

South Cambridgeshire District Council
2020 Air Quality Annual Status Report (ASR)

In fulfilment of Part IV of the Environment Act 1995 Local Air Quality Management (LAQM)

Local Authority Officer:

Soraya Hashemi

Department:

Health and Environmental Services

Address:

South Cambridgeshire Hall

Cambourne Business Park

Cambourne

Cambridgeshire

CB23 3EA

Telephone

01954 713640

E-mail:

air.quality@scambs.gov.uk

Report Reference Number:

SCDC 2020 ASR

Date:

August 2020

Signed off by:

Trevor Nicoll – Head of Environment and Waste

Executive Summary: Air Quality in our area, South Cambridgeshire District Council

Air pollution is associated with a number of adverse health impacts. It is recognised as a contributing factor in the onset of heart disease and cancer. Additionally, air pollution particularly affects the most vulnerable in society: children and older people, and those with heart and lung conditions. There is also often a strong correlation with equalities issues because areas with poor air quality are also often the less affluent areas^{1,2,}.

The annual health cost to society of the impacts of particulate matter alone in the UK is estimated to be around £16 billion³.

South Cambridgeshire District Council (SCDC) is a rural district undergoing a significant growth. The area has good road and rail links with London and the South-East. The M11 / A11 and A14 corridors pass through the District to the west, south and north of Cambridge, respectively. The demand for housing is therefore very high. Future developments are mainly to be residential and are reliant on road-based transport for travel and commuting to Cambridge city, London and the surrounding area.

The growth is mainly associated with new developments such as Northstowe (10,000 dwellings) to the North West of Cambridge, Waterbeach Barracks (6000-10,000 dwellings) to the North East of Cambridge, Bourn Airfield and Cambourne West to the West of Cambridge.

SCDC declared an Air Quality Management Area (AQMA) along the A14 between Bar Hill and Milton junction in 2008 for exceedance of the annual mean Nitrogen Dioxide (NO₂) and 24-hour Particulate Matter (PM₁₀) objective. pollution levels have been monitored through a network of Diffusion Tubes and Automatic Monitors since. A decreasing trend in the monitored levels have been recorded within AQMA with no exceedances above the objective levels since 2014. Therefore, we propose to revoke this AQMA as previously recommended by Defra. The supporting evidence for this decision is discussed in section 2.1.

¹ Environmental equity, air quality, socioeconomic status, and respiratory health, 2010

² Air quality and social deprivation in the UK: an environmental inequalities analysis, 2006

³ Defra Abatement cost guidance for valuing changes in air quality, May 2013

Actions and Priorities to Improve Air Quality

The key actions undertaken or underway to monitor and improve air quality are summarised here:

- A new Air Quality Strategy is completed and proposed to the Cabinet. The Strategy
 outlines a new approach to monitor and improve the air quality across the district and to
 ensure both the new and existing communities are considered to benefit a better air
 quality district wide.
- A review and upgrade of the air quality monitoring network is underway in line with the new Strategy and to reflect the growth district wide. Any future AQMAs will be addressed through an independent Air Quality Action Plan (AQAP).
- Hotspot monitoring initiative is underway enabling the Council to test the reliability of alternative technologies for air quality monitoring.
- Detailed air quality requirements were included in the Sustainable Design & Construction Supplementary Planning Document (SPD) adopted in January 2020. The requirements range from improving sustainable and low emission transport to facilitating schemes and infrastructure for behavioural change.
- A new monitor was installed at Orchard Park School near the A14 in September. The aim
 of this initiative is to monitor the actual levels of exposure for most sensitive receptors
 near major roads. Sufficient data should be available to report in 2021 ASR.

Further consideration has been given to air quality and its improvement across the district, in line with the Council's key objective to 'Being green to our core'⁴. The Supporting actions are summarised here:

- The Zero Carbon Strategy, adopted in May 2020, outlines the actions supporting the district to halve carbon emissions by 2030 and reduce them to zero by 2050⁵.
- Zero Carbon Communities Grant⁶, is a funding for community initiatives to improve sustainability. A total of 19 projects including eight to promote cycling and four tree-planting projects was granted in 2019 2020.
- The Greater Cambridge Shared Waste Service has been developing an approach to reduce the environmental impact of the Refuse service that is provided to the residents on South Cambridgeshire District council. While the introduction of fully electric refuse vehicle's is high on the services agenda, the first vehicle has now been ordered and should hopefully be on site collecting bins for the end of September 2020. In addition to the electric option the service is also investigating other options such as hydrogen as the solution to reducing our CO₂ impact to the environment.

⁴ Being green to our core https://www.scambs.gov.uk/your-council-and-democracy/performance-and-plans/our-business-plan/

⁵ Zero Carbon Strategy https://www.scambs.gov.uk/environment/pollution/air-pollution/local-air-quality-management/

⁶ Zero Carbon Communities Grant <a href="https://www.scambs.gov.uk/climate-change/zero-carbon-communities/zero-carbon-ca

Conclusions

The review of the monitoring data in 2019 has identified the following:

- No exceedances of national air quality objectives were reported at any of the monitoring locations.
- The monitoring data relating to the AQMA also achieved relevant objectives.
- Good data capture for all monitoring locations was achieved.
- No new sources of pollution have been identified.

Local Engagement and How to get Involved

Details and reports of Air Quality Service are available online⁷ for public. Share your views and concerns via email address <u>air.quality@scambs.gov.uk</u> and follow our Facebook page⁸ for general updates and news. Please do your share to improve air quality in South Cambs:

- Avoid using your car for short trips (under 2 miles) short trips are very polluting as modern engines needs to reach a very high temperature to work efficiently; on short trips it will not reach that temperature.
- Try using public transport, cycling, or walking more often.
- Walking and cycling help you to stay healthy plus save you money in fuel costs.
- Switch it off turn off your engine if you are caught in a traffic jam or have to wait at level crossings; not only will this reduce your emissions, but you will save fuel too.
- When driving, use techniques that help you use less fuel, like driving more slowly and smoothly.
- You could use 10% less fuel and save money by following the tips on the AA website9.
- Consider using an alternative fuel vehicle There is a growing market for electric vehicles.
- Consider living car free.
- Join a car club.
- Use journey-planning apps such as MyBusTrip or MotionMap for travel by bus, train, walking and cycling.
- Consider working at home occasionally or car sharing.
- Use less energy at home wood, coal, oil and gas burning all contribute to air pollution.
- Make your children aware of the impact that day to day activities have on air quality.

⁷ https://www.scambs.gov.uk/environment/pollution/air-pollution/local-air-quality-management/

⁸ https://www.facebook.com/SouthCambridgeshireDistrictCouncil/

⁹ http://www.theaa.com/motoring_advice/fuels-and-environment/drive-smart.html

Table of Contents

Executive Summary: Air Quality in our area, South Cambridgeshire District Council .	i
Actions and Priorities to Improve Air Quality	ii
Conclusions	iii
Local Engagement and How to get Involved	iii
Table of Contents	iv
Local Air Quality Management	1
2. Actions to Improve Air Quality	2
2.1 Air Quality Management Areas	2
Figure1. Air Quality Management Area	2
Figure 2. Monitoring locations and data within AQMA	3
Figure 2.a Diffusion Tubes locations between Bar Hill and Girton	3
Figure 2.b Diffusion Tubes locations between Girton and Milton (Impington and Orch	nard Park).4
Figure 2.c Automatic Monitors locations between Bar Hill and Milton	4
Figure 2.c Diffusion Tubes data within AQMA	5
Figure 2.d Automatic Monitors data within AQMA	5
Table 2.1 – Declared Air Quality Management Areas	6
2.2 Progress and Impact of Measures to address Air Quality in South Cambrid	geshire
District Council	8
Table 2.2 – Progress on Measures to Improve Air Quality	9
2.2 PM _{2.5} – Local Authority Approach to Reducing Emissions and/or Concentra	ations12
3. Air Quality Monitoring Data and Comparison with Air Quality Objectives and	National
Compliance	13
3.1 Summary of Monitoring Undertaken	13
3.1.1 Automatic Monitoring Sites	13
3.1.2 Non-Automatic Monitoring Sites	13
3.2 Individual Pollutants	14
3.2.1 Nitrogen Dioxide (NO ₂)	14
3.2.2 Particulate Matter (PM ₁₀)	14
3.2.3 Particulate Matter (PM _{2.5})	14
Appendix A: Monitoring Results	15
Table A.1 – Details of Automatic Monitoring Sites	15
Table A.2 – Details of Non-Automatic Monitoring Sites	16
Table A.3 – Annual Mean NO ₂ Monitoring Results	21
Figure A.1 – Trends in Annual Mean NO ₂ Concentrations (µg m ⁻³)	27
LAOM Appual Status Danart 2020	:.

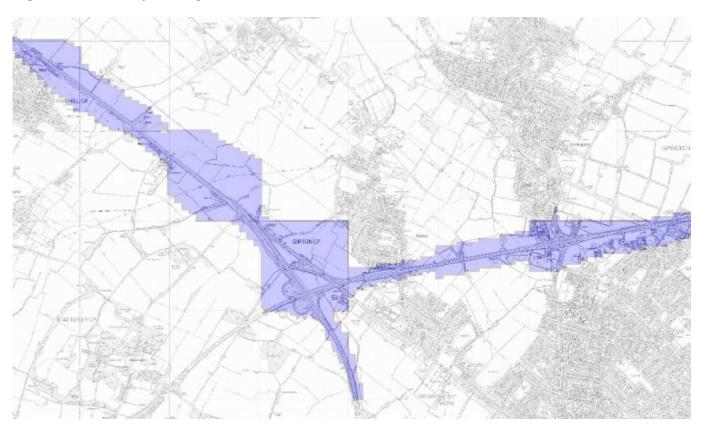
Table A.4 – 1-Hour Mean NO₂ Monitoring Results	30
Table A.5 - PM ₁₀ Annual Mean Concentration (μg/m³)	31
Figure A.2 – Trends in Annual Mean PM ₁₀ Concentrations	32
Table A.5 – 24-Hour Mean PM ₁₀ Monitoring Results	33
Table A.6 – PM _{2.5} Monitoring Results	34
Figure A.3 – Trends in Annual Mean PM _{2.5} Concentrations	35
Appendix B: Full Monthly Diffusion Tube Results for 2019	36
Table B.1 – NO ₂ Monthly Diffusion Tube Results – 2019	36
Appendix C: Supporting Technical Information / Air Quality Monitoring Data QA / QC	39
Automatic Monitoring	39
Non-Automatic Monitoring	39
National Bias Adjustment Factor	40
Appendix D: Map(s) of Monitoring Locations and AQMAs	41
a) Automatic Monitoring Stations Location	41
b) Tubes Locations – Orchard Park and Impington	42
Tubes Locations – Histon	43
Tubes Locations – Bar Hill & A14	44
Tubes Locations – Waterbeach & A10	45
Tubes Locations – Milton	47
Tubes Locations – South of District	48
Tubes Locations – Tadlow	49
Tubes Locations – Northstowe	50
Tubes Locations – Northstowe	51
Appendix E: Summary of Air Quality Objectives in England	52
Table E.1 – Air Quality Objectives in England	52
Glossary of Terms	53

1. Local Air Quality Management

This report provides an overview of air quality in South Cambridgeshire District Council during 2019. It fulfils the requirements of Local Air Quality Management (LAQM) as set out in Part IV of the Environment Act (1995) and the relevant Policy and Technical Guidance documents.

