5	3.2	35.6	6.6	1.6	1.5
	тс	TAL DISCH/	ARGE UNITS	FOR ALL AP	PLIANCES	26	5.4
	FREQU	ENCY FACTC	OR FOR BUIL	DING USEAG	GE (Tb C1)	0	.7
		T(OTAL UNAT	FENUATED F	LOW. Q =	11.4 Litres/sec	
L							
	Table (0.1 — Typic	cal frequen	icy factors	(k_{DU})		
	Т	ype of buildi	ng			k	DU
Dwelling, guesthouse, off	ice (interm	ittent use)				0,5	
Hospital, school, restaura	ant, hotel (f	requent use)			0,7	
Toilets and/or shower ope	en to the pu	ublic (conges	sted use)			1,0	
Laboratory buildings (spe	ecial use)					1,2	
T	fable C.2 -	- Typical v	values of d	ischarge u	nits (DU)	00	
	T	ype of appliar	nce			1	DU
Washbasin, shower		All Mark				0,3 to 0,6	;
Urinal						0,3 to 0,8	3
Bath, kitchen sink						0,8 to 1,3	
Dishwasher						0,2 to 0,8	3
Household washing mach	line					0,5 to 0,8	3
Commercial washing mad	chine					1,0 to 1,5	
WCs (4,01 to 9,01 cistern	WCs (4,0 l to 9,0 l cistern)						
Floor drains (DN 50 to D	N 100)		· · 1 · 1 - 1	·1.1:	: C(1)	0,6 to 2,0	
The discharge unit will depend information is available, the hig	on the type or gher value sho	drainage syste ould be used.	em inside the b	uilding and the	e size of the ap	pliance. Where	e no specific
$Q = k_{DU} \sqrt{\sum DU}$						(C.1	1)
where							
Q is the wastews	ater design f	low rate, in li	itres per seco	nd;			
k _{DU} is a frequency factor, dimensionless;							
DU is the discharge unit (a characteristic value of the rate of wastewater outflow of a sanitary appliance), dimensionless.							