The LAQM process places an obligation on all local authorities to regularly review and assess air quality in their areas, and to determine whether or not the air quality objectives are likely to be achieved. Where an exceedance is considered likely the local authority must declare an Air Quality Management Area (AQMA) and prepare an Air Quality Action Plan (AQAP) setting out the measures it intends to put in place in pursuit of the objectives.

This Annual Status Report (ASR) is an annual requirement showing the strategies employed by South Cambridgeshire to improve air quality and any progress that has been made. The statutory air quality objectives applicable to LAQM in England can be found in Table E.1in Appendix E.


2. Actions to Improve Air Quality

2.1 Air Quality Management Areas

Air Quality Management Areas (AQMAs) are declared when there is an exceedance or likely exceedance of an air quality objective. After declaration, the authority must prepare an Air Quality Action Plan (AQAP) within 12 – 18 months setting out measures it intends to put in place in pursuit of compliance with the objectives.

SCDC declared an Air Quality Management Area (AQMA) along the A14 between Bar Hill and Milton in 2008 for annual mean Nitrogen Dioxide (NO₂) and 24-hour Particulate Matter (PM₁₀) objectives. These have been monitored through a network of diffusion tubes and automatic monitors. A decreasing trend in pollution levels have been recorded within the AQMA over the past six years.

Figure 1. Air Quality Management Area

We propose to revoke this AQMA as repeatedly recommended by Defra in previous years. The consistent compliance with the objective levels since 2014 is the main evidence for this decision.

Furthermore, Highways England has commenced a major improvement scheme on A14 between Cambridge and Huntingdon since 2017. The scheme is expected to be completed in 2020 and is likely to alleviate impacts on local air quality within the AQMA. In addition, there

have been several improvements on A14 such as additional lane between junctions 31 and 32 which have resulted in a better traffic flow in parts of the AQMA¹⁰.

Whilst the revocation order for this AQMA is awaiting approval, the Council will continue to monitor the air quality in this area. However, alternative locations will be considered as part of the new review and up-date of the Council's monitoring programme in accordance with the recent changes to the road layout.

Figure 2. Monitoring locations and data within AQMA

Figure 2.a Diffusion Tubes locations between Bar Hill and Girton

¹⁰ In 2015, additional lane was provided between junctions 31 and 32 under the Government's 'Pinch-Point' programme.

Figure 2.b Diffusion Tubes locations between Girton and Milton (Impington and Orchard Park)

Figure 2.c Automatic Monitors locations between Bar Hill and Milton

Figure 2.c Diffusion Tubes data within AQMA

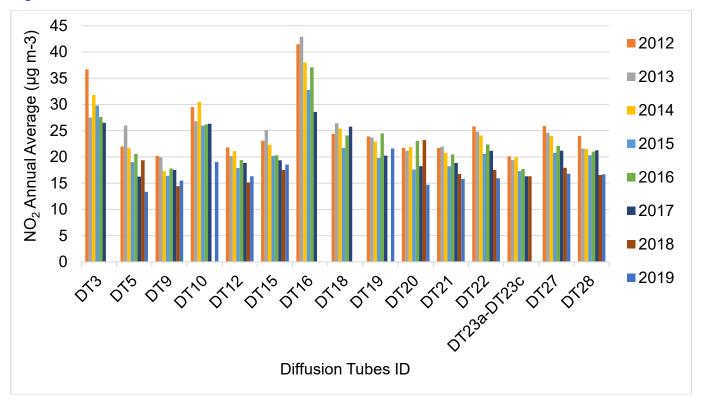
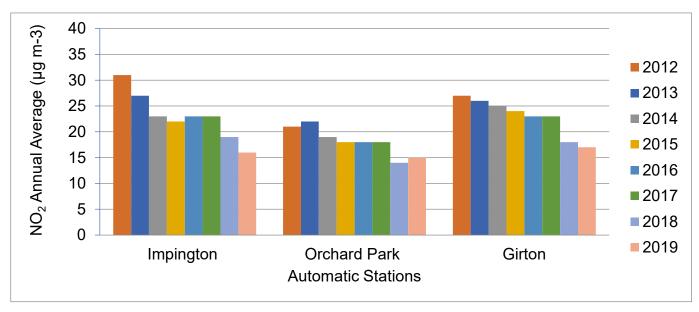



Figure 2.d Automatic Monitors data within AQMA

Monitoring results for PM₁₀ 24-Hour Mean are shown in Table A.5.

A summary of AQMAs declared by South Cambridgeshire can be found in Table 0.1.

Further information related to declared AQMA, including maps of AQMA boundaries are available online 11.

For reference, a complete map of South Cambridgeshire's monitoring locations is available in Appendix D.

¹¹ https://www.scambs.gov.uk/environment/pollution/air-pollution/local-air-quality-management/

Table 2.1 – Declared Air Quality Management Areas

AQMA	Date of	Pollutants	City /	One Line	Is air quality	Level of	Level of	Action Plan –	Action	Action
Name	Declaration	and Air	Town	Description	in the	Exceedance	Exceedance	Name	Plan –	Plan –
		Quality			AQMA	(maximum	(maximum		Date of	Link
		Objectives			influenced	monitored /	monitored /		Publication	
					by roads	modelled	modelled			
					controlled	concentration	concentration			
					by	at a location	at a location			
					Highways	of relevant	of relevant			
					England?	exposure) –	exposure) –			
						At	Now			
						Declaration				
AQMA 1	2007	NO ₂	Bar	Area Along	Yes	42 µg/m3		-	-	-
(Revoked)		Annual	Hill to	A14						
		Mean	Milton							
AQMA 1	2008	NO ₂	Bar	Area Along	Yes	42 μg/m3	16 µg/m3	Air Quality	2009	Link ¹²
		Annual	Hill to	A14				Action Plan for		
		Mean	Milton					Cambridgeshire		
								Growth Areas		

¹² https://www.scambs.gov.uk/environment/pollution/air-pollution/local-air-quality-management/

AQMA	Date of	Pollutants	City /	One Line	Is air quality	Level of	Level of	Action Plan –	Action	Action
Name	Declaration	and Air	Town	Description	in the	Exceedance	Exceedance	Name	Plan –	Plan –
		Quality			AQMA	(maximum	(maximum		Date of	Link
		Objectives			influenced	monitored /	monitored /		Publication	
					by roads	modelled	modelled			
					controlled	concentration	concentration			
					by	at a location	at a location			
					Highways	of relevant	of relevant			
					England?	exposure) –	exposure) –			
						At	Now			
						Declaration				
AQMA 1	2008	PM ₁₀	Bar	Area Along	Yes	52	1	Air Quality	2009	<u>Link</u>
		Daily Mean	Hill to	A14		Exceedances	Exceedances	Action Plan for		
			Milton					Cambridgeshire		
								Growth Areas		

[☑] South Cambridgeshire District Council confirm the information on UK-Air regarding their AQMA (s) is up to date

2.2 Progress and Impact of Measures to address Air Quality in South Cambridgeshire District Council

Defra's appraisal of last year's ASR concluded that SCDC should review the evidence to revoke the current AQMA since no exceedances of objective levels have occurred since 2014 and review the current monitoring programme to reflect the growth across the district.

Defra's recommendations have been acknowledged and the following actions have been taken:

- 1- We have proposed to revoke the AQMA and the Revocation Order is submitted for approval. Details are discussed in section 2.1.
- 2- The proposal for review and up-grade of the monitoring network was approved and is underway. The aim of this review is to ensure the wider area of the district is monitored to reflect the ongoing growth.
- 3- The monitoring at Northstowe New Town is continued and is likely to be expanded as the construction of additional phases of the town continues.

South Cambridgeshire has taken forward a number of measures during the current reporting year of 2019 in pursuit of improving and maintaining good air quality in wider district. These are as follows;

- A new Air Quality Strategy with emphasis on improving air quality district wide and beyond any existing Air Quality Management Areas is prepared and proposed to the Cabinet.
- A review and up-grade of the monitoring network was approved and is underway. The aim of this review is to ensure the wider area of the district is monitored to reflect the ongoing growth.
- Hotspot monitoring initiative was approved which enables the Council to test the reliability
 of alternative technologies in air quality monitoring.
- Detailed list of air quality requirements has been provided in the newly adopted
 Supplementary Planning Document (SPD)¹³ in support of the Local Plan (2018). These
 requirements range from low emission and sustainable transport to behavioural change
 through infrastructure and schemes.

Details of all measures completed, in progress or planned are set out in Table 0.2.

¹³ Supplementary Planning Document on Sustainable Design & Construction (adopted in January 2020) in support of Council's Local Plan (September 2018)

Table 2.2 – Progress on Measures to Improve Air Quality

Measure	Measure	EU	EU Classi-	Organi-	Planning	Imple-	Key Perfor-	Reduction	Progress to	Estimated /	Comments
No.		Category	fication	sations	Phase	mentation	mance	in	Date	Actual	/ Barriers
				involved		Phase	Indicator	Pollutant /		Completion	to imple-
				and				Emission		Date	mentation
				Funding				from			
				Source				Measure			
1	Low	Policy	Promotion	Developers	2019 –	Present	To be	N/A	In progress	N/A	-
	Emission	Guidance	of Sustain-	Contri-	2019	Local Plan	confirmed –				
	Strategies	and	able	butions			May involve				
		Develop-	Transport,				ratio of PPs				
		ment	Car Clubs,				issued with				
		Control,	Cycling				LES				
		Alter-									
		natives to									
		private									
		vehicle use									
2	Guided	Transport	Bus Route	Cambridge-	2009	2011	N/A	None	Completed	N/A	-
	Bus Way	Planning &	Improve-	shire	2010						
		Infra-	ments	County							
		structure		Council							
				(CCC)							

Measure	Measure	EU	EU Classi-	Organi-	Planning	Imple-	Key Perfor-	Reduction	Progress to	Estimated /	Comments
No.		Category	fication	sations	Phase	mentation	mance	in	Date	Actual	/ Barriers
				involved		Phase	Indicator	Pollutant /		Completion	to imple-
				and				Emission		Date	mentation
				Funding				from			
				Source				Measure			
3	A14	Traffic	Strategic	CCC	N/A	2015	N/A	None	Completed	N/A	-
	Improve-	Manage-	highway						Autumn 2015		
	ment –	ment	improve-								
	Junction		ments								
	31 – 32 (E										
	/B&W/										
	B)										
4	A14 / M11	Traffic	Strategic	CCC /	N/A	2016 –	Central Gov't /	None	Work to	2020	-
	Re-	Manage-	high-way	Highways		2020	Highways		commence		
	alignment	ment	improve-	England			England		2016 / 2017		
			ments				Commitment		(Package 1)		
5	Policy	Policy	Air Quality	South	2015	2016	LDF Policy	None	SPD or	2016	-
	Guidance	Guidance	Planning	Cambridge-			NE / 16		Developers		
	and	and	and Policy	shire					Guide for Low		
	Develop-	Develop-	Guidance	District					Emission		
	ment	ment		Council					Strategy		
	Control	Control		(SCDC)					measures		

Measure	Measure	EU	EU Classi-	Organi-	Planning	Imple-	Key Perfor-	Reduction	Progress to	Estimated /	Comments
No.		Category	fication	sations	Phase	mentation	mance	in Pollutant	Date	Actual	/ Barriers
				involved		Phase	Indicator	/ Emission		Completion	to imple-
				and				from		Date	mentation
				Funding				Measure			
				Source							
6	City Deal	Transport	Bus-route	CCC /	2015 –	2016	Connect	None	Proposed	Tranche 1	-
		Planning &	improve-	Cambridge	2030		existing & new		scheme for	schemes by	
		Infra-	ments &	City Council			residential &		making bus,	2019	
		structure	Promotion				employment		cycle and		
			of cycling /				areas with		walking		
		Promoting	Sustain-				high quality		journeys		
		Travel Alter-	able				public		more		
		natives	Transport				transport		convenient		
							networks,		and safer		
							including new		from		
							orbital bus		Northstowe		
							routes around		announced.		
							Cambridge &				
							comprehend-				
							sive network				
							of pedestrian				
							& cycle route.				

2.2 PM_{2.5} – Local Authority Approach to Reducing Emissions and/or Concentrations

As detailed in Policy Guidance LAQM.PG16 (Chapter 7), local authorities are expected to work towards reducing emissions and / or concentrations of PM_{2.5} (particulate matter with an aerodynamic diameter of 2.5µm or less). There is clear evidence that PM_{2.5} has a significant impact on human health, including premature mortality, allergic reactions, and cardiovascular diseases.

South Cambridgeshire District Council undertakes monitoring for PM_{2.5} on Huntingdon Road. The PM_{2.5} concentrations monitored at Girton site were slightly higher than that predicated by Defra in 2019 confirming an area affected by traffic.

An additional monitor was installed at Orchard Park School near the A14 in September. The aim of this initiative is to monitor the actual levels of exposure for most sensitive receptors near major roads. Sufficient data should be available to report in 2021 ASR.

The Council has participated in the publicity campaigns on the impacts of wood burning stoves on local air quality by Defra, providing information about what type of wood to burn and how to burn it efficiently¹⁴.

Public Health England (PHE) considers the health impacts of Particulate Matter (PM_{2.5}) on mortality for different regions. This was reported 5.3% for Cambridgeshire in 2016¹⁵.

Cambridgeshire County Council (CCC) elected members have noted the impacts of poor air quality and have passed a resolution to work with different councils and other public bodies more collaboratively across Cambridgeshire.

Greater Cambridgeshire Partnership (GCP) is working on a network of twelve separate routes into Cambridge from surrounding towns and villages to increase the level of safe cycling and walking and to reduce traffic congestion¹⁶.

¹⁴ Wood Burning Stoves https://www.scambs.gov.uk/environment/pollution/air-pollution/air-quality-air-definition-and-open-fire-guide/

¹⁵ Public Health Outcomes Framework (PHOF), Fraction of all-cause mortality attributable to anthropogenic particulate air pollution https://fingertips.phe.org.uk/profile/public-health-outcomes-framework/data#page/1/gid/1000049/pat/6/par/E12000006/ati/102/are/E10000003
¹⁶ Greenways Project https://www.greatercambridge.org.uk/transport/transport/transport-projects/greenways/

Air Quality Monitoring Data and Comparison with Air Quality Objectives and National Compliance

3.1 Summary of Monitoring Undertaken

South Cambridgeshire District Council operates Automatic Monitoring Stations at three sites and undertakes non-automatic (passive) monitoring of NO₂ at 27 sites within the District. Automatic Monitoring Stations are located at Orchard Park, Girton and Impington. All stations monitor PM₁₀ and NO₂. Girton site and Orchard Park measure PM_{2.5}. However, the PM_{2.5} monitor at Orchard Park was installed in September and sufficient data is not available to report in this ASR.

3.1.1 Automatic Monitoring Sites

This section sets out what monitoring has taken place and how it compares with objectives. The Automatic Monitoring Stations at Girton and Impington sites are representative of nearby receptors. The Orchard Park monitor is a background site located within the school grounds. Both Orchard Park and Impington site are located within the Air Quality Management Area for NO₂ and PM₁₀.

NO₂ data capture was 99% for Orchard Park and Girton site and 92% for Impington site. PM₁₀ data capture was 97% for Orchard Park and Girton sites and 92% for Impington site. PM_{2.5} data capture was 98%.

The monitoring results show that:

- No exceedances of annual mean objective for NO₂ or PM₁₀ was recorded
- No exceedances of annual mean objective for PM_{2.5} was recorded
- The hourly mean objective for NO₂ hourly mean was achieved at all sites
- The daily mean objective for PM₁₀ was achieved at all sites

Table A.1 in Appendix A shows the details of the sites. Maps showing the location of the monitoring sites are provided in Appendix D. Further details on how the monitors are calibrated and how the data has been adjusted are included in Appendix C.

3.1.2 Non-Automatic Monitoring Sites

SCDC undertook non-automatic (passive) monitoring of NO₂ at 27 sites during 2019. The following tubes were removed from the network as summarised below:

- DT16 and DT18 along A14 due to dangerous access
- DT23a DT23c as co-located study ceased
- DT-30N on Denny road, Waterbeach due to access issues

Diffusion tube monitoring network for Northstowe has been in place since June 2016 with no changes and it is likely to expand as construction phases of the new town continues.

Table A.2 in Appendix A shows the details of the sites. Maps showing the location of the monitoring sites are provided in Appendix D. Further details on Quality Assurance / Quality Control (QA / QC) for the diffusion tubes, including bias adjustments and any other adjustments applied (e.g. "annualisation" and/or distance correction), are included in Appendix C.

3.2 Individual Pollutants

The air quality monitoring results presented in this section are, where relevant, adjusted for bias, "annualisation" and distance correction. Further details on adjustments are provided in Appendix C.

3.2.1 Nitrogen Dioxide (NO₂)

Data capture was over 75% for all diffusion tubes. Following National Bias Adjustment, results for all diffusion tubes remain below the annual mean objective for Nitrogen Dioxide (NO₂).

Table A.3 in Appendix A compares the ratified and adjusted monitored NO₂ annual mean concentrations for the past 5 years with the air quality objective of 40μg/m³. For diffusion tubes, the full 2019 dataset of monthly mean values is provided in Appendix B. Table A.4 in Appendix A compares the ratified continuous monitored NO₂ hourly mean concentrations for the past 5 years with the air quality objective of 200μg/m³, not to be exceeded more than 18 times per year.

3.2.2 Particulate Matter (PM₁₀)

No exceedances above objective limits have been recorded. Table A.5 in Appendix A compares the ratified continuous monitored PM_{10} daily mean concentrations for the past 5 years with the air quality objective of $50\mu g/m^3$, not to be exceeded more than 35 times per year.

3.2.3 Particulate Matter (PM_{2.5})

Monitored levels remain below the objective levels. Table A.6 in Appendix A presents the ratified and adjusted monitored PM_{2.5} annual mean concentrations for the past 5 years.

Appendix A: Monitoring Results

Table A.1 – Details of Automatic Monitoring Sites

Site ID	Site Name	Site Type	X OS	Y OS	Pollutants	In	Monitoring	Distance to	Distance to	Inlet Height
			Grid Ref	Grid Ref	Monitored	AQMA?	Technique	Relevant	kerb of	(m)
								Exposure	nearest road	
								(m) ⁽¹⁾	(m) ⁽²⁾	
IMP	Impington	Roadside	543739	261625	NO _x	Yes	ET M200E / ET	Y (12m)	2	2
	(A14)				(NO ₂)		BAM1020			
					PM ₁₀					
ORCH	Orchard	Urban	544558	261579	NOx	Yes	ET M200E / ET	Y (1m)	N/A	2
	Park	Background			(NO ₂)		BAM1020			
	Primary				PM ₁₀					
	School				PM _{2.5}					
	(A14)									
GIRT	Girton	Roadside	542676	260667	NOx	No	ET M200E / ET	Y (5m)	5	2
					(NO ₂)		BAM1020			
					PM ₁₀					
					PM _{2.5}					

Notes:

- (1) 0m if the monitoring site is at a location of exposure (e.g. installed on the façade of a residential property).
- (2) N / A if not applicable.

Table A.2 – Details of Non-Automatic Monitoring Sites

Site ID	Site Name	Site Type	X OS	Y OS	Pollutants	In	Distance to	Distance to	Tube collocated	Height
			Grid	Grid	Monitored	AQMA?	Relevant	kerb of	with a	(m)
			Ref	Ref			Exposure	nearest road	Continuous	
							(m) ⁽¹⁾	(m) ⁽²⁾	Analyser?	
DT1	1 Coppice, Histon	Urban	544230	262048	NO2	N	7m	0.5m	N	2
		Background								
DT2	The Gables, High	Roadside	543770	263678	NO2	N	5m	1m	N	2
	Street, Histon									
DT3	Hill Farm	Roadside	536926	264956	NO2	Υ	N	4m	N	2
	Cottages, A14									
DT4	96 High Street,	Urban	548600	249136	NO2	N	5m	1m	N	2
	Sawston	Background								
DT5	Rhadegund Farm	Roadside	538744	263640	NO2	Υ	1m	33m	N	2
	Cottage, Bar Hill,									
	A14									
DT6	64 High Street,	Roadside	556179	246815	NO2	N	7m	0.5m	N	2
	Linton									
DT7	20 High Street,	Roadside	528131	247399	NO2	N	10m	2m	N	2
	Tadlow									
DT8	47 High Street,	Urban	542554	251002	NO2	N	5m	1m	N	2
	Harston	Background								

Site ID	Site Name	Site Type	X OS	Y OS	Pollutants	In	Distance to	Distance to	Tube collocated	Height
			Grid	Grid	Monitored	AQMA?	Relevant	kerb of	with a	(m)
			Ref	Ref			Exposure	nearest road	Continuous	
							(m) ⁽¹⁾	(m) ⁽²⁾	Analyser?	
DT9	3 Garner Close,	Urban	547452	263175	NO2	N	5m	1m	N	2
	Milton	Background								
DT10	1A Weavers	Urban	542537	261467	NO2	Υ	15m	1m	N	2
	Field, Girton	Background								
DT11	Heath House,	Urban	544034	244585	NO2	N	10m	1m	N	2
	A505, Thriplow	Background								
DT12	Lone Tree	Roadside	544119	261862	NO2	Υ	7m	0.5m	N	2
	Avenue,									
	Impington									
DT13	1 Brook Close,	Urban	543955	263588	NO2	N	2m	1m	N	2
	Histon	Background								
DT14	22 Water Lane,	Roadside	544050	263306	NO2	N	2m	0.5m	N	2
	Histon									
DT15	72 Cambridge	Urban	544243	261819	NO2	Υ	7m	0.5m	N	2
	Road, Impington	Background								
DT16	Hackers Fruit	Roadside	539846	262826	NO2	Υ	5m	12m	N	2
	Farm, A14									
DT17	5 Mill Lane,	Roadside	548545	249366	NO2	N	15m	1m	N	2
	Sawston									

Site ID	Site Name	Site Type	X OS	Y OS	Pollutants	In	Distance to	Distance to	Tube collocated	Height
			Grid	Grid	Monitored	AQMA?	Relevant	kerb of	with a	(m)
			Ref	Ref			Exposure	nearest road	Continuous	
							(m) ⁽¹⁾	(m) ⁽²⁾	Analyser?	
DT18	1 Catchall Farm	Roadside	540509	262290	NO2	Υ	1m	10m	N	2
	Cottages, A14									
DT19	Crafts Way, Bar	Roadside	538472	263675	NO2	N	15m	1m	N	2
	Hill									
DT20	Chieftain Way,	Roadside	544828	261738	NO2	Υ	1m	0.5m	N	2
	Orchard Park									
DT21	Neal Drive,	Roadside	545056	261784	NO2	Υ	1m	0.5m	N	2
	Orchard Park									
DT22	Flack End,	Roadside	545435	261906	NO2	Υ	2m	35m	N	2
	Orchard Park									
DT23a-	Orchard Park	Urban	544557	261571	NO2	Υ	1m	50m	Υ	2
DT23c	School	Background								
DT26	Co-op, High	Roadside	543768	263708	NO2	Υ	1.5m	2.6m	N	2
	Street, Histon									
DT27	Engledow Drive,	Urban	545259	261873	NO2	Υ	5m	4.5m	N	2
	Orch. Park	Background								
DT28	22 Topper Street,	Roadside	545169	261764	NO2	Υ	4.2m	0.2m	N	2
	Orch. Park									

Site ID	Site Name	Site Type	X OS	Y OS	Pollutants	In	Distance to	Distance to	Tube collocated	Height
			Grid	Grid	Monitored	AQMA?	Relevant	kerb of	with a	(m)
			Ref	Ref			Exposure	nearest road	Continuous	
							(m) ⁽¹⁾	(m) ⁽²⁾	Analyser?	
DT29	Church Lane,	Urban	552961	249251	NO2	No	14m	2.0m	N	2
	Little Abington	Background								
DT-6N	22 High St, Linton	Roadside	555942	246680	NO2	No	1m	2m	N	2
DT-8N	47 High Street,	Roadside	542555	251001	NO2	No	5m	2m	N	2
	Harston									
DT-28N	73 Cambridge	Roadside	547436	262295	NO2	No	10m	2m	N	2
	Road, Milton									
DT-30N	63, Denny End	Roadside	549154	266006	NO2	No	5m	2m	N	2
	Rd, Waterbeach									
DT-32N	Banworth, Ely	Roadside	548742	264698	NO2	No	10m	2m	N	2
	Road, A10									
DT-LN1	Old Railway	Roadside	539847	268169	NO2	No	5m	1m	N	2
	Tavern									
DT-LN2	75 High St	Roadside	539570	266842	NO2	No	2m	1m	N	2
	Longstanton									
DT-LN3	1 Rampton Drift	Roadside	540553	266869	NO2	No	5m	1m	N	2
DT-LN4	37 Longstanton	Roadside	540963	264474	NO2	No	5m	1m	N	2
DT-LN5a	Longstanton	Roadside	539614	267484	NO2	No	20m	1m	N	2
	bypass									

Site ID	Site Name	Site Type	X OS	Y OS	Pollutants	In	Distance to	Distance to	Tube collocated	Height
			Grid	Grid	Monitored	AQMA?	Relevant	kerb of	with a	(m)
			Ref	Ref			Exposure	nearest road	Continuous	
							(m) ⁽¹⁾	(m) ⁽²⁾	Analyser?	
DT-LN5b	Longstanton	Roadside	539614	267484	NO2	No	20m	1m	N	2
	bypass									
DT-LN5c	Longstanton	Roadside	539614	267484	NO2	No	20m	1m	N	2
	bypass									

Notes:

- (1) 0m if the monitoring site is at a location of exposure (e.g. installed on / adjacent to the façade of a residential property).
- (2) N / A if not applicable.

Table A.3 – Annual Mean NO₂ Monitoring Results

Site ID	X OS	Y OS Grid	Site Type	Monitoring	Valid Data	Valid	NO ₂ Annual				
	Grid Ref	Ref		Туре	Capture for	Data	Mean	Mean	Mean	Mean	Mean
	(Easting)	(Northing)			Monitoring	Capture	Concen-	Concen-	Concen-	Concen-	Concen-
					Period (%)	2019	tration	tration	tration	tration	tration
					(1)	(%) ⁽²⁾	(µg/m³) (3) (4)	(µg/m³) (3) (4)	$(\mu g/m^3)^{(3)(4)}$	(µg/m³) (3) (4)	(µg/m³) (3) (4)
							– 2015	- 2016	- 2017	– 2018	- 2019
IMP	332395	433175	Roadside	Automatic	92	92	22.0	23.0	23.0	19.0	16
ORCH	332200	433540	Urban	Automatic	99	99	18.0	18.0	18.0	14.0	15
			Background								
GIRT	332395	433175	Roadside	Automatic	99	99	24.0	23.0	23.0	18.0	17
DT1	544230	262048	Urban	Diffusion	100	100	17.4	21.3	17.2	14.7	14.7
			Background	Tube							
DT2	543770	263678	Roadside	Diffusion	92	92	30.6	27.8	27.4	27.1	27.2
				Tube							
DT3	536926	264956	Roadside	Diffusion	0	0	29.8	27.6	26.5	-	-
				Tube							
DT4	548600	249136	Urban	Diffusion	100	100	23.8	26.6	26.1	24.7	23.0
			Background	Tube							
DT5	538744	263640	Roadside	Diffusion	92	92	19.0	20.6	16.2	19.4	13.4
				Tube							
DT6	556179	246815	Roadside	Diffusion	0	0	27.4	27.9	29.2	-	-
				Tube							

Site ID	X OS	Y OS Grid	Site Type	Monitoring	Valid Data	Valid	NO ₂ Annual				
	Grid Ref	Ref		Туре	Capture for	Data	Mean	Mean	Mean	Mean	Mean
	(Easting)	(Northing)			Monitoring	Capture	Concen-	Concen-	Concen-	Concen-	Concen-
					Period (%)	2019	tration	tration	tration	tration	tration
					(1)	(%) ⁽²⁾	(µg/m³) (3) (4)				
							- 2015	– 2016	– 2017	- 2018	- 2019
DT7	528131	247399	Roadside	Diffusion	100	100	10.4	11.8	12.1	8.6	10.2
				Tube							
DT8	542554	251002	Urban	Diffusion	0	0	28.4	28.6	27.3	-	-
			Background	Tube							
DT9	547452	263175	Urban	Diffusion	100	100	16.4	17.8	17.5	14.4	15.5
			Background	Tube							
DT10	542537	261467	Urban	Diffusion	75	75	26.0	26.2	26.3	25.8	19.0
			Background	Tube							
DT11	544034	244585	Urban	Diffusion	92	92	26.1	26.0	24.6	24.9	22.5
			Background	Tube							
DT12	544119	261862	Roadside	Diffusion	92	92	17.9	19.4	18.8	15.1	16.3
				Tube							
DT13	543955	263588	Urban	Diffusion	100	100	17.7	19.2	18.5	17.2	16.3
			Background	Tube							
DT14	544050	263306	Roadside	Diffusion	100	100	24.4	27.0	26.4	23.6	22.3
				Tube							

Site ID	X OS	Y OS Grid	Site Type	Monitoring	Valid Data	Valid	NO ₂ Annual				
	Grid Ref	Ref		Туре	Capture for	Data	Mean	Mean	Mean	Mean	Mean
	(Easting)	(Northing)			Monitoring	Capture	Concen-	Concen-	Concen-	Concen-	Concen-
					Period (%)	2019	tration	tration	tration	tration	tration
					(1)	(%) ⁽²⁾	(µg/m³) (3) (4)				
							- 2015	– 2016	- 2017	– 2018	- 2019
DT15	544243	261819	Urban	Diffusion	100	100	20.2	20.3	19.4	17.5	18.5
			Background	Tube							
DT16	539846	262826	Roadside	Diffusion	0	0	32.8	37.1	28.6	-	-
				Tube							
DT17	548545	249366	Roadside	Diffusion	100	100	14.3	16.4	14.1	13.1	13.8
				Tube							
DT18	540509	262290	Roadside	Diffusion	0	0	21.7	24.1	25.8	33.1	-
				Tube							
DT19	538472	263675	Roadside	Diffusion	0	0	19.8	24.5	20.3	-	-
				Tube							
DT20	544828	261738	Roadside	Diffusion	100	100	17.6	23.1	18.2	23.2	14.7
				Tube							
DT21	545056	261784	Roadside	Diffusion	92	92	18.2	20.5	18.8	16.7	15.8
				Tube							
DT22	545435	261906	Roadside	Diffusion	100	100	20.6	22.4	21.2	17.5	15.9
				Tube							

Site ID	X OS	Y OS Grid	Site Type	Monitoring	Valid Data	Valid	NO ₂ Annual				
	Grid Ref	Ref		Туре	Capture for	Data	Mean	Mean	Mean	Mean	Mean
	(Easting)	(Northing)			Monitoring	Capture	Concen-	Concen-	Concen-	Concen-	Concen-
					Period (%)	2019	tration	tration	tration	tration	tration
					(1)	(%) ⁽²⁾	(µg/m³) (3) (4)	$(\mu g/m^3)^{(3)(4)}$	$(\mu g/m^3)^{(3)(4)}$	(µg/m³) (3) (4)	(µg/m³) (3) (4)
							- 2015	- 2016	- 2017	- 2018	- 2019
DT23a	544557	261571	Urban	Diffusion	0	0	17.3	17.8	16.6	16.4	-
			Background	Tube							
DT23b	544557	261571	Urban	Diffusion	0	0	16.8	17.9	16.2	16.5	-
			Background	Tube							
DT23c	544557	261571	Urban	Diffusion	0	0	17.9	17.4	15.9	16.1	-
			Background	Tube							
DT26	543768	263708	Roadside	Diffusion	100	100	18.6	19.7	18.9	17.8	17.1
				Tube							
DT27	545259	261873	Urban	Diffusion	100	100	20.8	22.1	21.2	17.9	16.8
			Background	Tube							
DT28	545169	261764	Roadside	Diffusion	92	92	20.3	21.0	21.3	16.6	16.7
				Tube							
DT29	552961	249251	Urban	Diffusion	100	100	11.3	12.5	11.0	10.0	10.9
			Background	Tube							
DT-6N	555942	246680	Roadside	Diffusion	83	83	-	-	-	20.2	21.0
				Tube							

Site ID	X OS	Y OS Grid	Site Type	Monitoring	Valid Data	Valid	NO ₂ Annual				
	Grid Ref	Ref		Туре	Capture for	Data	Mean	Mean	Mean	Mean	Mean
	(Easting)	(Northing)			Monitoring	Capture	Concen-	Concen-	Concen-	Concen-	Concen-
					Period (%)	2019	tration	tration	tration	tration	tration
					(1)	(%) ⁽²⁾	(µg/m³) (3) (4)	$(\mu g/m^3)^{(3)(4)}$	$(\mu g/m^3)^{(3)(4)}$	(µg/m³) (3) (4)	$(\mu g/m^3)^{(3)(4)}$
							- 2015	- 2016	- 2017	- 2018	- 2019
DT-8N	542555	251001	Roadside	Diffusion	92	92	-	-	-	17.3	15.3
				Tube							
DT-	547436	262295	Roadside	Diffusion	100	100	-	-	-	22.8	23.0
28N				Tube							
DT-	549154	266006	Roadside	Diffusion	0	0	-	-	-	16.0	-
30N				Tube							
DT-	548742	264698	Roadside	Diffusion	100	100	-	-	-	23.4	21.6
32N				Tube							
DT-	539847	268169	Roadside	Diffusion	83	83	-	22.7	18.5	18.6	17.4
LN1				Tube							
DT-	539570	266842	Roadside	Diffusion	75	75	-	16.9	16.6	14.5	14.6
LN2				Tube							
DT-	540553	266869	Roadside	Diffusion	83	83	-	13.2	12.7	11.8	11.1
LN3				Tube							
DT-	540963	264474	Roadside	Diffusion	0	0	-	15.2	14.6	12.1	-
LN4				Tube							

Site ID	X OS	Y OS Grid	Site Type	Monitoring	Valid Data	Valid	NO ₂ Annual				
	Grid Ref	Ref		Туре	Capture for	Data	Mean	Mean	Mean	Mean	Mean
	(Easting)	(Northing)			Monitoring	Capture	Concen-	Concen-	Concen-	Concen-	Concen-
					Period (%)	2019	tration	tration	tration	tration	tration
					(1)	(%) ⁽²⁾	(µg/m³) (3) (4)	(µg/m³) (3) (4)	$(\mu g/m^3)^{(3)(4)}$	(µg/m³) (3) (4)	(µg/m³) (3) (4)
							- 2015	- 2016	- 2017	- 2018	- 2019
DT-	539614	267484	Roadside	Diffusion	83	83	-	26.7	26.3	24.3	22.8
LN5a				Tube							
DT-	539614	267484	Roadside	Diffusion	83	83	-	26.0	26.7	23.9	24.0
LN5b				Tube							
DT-	539614	267484	Roadside	Diffusion	83	83	-	25.6	27.4	24.6	23.7
LN5c				Tube							

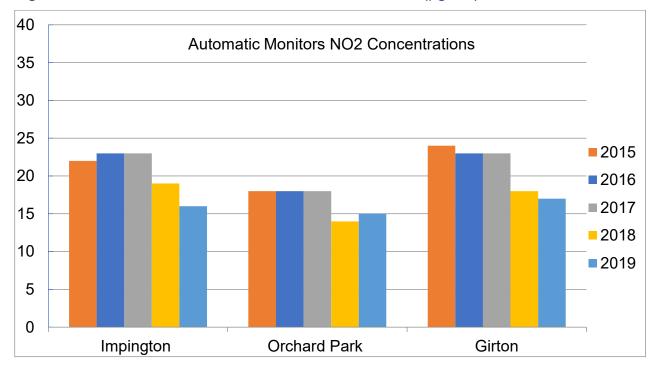
☑ Diffusion tube data has been bias corrected

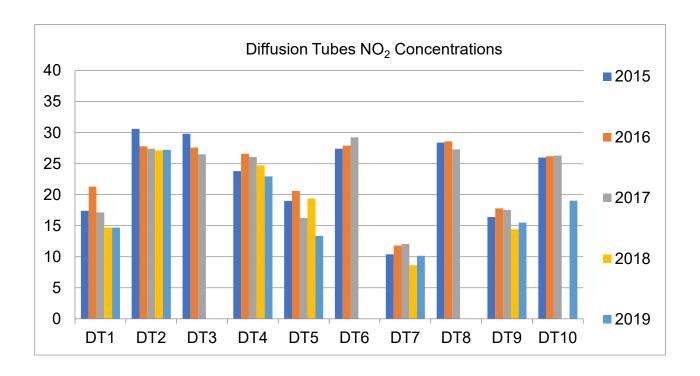
☑ Annualisation has been conducted where data capture is <75%

Notes:

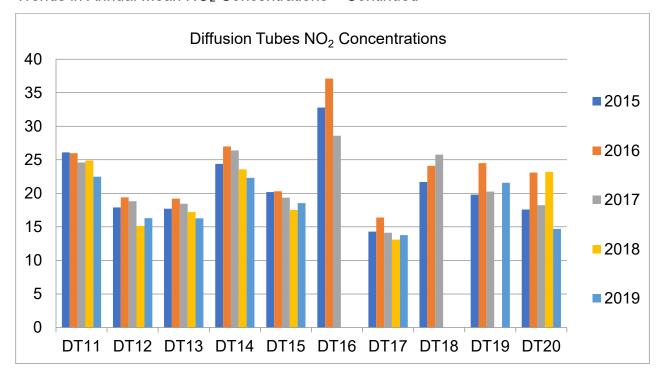
(*) Annualised data

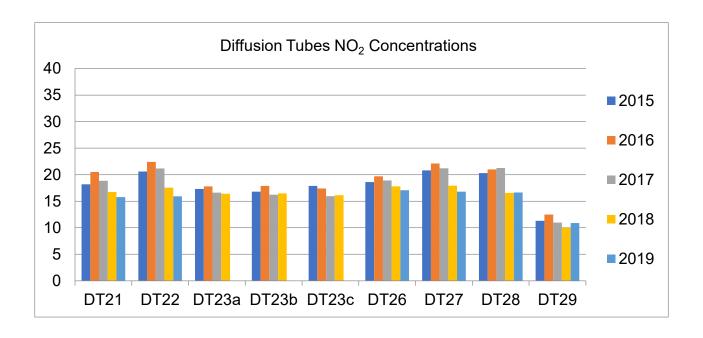
(NA) Not Active


Exceedances of the NO₂ annual mean objective of 40µg/m³ are shown in **bold**.


NO₂ annual means exceeding 60μg/m³, indicating a potential exceedance of the NO₂ 1-hour mean objective are shown in **bold and underlined**.

- (1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.
- (2) Data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).
- (3) Means for diffusion tubes have been corrected for bias. All means have been "annualised" as per Boxes 7.9 and 7.10 in LAQM.TG16 if valid data capture for the full calendar year is less than 75%. See Appendix C for details.


Figure A.1 – Trends in Annual Mean NO₂ Concentrations (µg m⁻³)



Trends in Annual Mean NO₂ Concentrations – Continued

Trends in Annual Mean NO₂ Concentrations - Continued

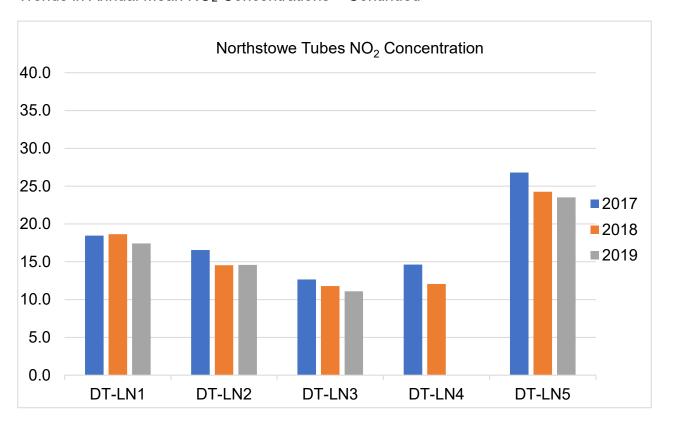


Table A.4 – 1-Hour Mean NO₂ Monitoring Results

Site ID	X OS	Y OS	Site Type –	Monitoring	Valid Data	Valid Data	NO ₂ 1-				
	Grid Ref	Grid Ref		Туре	Capture for	Capture	Hour	Hour	Hour	Hour	Hour
	(Easting)	(Northing)			Monitoring	2019 (%) (2)	Means >				
					Period (%) (1)		200µg/m³	200µg/m³	200µg/m³	200µg/m ³	200µg/m ³
							⁽³⁾ – 2015	⁽³⁾ – 2016	⁽³⁾ – 2017	⁽³⁾ – 2018	⁽³⁾ – 2019
IMP	543739	261625	Roadside	Automatic	92	92	0	0	0	0	0
ORCH	544558	261579	Urban	Automatic	99	99	0	0	0	0	0
			Background								
GIRT	542676	260667	Roadside	Automatic	99	99	0	0	0	0	0

Notes:

Exceedances of the NO₂ 1-hour mean objective (200µg/m³ not to be exceeded more than 18 times / year) are shown in **bold**.

- (1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.
- (2) Data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).
- (3) If the period of valid data is less than 85%, the 99.8th percentile of 1-hour means is provided in brackets.

Table A.5 - PM₁₀ Annual Mean Concentration (µg/m³)

Site	X OS	Y OS Grid	Site Type	Valid Data	Valid	PM ₁₀ Annual				
ID	Grid Ref	Ref		Capture for	Data	Mean	Mean	Mean	Mean	Mean
	(Easting)	(Northing)		Monitoring	Capture	Concentration	Concentration	Concentration	Concentration	Concentration
				Period (%)	2019	(µg/m³) ⁽³⁾				
				(1)	(%) ⁽²⁾	– 2015	– 2016	– 2017	– 2018	- 2019
IMP	543739	261625	Roadside	92	92	18	17	16	17	16
ORCH	544558	261579	Urban	97	97	16	16	14	14	14
			Background							
GIRT	542676	260667	Roadside	97	97	11	17	17	17	17

☐ Annualisation has been conducted where data capture is <75%

Notes:

Exceedances of the PM_{10} annual mean objective of $40\mu g/m^3$ are shown in **bold**.

- (1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.
- (2) Data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).
- (3) All means have been "annualised" as per Boxes 7.9 and 7.10 in LAQM.TG16, valid data capture for the full calendar year is less than 75%. See Appendix C for details.

Figure A.2 – Trends in Annual Mean PM₁₀ Concentrations

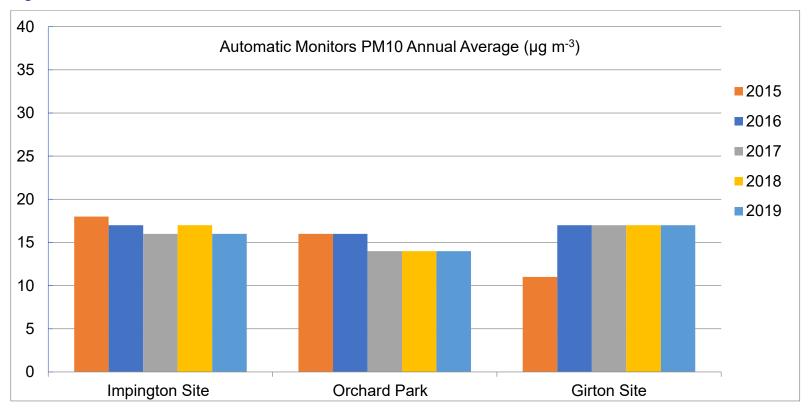


Table A.5 – 24-Hour Mean PM₁₀ Monitoring Results

Site ID	X OS Grid	Y OS Grid	Site Type	Valid Data	Valid Data	PM ₁₀ Annual				
	Ref	Ref		Capture for	Capture	Mean	Mean	Mean	Mean	Mean
	(Easting)	(Northing)		Monitoring	2019 (%) (2)	Concentration	Concentration	Concentration	Concentration	Concentration
				Period (%) ⁽¹⁾		(µg/m³) ⁽³⁾	(µg/m³) ⁽³⁾	$(\mu g/m^3)^{(3)}$	(µg/m³) ⁽³⁾	$(\mu g/m^3)^{(3)}$
						– 2015	– 2016	– 2017	– 2018	- 2019
IMP	543739	261625	Roadside	92	92	2	1	2	1	2
ORCH	544558	261579	Urban	97	97	1	1	1	1	1
			Background							
GIRT	542676	260667	Roadside	97	97	1	1	1	1	3

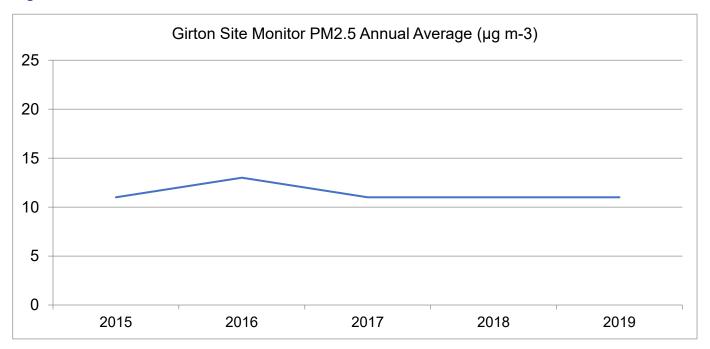
Notes:

Exceedances of the PM₁₀ 24-hour mean objective (50µg/m³ not to be exceeded more than 35 times / year) are shown in **bold**.

- (1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.
- (2) Data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).
- (3) If the period of valid data is less than 85%, the 90.4th percentile of 24-hour means is provided in brackets.

Table A.6 – PM_{2.5} Monitoring Results

Site ID	X OS Grid	Y OS Grid	Site Type	Valid Data	Valid Data	PM ₁₀ 24-	PM ₁₀ 24-	PM ₁₀ 24-	2 PM ₁₀ 24-	PM ₁₀ 24-
	Ref	Ref		Capture for	Capture	Hour Means				
	(Easting)	(Northing)		Monitoring	2019 (%) (2)	> 50µg/m ^{3 (3)}				
				Period (%) ⁽¹⁾		– 2015	- 2016	- 2017	- 2018	- 2019
GIRT	542676	260667	Roadside	98	98	11	13	11	11	11


☑ Annualisation has been conducted where data capture is <75%

Notes:

- (1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.
- (2) Data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).
- (3) All means have been "annualised" as per Boxes 7.9 and 7.10 in LAQM.TG16, valid data capture for the full calendar year is less than 75%. See Appendix C for details.

Figure A.3 – Trends in Annual Mean PM_{2.5} Concentrations

Appendix B: Full Monthly Diffusion Tube Results for 2019

Table B.1 – NO_2 Monthly Diffusion Tube Results – 2019

Site ID	X OS	Y OS Grid	NO ₂ N	Mean C	ean Concentrations (μg/m³)												
	Grid Ref	Ref	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual	Annual Mean	Annual
	(Easting)	(Northing)													Mean –	– Bias	Mean –
															Raw	Adjusted	Distance
															Data	(0.75) and	Corrected
																Annualised (1)	to Nearest
																	Exposure (2)
DT1	544230	262048	24.5	24.7	-	15.2	13.4	13.3	14.7	14.1	19.4	22.5	31.6	22.3	19.6	14.7	-
DT2	543770	263678	42.3	45.2	-	32.3	29.3	-	29.2	29.8	31.0	33.3	51.1	39.7	36.3	27.2	-
DT4	548600	249136	40.4	36.3	-	28.4	25.5	24	22.9	20.9	27.1	33.7	46.5	30.9	30.6	23.0	-
DT5	538744	263640	1.7	-	-	33.6	20.3	17.8	15.3	9.2	15.6	20.4	27.5	16.7	17.8	13.4	-
DT-6N	555942	246680	31.8	35.8	-	26.1	20.7	-	-	21.8	22.4	28	38.4	26.5	27.9	21.0	-
DT7	528131	247399	17.1	19.1	-	11.1	7.5	7.6	7.8	10.6	10.5	15.2	23.9	18.5	13.5	10.2	-
DT-8N	542555	251001	29.4	27.5	-	22.3	15.5	-	15.9	14.7	17	22.2	14.7	24.8	20.4	15.3	-
DT9	547452	263175	31.6	28.8	-	16.9	12	12.8	14.3	13.4	16.2	23.1	31.8	26.3	20.7	15.5	-
DT10	542537	261467	33.7	33.2	-	24.4	20.6	20.4	18.7	20.7	-	-	-	31.4	25.4	19.0	-
DT11	544034	244585	25.5	40.1	-	-	24.4	23.4	23	28.4	27.2	36.2	49	22.4	30.0	22.5	-
DT12	544119	261862	27.5	29.1	-	20.5	13.2	13.9	14.2	14.7	-	25.1	35.5	23.7	21.7	16.3	-
DT13	543955	263588	27	31.6	-	19.8	12.1	15.2	13.3	13.1	19	25.5	36.2	25.8	21.7	16.3	-
DT14	544050	263306	40.1	38.5	-	24.1	25.9	24.6	20.5	20.2	22.3	27	48.2	35.9	29.8	22.3	-

Site ID	X OS	Y OS Grid	NO ₂ N	Mean Concentrations (μg/m³)													
	Grid Ref	Ref	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual	Annual Mean	Annual
	(Easting)	(Northing)													Mean –	– Bias	Mean –
															Raw	Adjusted	Distance
															Data	(0.75) and	Corrected
																Annualised (1)	to Nearest
																	Exposure (2)
DT15	544243	261819	30.6	29.7	-	23.4	15.7	18.2	27.5	18.9	21.8	27.3	36.1	22.6	24.7	18.5	-
DT17	548545	249366	25.1	25	-	17.7	12.6	12	12.3	11.1	15.1	20.4	31.2	19.6	18.4	13.8	-
DT20	544828	261738	1.7	29.7	-	23.3	15.9	15.6	14.4	13.3	18.9	25.2	32.2	25.5	19.6	14.7	-
DT21	545056	261784	30.1	26.6	-	22.1	14.5	13.7	12.7	12.2	16.7	24.6	37.3	-	21.1	15.8	-
DT22	545435	261906	31.7	26	-	25.4	16.5	8.1	14.8	11.9	16.5	23.3	36.1	23.2	21.2	15.9	-
DT26	543768	263708	9.5	29.3	-	25.1	18.8	20.4	19.8	15.5	21.2	26.2	37.2	27.2	22.7	17.1	-
DT27	545259	261873	24.9	28.5	-	24.5	18.6	17.7	16.4	11.8	20	25.2	34.8	23.9	22.4	16.8	-
DT28	545169	261764	34.3	-	-	20.9	15.9	16.6	15.7	13.6	17.6	25.9	35.8	25.9	22.2	16.7	-
DT29	552961	249251	22	17.2	-	12.6	10.3	13.8	8.5	8.9	10.6	14.9	24.2	16.5	14.5	10.9	-
DT-28N	547436	262295	44.6	45.6	-	19	19.6	20.8	20.7	26.4	23.4	35.6	42	38.9	30.6	23.0	-
DT-32N	548742	264698	35.9	34.7	-	23.2	24	22.6	21.9	22.6	25.9	31	42.2	32.5	28.8	21.6	-
DT-LN1	539847	268169	-	30.7	24.1	25.5	17	19.8	20.2	17.8	21.2	26.8	29.1	-	23.2	17.4	-
DT-LN2	539570	266842	-	28.3	19.5	16.8	-	13.1	13.7	14.2	16.8	23.6	29.1	-	19.5	14.6	-
DT-LN3	540553	266869	-	18.1	16.8	12.7	9.6	9.8	10.1	14.3	11.8	18.5	26.3	-	14.8	11.1	-
DT-LN4	540963	264474	-	22.4	17.9	14.5	9.7	10.2	10.6	10.3	13.2	-	-	-	13.6	10.2	-
DT-LN5a	539614	267484	-	18.2	25.2	33.3	34.3	30.6	34.3	32.5	28.1	32.4	35.1	-	30.4	22.8	-

Site ID	X OS	Y OS Grid	NO ₂ N	Mean C	Concen	trations	s (µg/m	1 ³)									
	Grid Ref	Ref	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual	Annual Mean	Annual
	(Easting)	(Northing)													Mean –	– Bias	Mean –
															Raw	Adjusted	Distance
															Data	(0.75) and	Corrected
																Annualised (1)	to Nearest
																	Exposure (2)
DT-LN5b	539614	267484	-	27.1	30	31.4	33.4	32.6	34	32.4	29.5	30.9	38.9	-	32.0	24.0	-
DT-LN5c	539614	267484	-	27.6	31.5	31.9	32	30.2	33.3	28.8	26.7	32.5	42.1	-	31.7	23.7	-

 \square National bias adjustment factor used

☑ Annualisation has been conducted where data capture is <75%

Notes:

Exceedances of the NO_2 annual mean objective of $40\mu g/m^3$ are shown in **bold**.

NO₂ annual means exceeding 60μg/m³, indicating a potential exceedance of the NO₂ 1-hour mean objective are shown in **bold and underlined**.

- (1) See Appendix C for details on bias adjustment and annualisation.
- (2) Distance corrected to nearest relevant public exposure.

Appendix C: Supporting Technical Information / Air Quality Monitoring Data QA / QC

Automatic Monitoring

South Cambridgeshire District Council is a member of the Calibration Club, operated by AEAT now Ricardo – AEA. All NO_x analysers are chemiluminescence analysers. All particulate matter analysers are BAMs. In line with current guidance, BAM data is multiplied by 1.3 to give the gravimetric equivalent. QA / QC of automatic monitoring data is carried out by Ricardo – AEA. Tri-annual audits of the monitoring stations are carried out by Ricardo. Services of all the three AQ monitoring stations i.e. Impington, Girton and Orchard Park are carried out bi-annually by the equipment suppliers; Enviro – Technology. The sites are manually calibrated on a monthly basis by the Local Site Operative. The output from the calibrations is forwarded to Ricardo – AEA for QA / QC and ratification purposes.

Non-Automatic Monitoring

NO₂ monitoring was undertaken at 27 sites within the district using passive diffusion tubes. The samples have been analysed in accordance with SOCOTEC's standard operating procedure ANU / SOP / 1015. This method meets the guidelines set out in DEFRA's 'Diffusion Tubes for Ambient NO₂ Monitoring: Practical Guidance.' The tubes were prepared by spiking acetone:triethanolamine (50:50) onto the grids prior to the tubes being assembled. The tubes were desorbed with distilled water and the extract analysed using a segmented flow autoanalyser with ultraviolet detection. Please note:

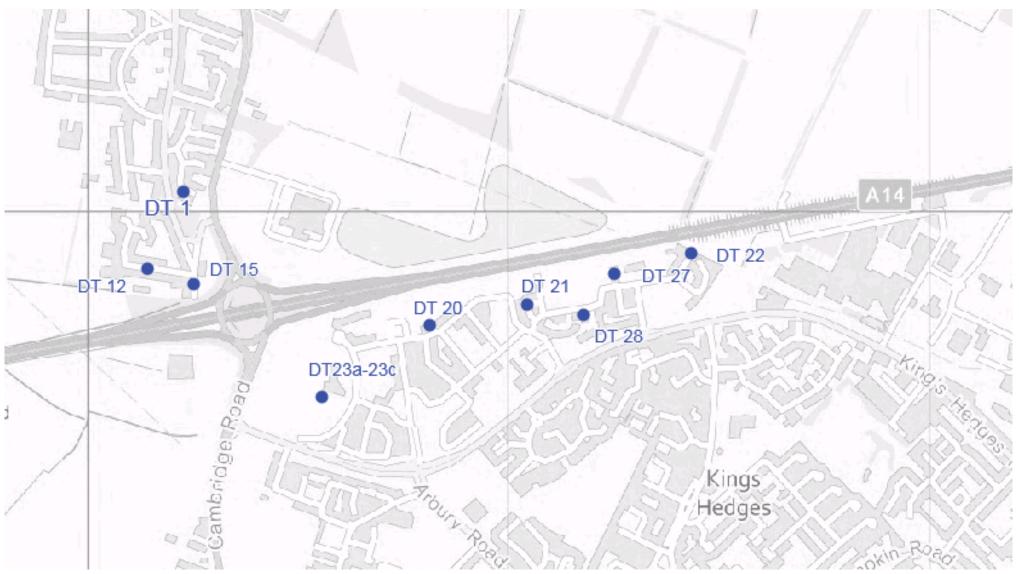
- (i) As set out in the practical guidance, the results were initially calculated assuming an ambient temperature of 11°C, the reported values have been adjusted to 20°C to allow for direct comparison with EU limits.
- (ii) The reported results have not been bias adjusted.

This analysis of diffusion tube samples to determine the amount of nitrogen dioxide present on the tube is within the scope of our UKAS schedule. Any further calculations and assessments requiring exposure details and conditions fall outside the scope of our accreditation. In the AIR PT intercomparison scheme for comparing spiked Nitrogen Dioxide diffusion tubes, SOCOTEC currently holds the highest rank of a Satisfactory laboratory.

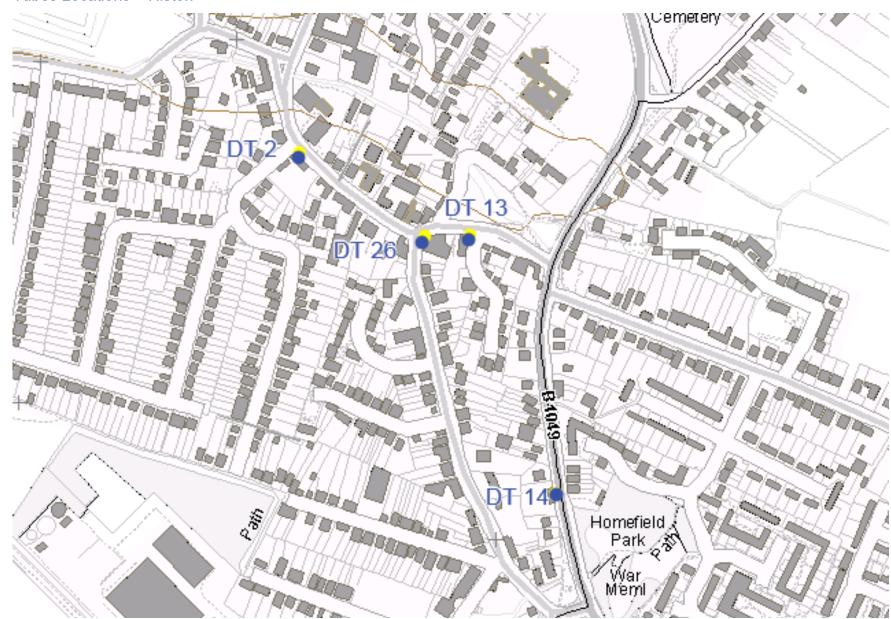
A national bias adjustment factor of **0.75** has been applied to the 2019 diffusion tube results. Data capture for all tube results was sufficient as to not warrant annualisation.

National Bias Adjustment Factor

National Diffusion Tube Bias Adjustment Factor Spreadsheet Spreadsheet Version Number: 03/20 follow the steps below in the correct order to show the results of relevant co-location studies This spreadsheet will be Data only apply to tubes exposed monthly and are not suitable for correcting individual short-term monitoring periods updated at the end of June 2020 Whenever presenting adjusted data, you should state the adjustment factor used and the version of the spreadsheet This spreadhseet will be updated every few months: the factors may therefore be subject to change. This should not discourage their immediate use. The LAQM Helpdesk is operated on behalf of Defra and the Devolved Administrations by Bureau Veritas, in conjunction with Spreadsheet maintained by the National Physical Laboratory, Original contract partners AECOM and the National Physical Laboratory. compiled by Air Quality Consultants Ltd. Step 1: Step 4: Step 2: Step 3: Where there is only one study for a chosen combination, you should use the adjustment factor shown with Select a Preparation Select a Year Select the Laboratory that Analyses Your Method from the from the Drop caution. Where there is more than one study, use the overall factor shown in blue at the foot of the final Tubes from the Drop-Down List Drop-Down List Down List column. f a preparation method is no If a year is not If you have your own co-location study then see footnote. If uncertain what to do then contact the Local Air Quality shown, we have no data for hown, we have no If a laboratory is not shown, we have no data for this laboratory. this method at this Management Helpdesk at LAQMHelpdesk@uk.bureauveritas.com or 0800 0327953 data laboratory. Bras Method Analysed By Diffusion Year Site Monitor Tube Length Adiustmen unda yourselection, choose Tube Mean To undo your **Bias** (All) from the populp list **Local Authority** of Study Mean Conc. Precisio t Factor Typ olection, choose Conc. (Dm) (B) (All) (Cm) (months) (A) n• Ţ Ţ ΨŢ (µq/m³) (malm3) (Cm/Dm) Socoted Didcot 50% TEA in acetone City of York Council 12 22 35.6% G 0.74 2019 UB 16 City of York Council 12 26 0.79 Socoted Didcot 50% TEA in acetone В 33 26.8% G 2019 В City of York Council Socoted Didcot 50% TEA in acetone 2019 9 32 23 37.2% G 0.73 Socoted Didcot 50% TEA in acetone 2019 В City of York Council 11 40 28 43.4% G 0.70 Socoted Didcot 50% TEA in acetone 2019 В Ipswich Boorough council 11 34 26 34.1% G 0.75 В Swale BC 12 51 39 G Socoted Didcot 50% TEA in acetone 2019 31.7% 0.76 В Swale BC 12 33 27 23.9% Socoted Didcot 50% TEA in acetone 2019 G 0.81 50% TEA in acetone В Swale BC 12 40 31 26.7% 0.79 Socoted Didcot 2019 G 50% TEA in acetone 2019 В Wrexham County Borough Council 10 20 16 22.2% G 0.82 Socotec Didcot Socoted Didcot 50% TEA in acetone 2019 В City of Wolverhampton Council 12 39 27 48.4% G 0.67 Socoted Didcot 50% TEA in acetone 2019 В North Herts DC 12 59 46 28.5% G 0.78 В 12 30 24 G Socoted Didcot 50% TEA in acetone 2019 Horsham District Council 24.5% 0.80 В Horsham District Council 31 22 44.5% G Socoted Didcot 50% TEA in acetone 2019 11 0.69 Socoted Didcot 50% TEA in acetone 2019 В Horsham District Council 11 32 24 34.4% G 0.74 50% TEA in acetone В Medway Council 10 21 13 59.5% Р 0.63 Socoted Didcot 2019 В Medway Council 12 33 24 G Socoted Didcot 50% TEA in acetone 2019 35.1% 0.74 Socoted Didcot 50% TEA in acetone 2019 В Waverley Borough Council 10 38 30 27.5% G 0.78 Socoted Didcot 50% TEA in acetone 2019 В Waverley Borough Council 12 35 24 44.7% G 0.69 Overall Factor* (24 studies) 0.75 SOCOTEC Didoot 50% TEA in acetone 2019 Use

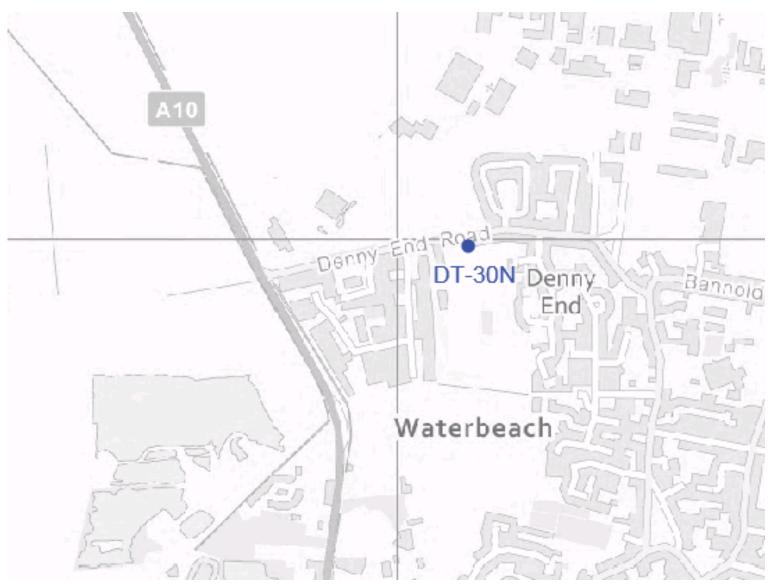

Appendix D: Map(s) of Monitoring Locations and AQMAs

a) Automatic Monitoring Stations Location



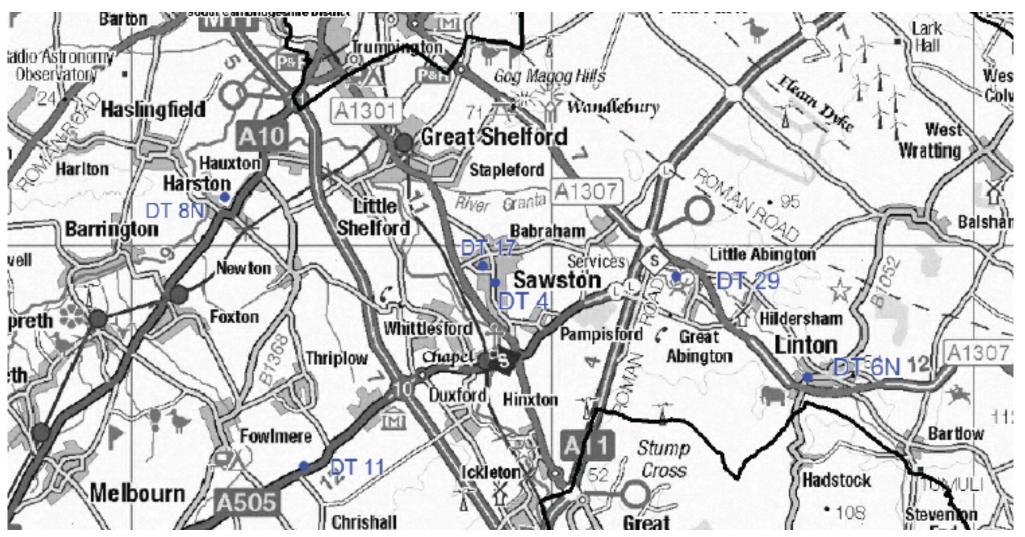
b) Tubes Locations – Orchard Park and Impington

Tubes Locations – Histon



Tubes Locations - Bar Hill & A14

Tubes Locations – Waterbeach & A10



Tubes Locations - Milton



Tubes Locations - South of District

Tubes Locations - Tadlow

Tubes Locations - Northstowe

Tubes Locations – Northstowe

Appendix E: Summary of Air Quality Objectives in England

Table E.1 – Air Quality Objectives in England

Pollutant	Air Quality Objective ¹⁷ –	Air Quality Objective ¹⁷ –
	Concentration	Measured as
Nitrogen Dioxide (NO ₂)	200 μg/m³ not to be exceeded more	1-hour mean
	than 18 times a year	
Nitrogen Dioxide (NO ₂)	40 μg/m ³	Annual mean
Particulate Matter (PM ₁₀)	50 μg/m³, not to be exceeded more	24-hour mean
	than 35 times a year	
Particulate Matter (PM ₁₀)	40 μg/m ³	Annual mean
Sulphur Dioxide (SO ₂)	350 μg/m³, not to be exceeded more	1-hour mean
	than 24 times a year	
Sulphur Dioxide (SO ₂)	125 μg/m ³ , not to be exceeded more	24-hour mean
	than 3 times a year	
Sulphur Dioxide (SO ₂)	266 μg/m ³ , not to be exceeded more	15-minute mean
	than 35 times a year	

 $^{^{\}rm 17}$ The units are in microgrammes of pollutant per cubic metre of air (µg/m³).

Glossary of Terms

Abbreviation	Description
AQAP	Air Quality Action Plan – A detailed description of measures, outcomes,
	achievement dates and implementation methods, showing how the local
	authority intends to achieve air quality limit values'
AQMA	Air Quality Management Area – An area where air pollutant concentrations
	exceed / are likely to exceed the relevant air quality objectives. AQMAs are
	declared for specific pollutants and objectives
ASR	Air quality Annual Status Report
Defra	Department for Environment, Food and Rural Affairs
DMRB	Design Manual for Roads and Bridges – Air quality screening tool produced
	by Highways England
EU	European Union
FDMS	Filter Dynamics Measurement System
LAQM	Local Air Quality Management
NO ₂	Nitrogen Dioxide
NOx	Nitrogen Oxides
PM ₁₀	Airborne particulate matter with an aerodynamic diameter of 10µm
	(micrometres or microns) or less
PM _{2.5}	Airborne particulate matter with an aerodynamic diameter of 2.5µm or less
QA / QC	Quality Assurance and Quality Control
SO ₂	Sulphur Dioxide

References

- The Local Air Quality Management, Policy Guidance LAQM. PG (16) (2016)
- The Local Air Quality Management, Technical Guidance LAQM. TG (16) (2016)
- Cambridgeshire County Council The Local transport Plan 3 (2011 2031)
- Air Quality Regulations 2000 and (Amendment) regulations 2002
- Air Quality Action Plan for the Cambridgeshire Growth Areas (2010)
- Deriving NO₂ from NO_x for Air Quality Assessments of Roads Updated to 2006
- The Air Quality Strategy for England, Scotland, Wales and Northern Ireland (2000)
- The SCDC Detailed Assessment of Nitrogen Dioxide along the A14 Corridor (2006)
- The SCDC Detailed Assessment of PM₁₀ along the A14 Corridor (2008)
- The SCDC Further Assessment of NO₂ and PM₁₀ along the A14 Corridor (2008)